1
|
Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4862-4869. [PMID: 25932656 DOI: 10.1021/acs.jafc.5b01548] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.
Collapse
|
|
10 |
130 |
2
|
Bengaluru Subramanyam S, Kondrashov V, Rühe J, Varanasi KK. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12583-7. [PMID: 27150450 DOI: 10.1021/acsami.6b01133] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ice adhesion on superhydrophobic surfaces can significantly increase in humid environments because of frost nucleation within the textures. Here, we studied frost formation and ice adhesion on superhydrophobic surfaces with various surface morphologies using direct microscale imaging combined with macroscale adhesion tests. Whereas ice adhesion increases on microtextured surfaces, a 15-fold decrease is observed on nanotextured surfaces. This reduction is because of the inhibition of frost formation within the nanofeatures and the stabilization of vapor pockets. Such "Cassie ice"-promoting textures can be used in the design of anti-icing surfaces.
Collapse
|
Letter |
9 |
84 |
3
|
Camerin F, Fernández-Rodríguez MÁ, Rovigatti L, Antonopoulou MN, Gnan N, Ninarello A, Isa L, Zaccarelli E. Microgels Adsorbed at Liquid-Liquid Interfaces: A Joint Numerical and Experimental Study. ACS NANO 2019; 13:4548-4559. [PMID: 30865829 DOI: 10.1021/acsnano.9b00390] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Soft particles display highly versatile properties with respect to hard colloids and even more so at fluid-fluid interfaces. In particular, microgels, consisting of a cross-linked polymer network, are able to deform and flatten upon adsorption at the interface due to the balance between surface tension and internal elasticity. Despite the existence of experimental results, a detailed theoretical understanding of this phenomenon is still lacking due to the absence of appropriate microscopic models. In this work, we propose an advanced modeling of microgels at a flat water/oil interface. The model builds on a realistic description of the internal polymeric architecture and single-particle properties of the microgel and is able to reproduce its experimentally observed shape at the interface. Complementing molecular dynamics simulations with in situ cryo-electron microscopy experiments and atomic force microscopy imaging after Langmuir-Blodgett deposition, we compare the morphology of the microgels for different values of the cross-linking ratios. Our model allows for a systematic microscopic investigation of soft particles at fluid interfaces, which is essential to develop predictive power for the use of microgels in a broad range of applications, including the stabilization of smart emulsions and the versatile patterning of surfaces.
Collapse
|
|
6 |
73 |
4
|
Chen Z, Wang J, Pan D, Wang Y, Noetzel R, Li H, Xie P, Pei W, Umar A, Jiang L, Li N, Rooij NFD, Zhou G. Mimicking a Dog's Nose: Scrolling Graphene Nanosheets. ACS NANO 2018; 12:2521-2530. [PMID: 29512386 DOI: 10.1021/acsnano.7b08294] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inspired by the densely covered capillary structure inside a dog's nose, we report an artificial nanostructure, i. e., poly(sodium p-styrenesulfonate)-functionalized reduced graphene oxide nanoscrolls (PGNS), with high structural perfection and efficient gas sensing applications. A facile supramolecular assembly is introduced to functionalize graphene with the functional polymer, combined with the lyophilization technique to massively transform the planar graphene-based nanosheets to nanoscrolls. Detailed characterizations reveal that the bioinspired nanoscrolls exhibit a wide-open tubular morphology with uniform dimensions that is structurally distinct from the previously reported ones. The detailed morphologies of the graphene-based nanosheets in each scrolling stage during lyophilization are monitored by cryo-SEM. This unravels an asymmetric polymer-induced graphene scrolling mechanism including the corresponding scrolling process, which is directly presented by molecular dynamics simulations. The fabricated PGNS sensors exhibit superior gas sensing performance with reliable repeatability, excellent linear sensibility, and, especially, an ultrahigh response ( Ra/ Rg = 5.39, 10 ppm) toward NO2. The supramolecular assembly combined with the lyophilization technique to fabricate PGNS provides a strategy to design biomimetic materials for gas sensors and chemical trace detectors.
Collapse
|
|
7 |
25 |
5
|
Stachewicz U, Bailey RJ, Zhang H, Stone CA, Willis CR, Barber AH. Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16645-16652. [PMID: 26176304 DOI: 10.1021/acsami.5b04272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wetting behavior between electrospun nanofibrous networks and liquids is of critical importance in many applications including filtration and liquid-repellent textiles. The relationship between intrinsic nanofiber properties, including surface characteristics, and extrinsic nanofibrous network organization on resultant wetting characteristics of the nanofiber network is shown in this work. Novel 3D imaging exploiting focused ion beam (FIB) microscopy and cryo-scanning electron microscopy (cryo-SEM) highlights a wetting hierarchy that defines liquid interactions with the network. Specifically, small length scale partial wetting between individual electrospun nanofibers and low surface tension liquids, measured both using direct SEM visualization and a nano Wilhelmy balance approach, provides oleophobic surfaces due to the high porosity of electrospun nanofiber networks. These observations conform to a metastable Cassie-Baxter regime and are important in defining general rules for understanding the wetting behavior between fibrous solids and low surface tension liquids for omniphobic functionality.
Collapse
|
|
10 |
21 |
6
|
Yazaki K, Takanashi T, Kanzaki N, Komatsu M, Levia DF, Kabeya D, Tobita H, Kitao M, Ishida A. Pine wilt disease causes cavitation around the resin canals and irrecoverable xylem conduit dysfunction. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:589-602. [PMID: 29240955 DOI: 10.1093/jxb/erx417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Physiological mechanisms of irreversible hydraulic dysfunction in seedlings infected with pine wilt disease (PWD) are still unclear. We employed cryo-scanning electron microscopy (cryo-SEM) to investigate the temporal and spatial changes in water distribution within the xylem of the main stem of 2-year-old Japanese black pine seedlings infested by pine wood nematodes (PWNs). Our experiment was specifically designed to compare the water relations among seedlings subjected to the following water treatment and PWN combinations: (i) well-watered versus prolonged drought (no PWNs); and (ii) well-watered with PWNs versus water-stressed with PWNs (four treatments in total). Cryo-SEM imaging observations chronicled the development of patchy cavitations in the xylem tracheids of the seedlings influenced by PWD. With the progression of drought, many pit membranes of bordered pits in the xylem of the main stem were aspirated with the decrease in water potential without xylem cavitation, indicating that hydraulic segmentation may exist between tracheids. This is the first study to demonstrate conclusively that explosive and irreversible cavitations occurred around the hydraulically vulnerable resin canals with the progression of PWD. Our findings provide a more comprehensive understanding of stressors on plant-water relations that may eventually better protect trees from PWD and assist with the breeding of trees more tolerant to PWD.
Collapse
|
|
7 |
17 |
7
|
Kleinerman O, Parra-Vasquez ANG, Green MJ, Behabtu N, Schmidt J, Kesselman E, Young CC, Cohen Y, Pasquali M, Talmon Y. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. J Microsc 2015; 259:16-25. [PMID: 25818279 DOI: 10.1111/jmi.12243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/07/2015] [Indexed: 11/29/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
8
|
Hrubanova K, Krzyzanek V, Nebesarova J, Ruzicka F, Pilat Z, Samek O. Monitoring Candida parapsilosis and Staphylococcus epidermidis Biofilms by a Combination of Scanning Electron Microscopy and Raman Spectroscopy. SENSORS 2018; 18:s18124089. [PMID: 30469521 PMCID: PMC6308600 DOI: 10.3390/s18124089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 02/03/2023]
Abstract
The biofilm-forming microbial species Candida parapsilosis and Staphylococcus epidermidis have been recently linked to serious infections associated with implanted medical devices. We studied microbial biofilms by high resolution scanning electron microscopy (SEM), which allowed us to visualize the biofilm structure, including the distribution of cells inside the extracellular matrix and the areas of surface adhesion. We compared classical SEM (chemically fixed samples) with cryogenic SEM, which employs physical sample preparation based on plunging the sample into various liquid cryogens, as well as high-pressure freezing (HPF). For imaging the biofilm interior, we applied the freeze-fracture technique. In this study, we show that the different means of sample preparation have a fundamental influence on the observed biofilm structure. We complemented the SEM observations with Raman spectroscopic analysis, which allowed us to assess the time-dependent chemical composition changes of the biofilm in vivo. We identified the individual spectral peaks of the biomolecules present in the biofilm and we employed principal component analysis (PCA) to follow the temporal development of the chemical composition.
Collapse
|
Journal Article |
7 |
15 |
9
|
Hellemans T, Abera G, De Leyn I, Van der Meeren P, Dewettinck K, Eeckhout M, De Meulenaer B, Van Bockstaele F. Composition, Granular Structure, and Pasting Properties of Native Starch Extracted from Plectranthus edulis (Oromo dinich) Tubers. J Food Sci 2017; 82:2794-2804. [PMID: 29194598 DOI: 10.1111/1750-3841.13971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 11/27/2022]
Abstract
Chemical composition, granular morphology and pasting properties of native starch extracted from tubers of Plectranthus edulis were analyzed. Starch was extracted from tubers of 6 accessions collected from 4 different areas in Ethiopia. Particle size analysis (PSA) and cryo-scanning electron microscope (cryo-SEM) imaging were used to examine the granular morphology and visualize the starch paste, respectively. Pasting properties, water absorption, and gelation capacity were compared. A wide range was found for the amylose (14.2% to 23.9%), calcium (216 to 599), potassium (131 to 878), and phosphorus (1337 to 2090) contents (parts per million per dry matter). PSA showed a bimodal distribution containing small spherical (14.6 μm) and large ellipse-shaped (190.4 μm) granules. Major differences were found for the pasting with peak viscosities differing from 3184 to 7312 mPa⋅s. Starch from accessions Chencha and Inuka showed a difference in packing density as clearly seen through cryo-SEM image at 75% of the peak viscosity (PV), and the granular integrity was mainly responsible for the significant difference in their PV and breakdown. Principal component analysis revealed 2 distinct groups: native starch extracted from accessions at the Wolayta zone (Inuka, Lofua, and Chenqoua) and other accessions (Jarmet, Arjo white, and Chencha). The study revealed the potential of P. edulis starch for its application in food industries. However, the inherent variation due to environmental conditions on physicochemical properties of the starch needs further investigation. PRACTICAL APPLICATION Plectranthus edulis is cultivated in considerable amounts throughout Ethiopia, which makes it a valuable starch source. Due to its low tendency to retrograde, it could be applied in food industry as an equivalent for the current starch sources. Moreover, the low amylose content makes it preferable for an application in refrigerated foods as this unique quality trait prevents syneresis in end products during storage. Based on the significantly higher pasting temperature of the studied P. edulis starch extracts, it can form an alternative for potato starch, which is less suitable for its use in pasteurized foods.
Collapse
|
Journal Article |
8 |
14 |
10
|
Langenaeken NA, Ieven P, Hedlund EG, Kyomugasho C, van de Walle D, Dewettinck K, Van Loey AM, Roeffaers MBJ, Courtin CM. Arabinoxylan, β-glucan and pectin in barley and malt endosperm cell walls: a microstructure study using CLSM and cryo-SEM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1477-1489. [PMID: 32412127 DOI: 10.1111/tpj.14816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 05/14/2023]
Abstract
The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo-SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with β-glucan depositions on the inside. During germination, arabinoxylan and β-glucan are hydrolysed, but unlike β-glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.
Collapse
|
|
5 |
14 |
11
|
Hrubanova K, Nebesarova J, Ruzicka F, Krzyzanek V. The innovation of cryo-SEM freeze-fracturing methodology demonstrated on high pressure frozen biofilm. Micron 2018; 110:28-35. [PMID: 29715620 DOI: 10.1016/j.micron.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
In this study we present an innovative method for the preparation of fully hydrated samples of microbial biofilms of cultures Staphylococcus epidermidis, Candida parapsilosis and Candida albicans. Cryo-scanning electron microscopy (cryo-SEM) and high-pressure freezing (HPF) rank among cutting edge techniques in the electron microscopy of hydrated samples such as biofilms. However, the combination of these techniques is not always easily applicable. Therefore, we present a method of combining high-pressure freezing using EM PACT2 (Leica Microsystems), which fixes hydrated samples on small sapphire discs, with a high resolution SEM equipped with the widely used cryo-preparation system ALTO 2500 (Gatan). Using a holder developed in house, a freeze-fracturing technique was applied to image and investigate microbial cultures cultivated on the sapphire discs. In our experiments, we focused on the ultrastructure of the extracellular matrix produced during cultivation and the relationships among microbial cells in the biofilm. The main goal of our investigations was the detailed visualization of areas of the biofilm where the microbial cells adhere to the substrate/surface. We show the feasibility of this technique, which is clearly demonstrated in experiments with various freeze-etching times.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
13 |
12
|
Cryogenic Electron Microscopy Methodologies as Analytical Tools for the Study of Self-Assembled Pharmaceutics. Pharmaceutics 2021; 13:pharmaceutics13071015. [PMID: 34371706 PMCID: PMC8308931 DOI: 10.3390/pharmaceutics13071015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Many pharmaceutics are aqueous dispersions of small or large molecules, often self-assembled in complexes from a few to hundreds of molecules. In many cases, the dispersing liquid is non-aqueous. Many pharmaceutical preparations are very viscous. The efficacy of those dispersions is in many cases a function of the nanostructure of those complexes or aggregates. To study the nanostructure of those systems, one needs electron microscopy, the only way to obtain nanostructural information by recording direct images whose interpretation is not model-dependent. However, these methodologies are complicated by the need to make liquid systems compatible with high vacuum in electron microscopes. There are also issues related to the interaction of the electron beam with the specimen such as micrograph contrast, electron beam radiation damage, and artifacts associated with specimen preparation. In this article, which is focused on the state of the art of imaging self-assembled complexes, we briefly describe cryogenic temperature transmission electron microscopy (cryo-TEM) and cryogenic temperature scanning electron microcopy (cryo-SEM). We present the principles of these methodologies, give examples of their applications as analytical tools for pharmaceutics, and list their limitations and ways to avoid pitfalls in their application.
Collapse
|
Review |
4 |
12 |
13
|
Yin X, Ziegler A, Kelm K, Hoffmann R, Watermeyer P, Alexa P, Villinger C, Rupp U, Schlüter L, Reusch TBH, Griesshaber E, Walther P, Schmahl WW. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi. JOURNAL OF PHYCOLOGY 2018; 54:85-104. [PMID: 29092105 DOI: 10.1111/jpy.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope-endoplasmic reticulum Ca2+ -store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.
Collapse
|
|
7 |
12 |
14
|
Effect of Radio Frequency Heating on Yoghurt, II: Microstructure and Texture. Foods 2014; 3:369-393. [PMID: 28234325 PMCID: PMC5302367 DOI: 10.3390/foods3020369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022] Open
Abstract
Radio frequency (RF) heating was applied to stirred yoghurt after culturing in order to enhance the shelf-life and thereby meet industrial demands in countries where the distribution cold chain cannot be implicitly guaranteed. In parallel, a convectional (CV) heating process was also tested. In order to meet consumers’ expectations with regard to texture and sensory properties, the yoghurts were heated to different temperatures (58, 65 and 72 °C). This second part of our feasibility study focused on the changes in microstructure and texture caused by post-fermentative heat treatment. It was shown that there were always microstructural changes with additional heat treatment. Compared to the dense and compact casein network in the stirred reference yoghurt, network contractions and further protein aggregation were observed after heat treatment, while at the same time larger pore geometries were detected. The changes in microstructure as well as other physical and sensorial texture properties (syneresis, hardness, cohesiveness, gumminess, apparent viscosity, G’, G’’, homogeneity) were in good agreement with the temperature and time of the heat treatment (thermal stress). The RF heated products were found to be very similar to the stirred reference yoghurt, showing potential for further industrial development such as novel heating strategies to obtain products with prolonged shelf-life.
Collapse
|
|
11 |
11 |
15
|
Structure elucidation of silica-based core-shell microencapsulated drugs for topical applications by cryogenic scanning electron microscopy. J Colloid Interface Sci 2020; 579:778-785. [PMID: 32673854 DOI: 10.1016/j.jcis.2020.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/07/2020] [Accepted: 06/27/2020] [Indexed: 11/23/2022]
Abstract
We present here a technology to microencapsulate drugs by the sol-gel process, and cryo-SEM methodology that allows the nanostructural characterization of the formed capsules in their native state without any artifacts, related to their drying prior to imaging. The methodology utilizes three signals generated by the electron beam scanning the specimen: Secondary electrons, backscattered electrons, and x-rays. The first gives topographical information of the fracture-surface of the thermally-fixed specimen, the second gives contrast between elements of different atomic numbers, and the third allows the identification of those elements. Combined, the three signals provide full microstructural characterization of the studied specimen. Using this methodology, we were able to demonstrate that the sol-gel technology does indeed enable the encapsulation of two hydrophobic active molecules with a silica shell. This technology allows the active ingredient in the drug product to slowly migrate from the microcapsule onto the skin, thus obtaining the desired effect with minimal side-effects, as was exhibited in several clinical studies. The successful application of the cryo-SEM methodology in this case, demonstrates that it can be used to characterize a wide range of liquid-phase suspensions, in their native state, with minimal specimen preparation or imaging artifacts.
Collapse
|
Journal Article |
5 |
9 |
16
|
Shimanuki J, Takahashi S, Tohma H, Ohma A, Ishihara A, Ito Y, Nishino Y, Miyazawa A. Microstructural observation of fuel cell catalyst inks by Cryo-SEM and Cryo-TEM. Microscopy (Oxf) 2017; 66:204-208. [PMID: 28339813 DOI: 10.1093/jmicro/dfx001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023] Open
Abstract
In order to improve the electricity generation performance of fuel cell electric vehicles, it is necessary to optimize the microstructure of the catalyst layer of a polymer electrolyte fuel cell. The catalyst layer is formed by a wet coating process using catalyst inks. Therefore, it is very important to observe the microstructure of the catalyst ink. In this study, the morphology of carbon-supported platinum (Pt/C) particles in catalyst inks with a different solvent composition was investigated by cryogenic scanning electron microscopy (cryo-SEM). In addition, the morphology of the ionomer, which presumably influences the formation of agglomerated Pt/C particles in a catalyst ink, was investigated by cryogenic transmission electron microscopy (cryo-TEM). The results of a cryo-SEM observation revealed that the agglomerated Pt/C particles tended to become coarser with a higher 1-propanol (NPA) weight fraction. The results of a cryo-TEM observation indicated that the actual ionomer dispersion in a catalyst ink formed a network structure different from that of the ionomer in the solvent.
Collapse
|
|
8 |
8 |
17
|
Umebayashi T, Morita T, Utsumi Y, Kusumoto D, Yasuda Y, Haishi T, Fukuda K. Spatial distribution of xylem embolisms in the stems of Pinus thunbergii at the threshold of fatal drought stress. TREE PHYSIOLOGY 2016; 36:1210-1218. [PMID: 27354714 DOI: 10.1093/treephys/tpw050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/16/2016] [Indexed: 05/26/2023]
Abstract
Although previous studies have suggested that branch dieback and whole-plant death due to drought stress occur at 50-88% loss of stem hydraulic conductivity (P50 and P88, respectively), the dynamics of catastrophic failure in the water-conducting pathways in whole plants subjected to drought remain poorly understood. We examined the dynamics of drought stress tolerance in 3-year-old Japanese black pine (Pinus thunbergii Parl.). We nondestructively monitored (i) the spatial distribution of drought-induced embolisms in the stem at greater than P50 and (ii) recovery from embolisms following rehydration. Stem water distributions were visualized by cryo-scanning electron microscopy. The percentages of both embolized area and loss of hydraulic conductivity showed similar patterns of increase, although the water loss in xylem increased markedly at -5.0 MPa or less. One seedling that had reached 72% loss of the water-conducting area survived and the xylem water potential recovered to -0.3 MPa. We concluded that Japanese black pines may need to maintain water-filled tracheids within earlywood of the current-year xylem under natural conditions to avoid disconnection of water movement between the stem and the tops of branches. It is necessary to determine the spatial distribution of embolisms around the point of the lethal threshold to gain an improved understanding of plant survival under conditions of drought.
Collapse
|
|
9 |
7 |
18
|
Ogasa MY, Utsumi Y, Miki NH, Yazaki K, Fukuda K. Cutting stems before relaxing xylem tension induces artefacts in Vitis coignetiae, as evidenced by magnetic resonance imaging. PLANT, CELL & ENVIRONMENT 2016; 39:329-337. [PMID: 26234764 DOI: 10.1111/pce.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
It was recently reported that cutting artefacts occur in some species when branches under tension are cut, even under water. We used non-destructive magnetic resonance imaging (MRI) to investigate the change in xylem water distribution at the cellular level in Vitis coignetiae standing stems before and after relaxing tension. Less than 3% of vessels were cavitated when stems under tension were cut under water at a position shorter than the maximum vessel length (MVL) from the MRI point, in three of four plants. The vessel contents remained at their original status, and cutting artefact vessel cavitation declined to <1% when stems were cut at a position farther than the MVL from the MRI point. Water infiltration into the originally cavitated vessels after cutting the stem, i.e. vessel refilling, was found in <1% of vessels independent of cutting position on three of nine plants. The results indicate that both vessel cavitation and refilling occur in xylem tissue under tension following stem cutting, but its frequency is quite small, and artefacts can be minimized altogether if the distance between the monitoring position and the cutting point is longer than the MVL.
Collapse
|
|
9 |
7 |
19
|
Kuroda K, Fujiwara T, Hashida K, Imai T, Kushi M, Saito K, Fukushima K. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis. ANNALS OF BOTANY 2014; 113:1029-36. [PMID: 24651372 PMCID: PMC3997644 DOI: 10.1093/aob/mcu028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/12/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem. METHODS The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy. KEY RESULTS Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared with the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water. CONCLUSIONS TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells and/or water in the heartwood-forming xylem.
Collapse
|
research-article |
11 |
6 |
20
|
Shan S, Chen D, Federici E, Jones OG, Campanella OH. The effects of whey protein fibrils on the linear and non-linear rheological properties of a gluten-free dough. Front Nutr 2022; 9:909877. [PMID: 35967788 PMCID: PMC9372581 DOI: 10.3389/fnut.2022.909877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The increasing awareness of the celiac disease, an autoimmune disorder caused by the consumption of products containing gluten, has led to a growing interest in the development of gluten-free bakery products. In this study, whey protein fibrils (WPFs) were incorporated to mimic the fibrous network of gluten. The rheological properties and microstructure of the developed gluten-free doughs were evaluated and compared with gluten doughs. Protein fibrils were prepared by heating a whey protein isolate (WPI) solution at 80°C in an acidic environment with low salt concentration, and then the fibril lengths were adjusted by leveling up the solution pH to 3.5 and 7. The dimensions of the fibrils were measured by atomic force microscopy (AFM). Rice and potato starches were mixed with fibrils, WPI, gluten, or without protein, to form different doughs for further investigation. Shear tests, including stress sweep, frequency sweep, and creep recovery, were performed to study the viscoelastic properties of doughs under small or large deformation. The strain-hardening properties of doughs under biaxial extension were studied by the lubricated squeezing flow method. The microstructure of the doughs was characterized by cryo-scanning electron microscopy (cryo-SEM). Compared with doughs prepared with WPI and no proteins, doughs incorporating fibrils showed comparable linear viscoelasticity to gluten dough tested with stress sweep, frequency sweep, and creep recovery in the linear viscoelastic region. More differences between the protein fibril doughs were revealed in the rheological properties in the non-linear region. Creep recovery parameters, such as compliance, elastic moduli during the creep, and recovery stages of gluten dough, were like those of WPF pH7 dough, but significantly different from those of the WPF pH3.5 dough. Strain-hardening properties were found in the WPF pH7 dough, although not in WPF pH3.5 dough. Microstructural characterization showed that both fibrils prepared with the different conditions formed a continuous protein phase for the improvement of dough cohesiveness, but the structure of the phase was different between the two fibrils. To summarize, whey protein fibril at pH 7 seemed to have the potential of being used as an ingredient with similar functions to gluten in gluten-free bakery products.
Collapse
|
research-article |
3 |
6 |
21
|
Mor Khalifa G, Levy S, Mass T. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space. J Struct Biol 2021; 213:107803. [PMID: 34695544 DOI: 10.1016/j.jsb.2021.107803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata. We document increased tissue permeability in the primary polyp and a highly dispersed cell packing in the tissue directly responsible for producing the coral skeleton. This tissue arrangement may facilitate the intimate involvement of seawater at the mineralization site, also documented here. We further observe an extensive filopodial network containing carbon-rich vesicles extruding from some of the calicoblastic cells. Single-cell RNA-Sequencing data interrogation supports these morphological observations by showing higher expression of genes involved in filopodia and vesicle structure and function in the calicoblastic cells. These observations provide a new conceptual framework for resolving the ion pathway from the external seawater to the tissue-mineral interface in stony coral biomineralization processes.
Collapse
|
|
4 |
5 |
22
|
Gorb EV, Kozeretska IA, Gorb SN. Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:807-816. [PMID: 36105691 PMCID: PMC9443388 DOI: 10.3762/bjnano.13.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 05/16/2023]
Abstract
Using cryo scanning electron microscopy, the surface micromorphology of vegetative (leaf blade and ligule) and generative (pedicel and outer glume) organs in Deschampsia antarctica, one of the only two flowering plants native to Antarctica, was examined. Whereas the pedicel and outer glume were wax-free, both leaf sides had a prominent epicuticular wax coverage consisting of two superimposed layers: polygonal rodlets formed by fused irregular platelets (the lower wax layer) and membraneous platelets (the upper wax layer). Although the adaxial (inner) and abaxial (outer) leaf surfaces showed a similar microstructure of the wax coverage, they differed in the thickness ratio between lower and upper wax layer. The ligule bore a very loose wax coverage composed of separate scale-like projections or clusters of them. We suppose that the two-layered wax densely covering both leaf surfaces might contribute to the plant adaptation to severe environmental conditions in Antarctica due to an increase of its resistance against cold temperatures, icing, harmful UV radiation, and dehydration. The presence of the epicuticular wax on the abaxial leaf side and the ligule as well as the hierarchical structure of the wax coverage on both leaf surfaces is described in D. antarctica for the first time.
Collapse
|
research-article |
3 |
4 |
23
|
Liang J, Koo B, Wu Y, Manna S, Noble JM, Patel M, Park JH, Kozak D, Wang Y, Zheng J. Characterization of Complex Drug Formulations Using Cryogenic Scanning Electron Microscopy ( Cryo-SEM). Curr Protoc 2022; 2:e406. [PMID: 35384403 DOI: 10.1002/cpz1.406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The physicochemical properties of complex drug formulations, including liposomes, suspensions, and emulsions, are important for understanding drug release mechanisms, quality control, and regulatory assessment. It is ideal to characterize these complex drug formulations in their native hydrated state. This article describes the characterization of complex drug formulations in a frozen-hydrated state using cryogenic scanning electron microscopy (cryo-SEM). In comparison to other techniques, such as optical microscopy or room-temperature scanning electron microscopy, cryo-SEM combines the advantage of studying hydrated samples with high-resolution imaging capability. Detailed information regarding cryo-fixation, cryo-fracture, freeze-etching, sputter-coating, and cryo-SEM imaging is included in this article. A multivesicular liposomal complex drug formulation is used to illustrate the impact of different cryogenic sample preparation conditions. In addition to drug formulations, this approach can also be applied to biological samples (e.g., cells, bacteria) and soft-matter samples (e.g., hydrogels). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Cryo-fixation to preserve the native structure of samples using planchettes Alternate Protocol: Cryo-fixation to preserve the native structure of biological samples on sapphire disks Basic Protocol 2: Sample preparation for cross-sectional cryo-SEM imaging Basic Protocol 3: Cryo-SEM imaging and microanalysis.
Collapse
|
|
3 |
4 |
24
|
Yang Y, Li C, Ni S, Zhang H, Dong C. Ultrastructure and development of acanthocytes, specialized cells in Stropharia rugosoannulata, revealed by scanning electron microscopy (SEM) and cryo-SEM. Mycologia 2020; 113:65-77. [PMID: 33269984 DOI: 10.1080/00275514.2020.1823184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acanthocytes are special cells with a distinct spiky shape produced exclusively by the fungi of Stropharia and can be used to defend against nematodes. In the present study, the ultrastructure and development of acanthocytes were revealed by scanning electron microscopy (SEM) and cryo-SEM in S. rugosoannulata, a popular cultivated mushroom both in China and Europe. The acanthocytes were abundant on the surface of rhizomorph, casing soils, and vegetative mycelia of homokaryotic and heterokaryotic strains in S. rugosoannulata. The development of the acanthocyte was investigated with cryo-SEM, which has distinct advantage for observation of the ultrastructure of live, hydrated structures. Three distinct stages, including formation of lateral branch that was covered with patches, spiky structure formation, and maturation of acanthocytes, were identified and described. The irregular patches deposited on the surface of lateral branches and the holes in the spiky branches of the acanthocytes were reported for the first time. The environmental nitrogen level showed impact on acanthocyte production, but it seemed not to be the indispensable factor. Acid medium could delay the initiation of the acanthocyte formation but did not affect the overall morphology and structure, indicating that the central deposit of acanthocytes should be acid soluble. Acanthocytes of S. rugosoannulata have similar hydrophobicity to mycelia. The observation of ultrastructure and development process of acanthocytes provides insights into the ecological function and evolution of this special structure.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
4 |
25
|
Sato K, Jitsuyama Y, Yamada T, Liu B, Abe J. Structural features of the aleurone layer of the seed coat associated with imbibition injury in soybean. BREEDING SCIENCE 2019; 69:364-370. [PMID: 31481847 PMCID: PMC6711741 DOI: 10.1270/jsbbs.18181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Soybean (Glycine max) seeds are prone to imbibition injury caused by a rapid uptake of water. Genetic variation in imbibition injury tolerance is well documented, but the underlying mechanisms remain unclear. The aim of this study was to clarify the role of the aleurone layer of seed coat in the tolerance and its structural differences between tolerant and susceptible cultivars. Imbibition injury tolerance was closely related to the water absorption rate of seeds, which was regulated by the aleurone layer of the seed coat. Cryo-scanning electron microscopy analysis revealed that water absorbed in seed coats entered the seed preferentially through the aleurone layer of the top area above the raphe. In susceptible cultivars, the cell walls of the aleurone layer facing the cotyledon in this area were thin and the surface showed shallow depression-like structures, a distinct structure different from those of the tolerant cultivars, which had aleurone cells with thick outer cell walls and smooth and stripe-like deposits. The differences in the structural features of the cell walls and surfaces of aleurone cells in the top area of the seed may be responsible for the difference in the extent of imbibition injury between susceptible and tolerant cultivars.
Collapse
|
research-article |
6 |
3 |