1
|
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M, Shen L, Brust CA, Nikas SP, Song F, Song X, Yuan S, Sun Q, Wu Y, Jiang S, Grim TW, Benchama O, Stahl EL, Zvonok N, Zhao S, Bohn LM, Makriyannis A, Liu ZJ. Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-G i Complex Structures. Cell 2020; 180:655-665.e18. [PMID: 32004463 DOI: 10.1016/j.cell.2020.01.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
226 |
2
|
Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener 2021; 16:83. [PMID: 34922583 PMCID: PMC8684287 DOI: 10.1186/s13024-021-00501-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson's disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
162 |
3
|
Fei X, Bell TA, Barkow SR, Baker TA, Sauer RT. Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates. eLife 2020; 9:61496. [PMID: 33089779 PMCID: PMC7652416 DOI: 10.7554/elife.61496] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023] Open
Abstract
When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In Escherichia coli and other eubacteria, the tmRNA system rescues stalled ribosomes and adds an ssrA tag or degron to the C-terminus of the incomplete protein, which directs degradation by the AAA+ ClpXP protease. Here, we present cryo-EM structures of ClpXP bound to the ssrA degron. C-terminal residues of the ssrA degron initially bind in the top of an otherwise closed ClpX axial channel and subsequently move deeper into an open channel. For short-degron protein substrates, we show that unfolding can occur directly from the initial closed-channel complex. For longer degron substrates, our studies illuminate how ClpXP transitions from specific recognition into a nonspecific unfolding and translocation machine. Many AAA+ proteases and protein-remodeling motors are likely to employ similar multistep recognition and engagement strategies.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
51 |
4
|
Huang G, Liu D, Wang W, Wu Q, Chen J, Pan X, Shen H, Yan N. High-resolution structures of human Na v1.7 reveal gating modulation through α-π helical transition of S6 IV. Cell Rep 2022; 39:110735. [PMID: 35476982 DOI: 10.1016/j.celrep.2022.110735] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/26/2022] Open
Abstract
Nav1.7 represents a preeminent target for next-generation analgesics for its critical role in pain sensation. Here we report a 2.2-Å resolution cryo-EM structure of wild-type (WT) Nav1.7 complexed with the β1 and β2 subunits that reveals several previously indiscernible cytosolic segments. Reprocessing of the cryo-EM data for our reported structures of Nav1.7(E406K) bound to various toxins identifies two distinct conformations of S6IV, one composed of α helical turns only and the other containing a π helical turn in the middle. The structure of ligand-free Nav1.7(E406K), determined at 3.5-Å resolution, is identical to the WT channel, confirming that binding of Huwentoxin IV or Protoxin II to VSDII allosterically induces the α → π transition of S6IV. The local secondary structural shift leads to contraction of the intracellular gate, closure of the fenestration on the interface of repeats I and IV, and rearrangement of the binding site for the fast inactivation motif.
Collapse
|
|
3 |
49 |
5
|
Guo H, Gao Y, Li T, Li T, Lu Y, Zheng L, Liu Y, Yang T, Luo F, Song S, Wang W, Yang X, Nguyen HC, Zhang H, Huang A, Jin A, Yang H, Rao Z, Ji X. Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Rep 2022; 39:110770. [PMID: 35477022 PMCID: PMC9010281 DOI: 10.1016/j.celrep.2022.110770] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
The emergence of the SARS-CoV-2 Omicron variant is dominant in many countries worldwide. The high number of spike mutations is responsible for the broad immune evasion from existing vaccines and antibody drugs. To understand this, we first present the cryo-electron microscopy structure of ACE2-bound SARS-CoV-2 Omicron spike. Comparison to previous spike antibody structures explains how Omicron escapes these therapeutics. Secondly, we report structures of Omicron, Delta, and wild-type spikes bound to a patient-derived Fab antibody fragment (510A5), which provides direct evidence where antibody binding is greatly attenuated by the Omicron mutations, freeing spike to bind ACE2. Together with biochemical binding and 510A5 neutralization assays, our work establishes principles of binding required for neutralization and clearly illustrates how the mutations lead to antibody evasion yet retain strong ACE2 interactions. Structural information on spike with both bound and unbound antibodies collectively elucidates potential strategies for generation of therapeutic antibodies.
Collapse
|
research-article |
3 |
44 |
6
|
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A 2019; 116:25575-25582. [PMID: 31792195 PMCID: PMC6926060 DOI: 10.1073/pnas.1914451116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a switch for the release of Ca2+ from the sarco(endo)plasmic reticulum of cardiomyocytes, the type 2 ryanodine receptor (RyR2) is subject to sophisticated regulation by a broad spectrum of modulators. Dysregulation of RyR2-mediated Ca2+ release is linked to life-threatening cardiac arrhythmias. The regulatory mechanism of RyR2 by key modulators, such as Ca2+, FKBP12.6, ATP, and caffeine, remains unclear. This study provides important insights into the long-range allosteric regulation of RyR2 channel gating by these modulators and serves as an important framework for mechanistic understanding of the regulation of this key player in the excitation–contraction coupling of cardiac muscles. The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
44 |
7
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
Review |
5 |
42 |
8
|
Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Biomolecules 2020; 10:biom10040624. [PMID: 32316603 PMCID: PMC7226087 DOI: 10.3390/biom10040624] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell-cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal.
Collapse
|
Review |
5 |
41 |
9
|
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, Guo J, Wu ZY. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep 2023; 42:112417. [PMID: 37074913 DOI: 10.1016/j.celrep.2023.112417] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.
Collapse
|
|
2 |
25 |
10
|
Zhao Y, Rai J, Yu H, Li H. CryoEM structures of pseudouridine-free ribosome suggest impacts of chemical modifications on ribosome conformations. Structure 2022; 30:983-992.e5. [PMID: 35489333 DOI: 10.1016/j.str.2022.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Pseudouridine, the most abundant form of RNA modification, is known to play important roles in ribosome function. Mutations in human DKC1, the pseudouridine synthase responsible for catalyzing the ribosome RNA modification, cause translation deficiencies and are associated with a complex cancer predisposition. The structural basis for how pseudouridine impacts ribosome function remains uncharacterized. Here, we characterized structures and conformations of a fully modified and a pseudouridine-free ribosome from Saccharomyces cerevisiae in the absence of ligands or when bound with translocation inhibitor cycloheximide by electron cryomicroscopy. In the modified ribosome, the rearranged N1 atom of pseudouridine is observed to stabilize key functional motifs by establishing predominately water-mediated close contacts with the phosphate backbone. The pseudouridine-free ribosome, however, is devoid of such interactions and displays conformations reflective of abnormal inter-subunit movements. The erroneous motions of the pseudouridine-free ribosome may explain its observed deficiencies in translation.
Collapse
|
|
3 |
13 |
11
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
|
Review |
2 |
8 |
12
|
Akbar S, Bhakta S, Sengupta J. Structural insights into the interplay of protein biogenesis factors with the 70S ribosome. Structure 2021; 29:755-767.e4. [PMID: 33761323 DOI: 10.1016/j.str.2021.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase (MetAP). Trigger factor (TF), the only ribosome-associated bacterial chaperone, offers co-translational chaperoning assistance. Here, we present two high-resolution cryoelectron microscopy structures of tRNA-bound E. coli ribosome complexes showing simultaneous binding of PDF and TF, in the absence (3.4 Å) and presence of MetAP (4.1 Å). These structures establish molecular details of the interactions of the factors with the ribosome, and thereby reveal the structural basis of nascent chain processing. Our results suggest that simultaneous binding of all three factors is not a functionally favorable mechanism of nascent chain processing. Strikingly, an unusual structural distortion of the 70S ribosome, potentially driven by binding of multiple copies of MetAP, is observed when MetAP is incubated with a pre-formed PDF-TF-bound ribosome complex.
Collapse
|
Journal Article |
4 |
7 |
13
|
Majumdar S, Chiu YT, Pickett JE, Roth BL. Illuminating the understudied GPCR-ome. Drug Discov Today 2024; 29:103848. [PMID: 38052317 DOI: 10.1016/j.drudis.2023.103848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the target of >30% of approved drugs. Despite their popularity, many of the >800 human GPCRs remain understudied. The Illuminating the Druggable Genome (IDG) project has generated many tools leading to important insights into the function and druggability of these so-called 'dark' receptors. These tools include assays, such as PRESTO-TANGO and TRUPATH, billions of small molecules made available via the ZINC virtual library, solved orphan GPCR structures, GPCR knock-in mice, and more. Together, these tools are illuminating the remaining 'dark' GPCRs.
Collapse
|
Review |
1 |
5 |
14
|
Lee KH, Manning JJ, Javitch J, Shi L. A Novel "Activation Switch" Motif Common to All Aminergic Receptors. J Chem Inf Model 2023; 63:5001-5017. [PMID: 37540602 PMCID: PMC10695015 DOI: 10.1021/acs.jcim.3c00732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aminergic receptors are G protein-coupled receptors (GPCRs) that transduce signals from small endogenous biogenic amines to regulate intracellular signaling pathways. Agonist binding in the ligand binding pocket on the extracellular side opens and prepares a cavity on the intracellular face of the receptors to interact with and activate G proteins and β-arrestins. Here, by reviewing and analyzing all available aminergic receptor structures, we seek to identify activation-related conformational changes that are independent of the specific scaffold of the bound agonist, which we define as "activation conformational changes" (ACCs). While some common intracellular ACCs have been well-documented, identifying common extracellular ACCs, including those in the ligand binding pocket, is complicated by local adjustments to different ligand scaffolds. Our analysis shows no common ACCs at the extracellular ends of the transmembrane helices. Furthermore, the restricted access to the ligand binding pocket identified previously in some receptors is not universal. Notably, the Trp6.48 toggle switch and the Pro5.50-Ile3.40-Phe6.44 (PIF) motif at the bottom of the ligand binding pocket have previously been proposed to mediate the conformational consequences of ligand binding to the intracellular side of the receptors. Our analysis shows that common ACCs in the ligand binding pocket are associated with the PIF motif and nearby residues, including Trp6.48, but fails to support a shared rotamer toggle associated with activation. However, we identify two common rearrangements between the extracellular and middle subsegments, and propose a novel "activation switch" motif common to all aminergic receptors. This motif includes the middle subsegments of transmembrane helices 3, 5, and 6 and integrates both the PIF motif and Trp6.48.
Collapse
|
Review |
2 |
3 |
15
|
Wan Y, Huang L, Zhang X, Shang J, Perlman S, Du L, Li F. Molecular switches regulating the potency and immune evasiveness of SARS-CoV-2 spike protein. RESEARCH SQUARE 2021:rs.3.rs-736159. [PMID: 34611654 PMCID: PMC8491847 DOI: 10.21203/rs.3.rs-736159/v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SARS-CoV-2 spike protein plays a key role in viral entry and host immune responses. The conformation of the spike protein can be either open or closed, yet it is unclear how the conformations affect the protein's functions or what regulate the conformational changes. Using SARS-CoV-1 and bat RaTG13-CoV as comparisons, we identified two molecular switches that regulate the conformations of SARS-CoV-2 spike protein: (i) a furin motif loop turns SARS-CoV-2 spike from a closed conformation to a mixture of open and closed conformations, and (ii) a K417V mutation turns SARS-CoV-2 spike from mixed conformations to an open conformation. We showed that the open conformation favors viral potency by exposing the RBD for receptor binding and viral entry, whereas the closed conformation supports viral immune evasion by hiding the RBD from neutralizing antibodies. Hence SARS-CoV-2 spike has evolved to reach a balance between potency and immune evasiveness, which may contribute to the pandemic spread of SARS-CoV-2. The dynamics between viral potency and invasiveness is likely to further evolve, providing insights into future evolution of SARS-CoV-2.
Collapse
|
Preprint |
4 |
2 |
16
|
Yadav GP, Wang H, Ouwendijk J, Cross S, Wang Q, Qin F, Verkade P, Zhu MX, Jiang QX. Chromogranin B (CHGB) is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion. Front Mol Neurosci 2023; 16:1205516. [PMID: 37435575 PMCID: PMC10330821 DOI: 10.3389/fnmol.2023.1205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 07/13/2023] Open
Abstract
Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic β-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.
Collapse
|
research-article |
2 |
|
17
|
Rexhepaj M, Asarnow D, Perruzza L, Park YJ, Guarino B, Mccallum M, Culap K, Saliba C, Leoni G, Balmelli A, Yoshiyama CN, Dickinson MS, Quispe J, Brown JT, Tortorici MA, Sprouse KR, Taylor AL, Corti D, Starr TN, Benigni F, Veesler D. Isolation and escape mapping of broadly neutralizing antibodies against emerging delta-coronaviruses. Immunity 2024; 57:2914-2927.e7. [PMID: 39488210 DOI: 10.1016/j.immuni.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Porcine delta-coronavirus (PDCoV) spillovers were recently detected in febrile children, underscoring the recurrent zoonoses of divergent CoVs. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated PDCoV spike (S)-directed monoclonal antibodies (mAbs) from humanized mice and found that two, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryoelectron microscopy (cryo-EM) structures of PD33 and PD41 in complex with the S receptor-binding domain (RBD) and ectodomain trimer revealed the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs competitively interfere with host aminopeptidase N binding to neutralize PDCoV and used deep-mutational scanning epitope mapping to associate RBD antigenic sites with mAb-mediated neutralization potency. Our results indicate a PD33-PD41 mAb cocktail may heighten the barrier to escape. PD33 and PD41 are candidates for clinical advancement against future PDCoV outbreaks.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
18
|
Xie Z, Lv J, Huang W, Wu Z, Zhu R, Deng Z, Long F. Structural basis for the reversal of human MRP4-mediated multidrug resistance by lapatinib. Cell Rep 2025; 44:115466. [PMID: 40138312 DOI: 10.1016/j.celrep.2025.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Multidrug resistance proteins (MRPs) are one of the major mechanisms for developing cancer drug resistance. Human MRP4 (hMRP4) plays an important role in various chemotherapy-resistant cancers. Here, we show hMRP4 mediates the resistance of a broad spectrum of antitumor reagents in the cultured tumor cells, among which the cell resistance to vincristine and 5-fluorouracil is rescued by supplementing a tyrosinase inhibitor, lapatinib. The cryoelectron microscopy (cryo-EM) structures of hMRP4 in the substrate- or inhibitor-bound form are determined. Although lapatinib shares partial binding sites with vincristine and 5-fluorouracil using a similar set of crucial residues located in the central cavity of hMRP4, the high binding affinity of lapatinib and its unique binding mode with transmembrane helices TM2 and TM12 inside the pathway tunnel prohibit hMRP4 from structural transition between intermediate states during drug translocation. This study provides mechanistic insights into the therapeutical potential of lapatinib in combating hMRP4-mediated MDR.
Collapse
|
|
1 |
|
19
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
|
|
1 |
|
20
|
Ahn H, Calderon BM, Fan X, Gao Y, Horgan NL, Jiang N, Blohm DS, Hossain J, Rayyan NWK, Osman SH, Lin X, Currier M, Steel J, Wentworth DE, Zhou B, Liang B. Structural basis of the American mink ACE2 binding by Y453F trimeric spike glycoproteins of SARS-CoV-2. J Med Virol 2023; 95:e29163. [PMID: 37842796 DOI: 10.1002/jmv.29163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2). While evolutionarily conserved, ACE2 receptors differ across various species and differential interactions with Spike (S) glycoproteins of SARS-CoV-2 viruses impact species specificity. Reverse zoonoses led to SARS-CoV-2 outbreaks on multiple American mink (Mustela vison) farms during the pandemic and gave rise to mink-associated S substitutions known for transmissibility between mink and zoonotic transmission to humans. In this study, we used bio-layer interferometry (BLI) to discern the differences in binding affinity between multiple human and mink-derived S glycoproteins of SARS-CoV-2 and their respective ACE2 receptors. Further, we conducted a structural analysis of a mink variant S glycoprotein and American mink ACE2 (mvACE2) using cryo-electron microscopy (cryo-EM), revealing four distinct conformations. We discovered a novel intermediary conformation where the mvACE2 receptor is bound to the receptor-binding domain (RBD) of the S glycoprotein in a "down" position, approximately 34° lower than previously reported "up" RBD. Finally, we compared residue interactions in the S-ACE2 complex interface of S glycoprotein conformations with varying RBD orientations. These findings provide valuable insights into the molecular mechanisms of SARS-CoV-2 entry.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
21
|
Ahrens FM, do Prado PFV, Hillen HS, Pfannschmidt T. The plastid-encoded RNA polymerase of plant chloroplasts. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00031-7. [PMID: 40011163 DOI: 10.1016/j.tplants.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Plant chloroplasts possess a dedicated genome (plastome) and a prokaryotic-type plastid-encoded RNA polymerase (PEP) that mediates its expression. PEP is composed of five bacteria-like core proteins and 16 nucleus-encoded PEP-associated proteins (PAPs). These are essential for PEP-driven transcription and chloroplast biogenesis, but their functions and structural arrangement in the PEP complex remained largely enigmatic. Recently, four independently determined cryogenic-electron microscopy (cryo-EM) structures of purified plant PEP complexes reported features of the prokaryotic core and the arrangement of PAPs around it, identified potential functional domains and cofactors, and described the interactions of PEP with DNA. We explore these data and critically discuss the proposed regulatory impact of PAPs on the transcription process. We further address the evolutionary implications and describe fields for future investigation.
Collapse
|
Review |
1 |
|
22
|
Arige V, MacLean DM, Yule DI. Inositol 1,4,5-Trisphosphate Receptor Mutations Associated with Human Disease: Insights into Receptor Function and Dysfunction. Annu Rev Physiol 2025; 87:201-228. [PMID: 39591657 DOI: 10.1146/annurev-physiol-022724-105627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitous intracellular Ca2+ release channels. Their activation, subcellular localization, abundance, and regulation play major roles in defining the spatiotemporal characteristics of intracellular Ca2+ signals, which are in turn fundamental to the appropriate activation of effectors that control a myriad of cellular events. Over the past decade, ∼100 mutations in ITPRs associated with human diseases have been documented. Mutations have been detailed in all three IP3R subtypes and all functional domains of the protein, resulting in both gain and loss of receptor function. IP3R mutations are associated with a diverse array of pathology including spinocerebellar ataxia, peripheral neuropathy, immunopathy, anhidrosis, hyperparathyroidism, and squamous cell carcinoma. This review focuses on how studying the altered activity of these mutations provides information relating to IP3R structure and function, the physiology underpinned by specific IP3R subtypes, and the pathological consequences of dysregulated Ca2+ signaling in human disease.
Collapse
|
Review |
1 |
|