1
|
Wijdicks EFM, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, Schwab S, Smith EE, Tamargo RJ, Wintermark M. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014; 45:1222-38. [PMID: 24481970 DOI: 10.1161/01.str.0000441965.15164.d6] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE There are uncertainties surrounding the optimal management of patients with brain swelling after an ischemic stroke. Guidelines are needed on how to manage this major complication, how to provide the best comprehensive neurological and medical care, and how to best inform families facing complex decisions on surgical intervention in deteriorating patients. This scientific statement addresses the early approach to the patient with a swollen ischemic stroke in a cerebral or cerebellar hemisphere. METHODS The writing group used systematic literature reviews, references to published clinical and epidemiology studies, morbidity and mortality reports, clinical and public health guidelines, authoritative statements, personal files, and expert opinion to summarize existing evidence and to indicate gaps in current knowledge. The panel reviewed the most relevant articles on adults through computerized searches of the medical literature using MEDLINE, EMBASE, and Web of Science through March 2013. The evidence is organized within the context of the American Heart Association framework and is classified according to the joint American Heart Association/American College of Cardiology Foundation and supplementary American Heart Association Stroke Council methods of classifying the level of certainty and the class and level of evidence. The document underwent extensive American Heart Association internal peer review. RESULTS Clinical criteria are available for hemispheric (involving the entire middle cerebral artery territory or more) and cerebellar (involving the posterior inferior cerebellar artery or superior cerebellar artery) swelling caused by ischemic infarction. Clinical signs that signify deterioration in swollen supratentorial hemispheric ischemic stroke include new or further impairment of consciousness, cerebral ptosis, and changes in pupillary size. In swollen cerebellar infarction, a decrease in level of consciousness occurs as a result of brainstem compression and therefore may include early loss of corneal reflexes and the development of miosis. Standardized definitions should be established to facilitate multicenter and population-based studies of incidence, prevalence, risk factors, and outcomes. Identification of patients at high risk for brain swelling should include clinical and neuroimaging data. If a full resuscitative status is warranted in a patient with a large territorial stroke, admission to a unit with neurological monitoring capabilities is needed. These patients are best admitted to intensive care or stroke units attended by skilled and experienced physicians such as neurointensivists or vascular neurologists. Complex medical care includes airway management and mechanical ventilation, blood pressure control, fluid management, and glucose and temperature control. In swollen supratentorial hemispheric ischemic stroke, routine intracranial pressure monitoring or cerebrospinal fluid diversion is not indicated, but decompressive craniectomy with dural expansion should be considered in patients who continue to deteriorate neurologically. There is uncertainty about the efficacy of decompressive craniectomy in patients ≥60 years of age. In swollen cerebellar stroke, suboccipital craniectomy with dural expansion should be performed in patients who deteriorate neurologically. Ventriculostomy to relieve obstructive hydrocephalus after a cerebellar infarct should be accompanied by decompressive suboccipital craniectomy to avoid deterioration from upward cerebellar displacement. In swollen hemispheric supratentorial infarcts, outcome can be satisfactory, but one should anticipate that one third of patients will be severely disabled and fully dependent on care even after decompressive craniectomy. Surgery after a cerebellar infarct leads to acceptable functional outcome in most patients. CONCLUSIONS Swollen cerebral and cerebellar infarcts are critical conditions that warrant immediate, specialized neurointensive care and often neurosurgical intervention. Decompressive craniectomy is a necessary option in many patients. Selected patients may benefit greatly from such an approach, and although disabled, they may be functionally independent.
Collapse
|
Practice Guideline |
11 |
335 |
2
|
Abstract
Cerebral venous thrombosis (CVT) is an uncommon cause of stroke that mainly affects young adults and children. In contrast to venous thromboembolism, women are affected three times more often than men. Baseline symptoms can vary considerably between patients, but most present with headache, seizures, or focal neurological deficits. Patients can be diagnosed with magnetic resonance imaging, computerized tomography-venography, or catheter angiography, although the latter is rarely required anymore. Approximately 30-50% of patients have an intracerebral hemorrhage, which can range from a small juxtacortical hemorrhage to large space-occupying lesions. Based on limited evidence from clinical trials, the primary therapy for CVT is anticoagulation with heparin. Uncontrolled studies have shown promising results for the use of endovascular treatment in severely affected patients, but these studies require confirmation in prospective clinical trials. In patients who develop clinical and radiological signs of impending herniation decompressive surgery can be both life saving and result in a good functional outcome.
Collapse
|
Review |
10 |
84 |
3
|
Gopalakrishnan MS, Shanbhag NC, Shukla DP, Konar SK, Bhat DI, Devi BI. Complications of Decompressive Craniectomy. Front Neurol 2018; 9:977. [PMID: 30524359 PMCID: PMC6256258 DOI: 10.3389/fneur.2018.00977] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Decompressive craniectomy (DC) has become the definitive surgical procedure to manage medically intractable rise in intracranial pressure due to stroke and traumatic brain injury. With incoming evidence from recent multi-centric randomized controlled trials to support its use, we could expect a significant rise in the number of patients who undergo this procedure. Although one would argue that the procedure reduces mortality only at the expense of increasing the proportion of the severely disabled, what is not contested is that patients face the risk of a large number of complications after the operation and that can further compromise the quality of life. Decompressive craniectomy (DC), which is designed to overcome the space constraints of the Monro Kellie doctrine, perturbs the cerebral blood, and CSF flow dynamics. Resultant complications occur days to months after the surgical procedure in a time pattern that can be anticipated with advantage in managing them. New or expanding hematomas that occur within the first few days can be life-threatening and we recommend CT scans at 24 and 48 h postoperatively to detect them. Surgeons should also be mindful of the myriad manifestations of peculiar complications like the syndrome of the trephined and neurological deterioration due to paradoxical herniation which may occur many months after the decompression. A sufficiently large frontotemporoparietal craniectomy, 15 cm in diameter, increases the effectiveness of the procedure and reduces chances of external cerebral herniation. An early cranioplasty, as soon as the brain is lax, appears to be a reasonable choice to mitigate many of the late complications. Complications, their causes, consequences, and measures to manage them are described in this chapter.
Collapse
|
Review |
7 |
77 |
4
|
Honeybul S, Morrison DA, Ho KM, Lind CRP, Geelhoed E. A randomized controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty. J Neurosurg 2016; 126:81-90. [PMID: 26991387 DOI: 10.3171/2015.12.jns152004] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Autologous bone is usually used to reconstruct skull defects following decompressive surgery. However, it is associated with a high failure rate due to infection and resorption. The aim of this study was to see whether it would be cost-effective to use titanium as a primary reconstructive material. METHODS Sixty-four patients were enrolled and randomized to receive either their own bone or a primary titanium cranioplasty. All surgical procedures were performed by the senior surgeon. Primary and secondary outcome measures were assessed at 1 year after cranioplasty. RESULTS There were no primary infections in either arm of the trial. There was one secondary infection of a titanium cranioplasty that had replaced a resorbed autologous cranioplasty. In the titanium group, no patient was considered to have partial or complete cranioplasty failure at 12 months of follow-up (p = 0.002) and none needed revision (p = 0.053). There were 2 deaths unrelated to the cranioplasty, one in each arm of the trial. Among the 31 patients who had an autologous cranioplasty, 7 patients (22%) had complete resorption of the autologous bone such that it was deemed a complete failure. Partial or complete autologous bone resorption appeared to be more common among young patients than older patients (32 vs 45 years old, p = 0.013). The total cumulative cost between the 2 groups was not significantly different (mean difference A$3281, 95% CI $-9869 to $3308; p = 0.327). CONCLUSIONS Primary titanium cranioplasty should be seriously considered for young patients who require reconstruction of the skull vault following decompressive craniectomy. Clinical trial registration no.: ACTRN12612000353897 ( anzctr.org.au ).
Collapse
|
Randomized Controlled Trial |
9 |
77 |
5
|
Piedra MP, Nemecek AN, Ragel BT. Timing of cranioplasty after decompressive craniectomy for trauma. Surg Neurol Int 2014; 5:25. [PMID: 24778913 PMCID: PMC3994696 DOI: 10.4103/2152-7806.127762] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/31/2014] [Indexed: 11/30/2022] Open
Abstract
Background: The optimal timing of cranioplasty after decompressive craniectomy for trauma is unknown. The aim of this study was to determine if early cranioplasty after decompressive craniectomy for trauma reduces complications. Methods: Consecutive cases of patients who underwent autologous cranioplasty after decompressive craniectomy for trauma at a single Level I Trauma Center were studied in a retrospective 10 year data review. Associations of categorical variables were compared using Chi-square test or Fisher's exact test. Results: A total of 157 patients were divided into early (<12 weeks; 78 patients) and late (≥12 weeks; 79 patients) cranioplasty cohorts. Baseline characteristics were similar between the two cohorts. Cranioplasty operative time was significantly shorter in the early (102 minutes) than the late (125 minutes) cranioplasty cohort (P = 0.0482). Overall complication rate in both cohorts was 35%. Infection rates were lower in the early (7.7%) than the late (14%) cranioplasty cohort as was bone graft resorption (15% early, 19% late), hydrocephalus rate (7.7% early, 1.3% late), and postoperative hematoma incidence (3.9% early, 1.3% late). However, these differences were not statistically significant. Patients <18 years of age were at higher risk of bone graft resorption than patients ≥18 years of age (OR 3.32, 95% CI 1.25-8.81; P = 0.0162). Conclusions: After decompressive craniectomy for trauma, early (<12 weeks) cranioplasty does not alter the incidence of complication rates. In patients <18 years of age, early (<12 weeks) cranioplasty increases the risk of bone resorption. Delaying cranioplasty (≥12 weeks) results in longer operative times and may increase costs.
Collapse
|
Journal Article |
11 |
63 |
6
|
Iaccarino C, Kolias AG, Roumy LG, Fountas K, Adeleye AO. Cranioplasty Following Decompressive Craniectomy. Front Neurol 2020; 10:1357. [PMID: 32063880 PMCID: PMC7000464 DOI: 10.3389/fneur.2019.01357] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Cranioplasty (CP) after decompressive craniectomy (DC) for trauma is a neurosurgical procedure that aims to restore esthesis, improve cerebrospinal fluid (CSF) dynamics, and provide cerebral protection. In turn, this can facilitate neurological rehabilitation and potentially enhance neurological recovery. However, CP can be associated with significant morbidity. Multiple aspects of CP must be considered to optimize its outcomes. Those aspects range from the intricacies of the surgical dissection/reconstruction during the procedure of CP, the types of materials used for the reconstruction, as well as the timing of the CP in relation to the DC. This article is a narrative mini-review that discusses the current evidence base and suggests that no consensus has been reached about several issues, such as an agreement on the best material for use in CP, the appropriate timing of CP after DC, and the optimal management of hydrocephalus in patients who need cranial reconstruction. Moreover, the protocol-driven standards of care for traumatic brain injury (TBI) patients in high-resource settings are virtually out of reach for low-income countries, including those pertaining to CP. Thus, there is a need to design appropriate prospective studies to provide context-specific solid recommendations regarding this topic.
Collapse
|
Review |
5 |
63 |
7
|
Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, Ponsford J, Seppelt I, Reilly P, Wiegers E, Wolfe R. Patient Outcomes at Twelve Months after Early Decompressive Craniectomy for Diffuse Traumatic Brain Injury in the Randomized DECRA Clinical Trial. J Neurotrauma 2021; 37:810-816. [PMID: 32027212 PMCID: PMC7071071 DOI: 10.1089/neu.2019.6869] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional outcomes at 12 months were a secondary outcome of the randomized DECRA trial of early decompressive craniectomy for severe diffuse traumatic brain injury (TBI) and refractory intracranial hypertension. In the DECRA trial, patients were randomly allocated 1:1 to either early decompressive craniectomy or intensive medical therapies (standard care). We conducted planned secondary analyses of the DECRA trial outcomes at 6 and 12 months, including all 155 patients. We measured functional outcome using the Glasgow Outcome Scale-Extended (GOS-E). We used ordered logistic regression, and dichotomized the GOS-E using logistic regression, to assess outcomes in patients overall and in survivors. We adjusted analyses for injury severity using the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model. At 12 months, the odds ratio (OR) for worse functional outcomes in the craniectomy group (OR 1.68; 95% confidence interval [CI]: 0.96-2.93; p = 0.07) was no longer significant. Unfavorable functional outcomes after craniectomy were 11% higher (59% compared with 48%), but were not significantly different from standard care (OR 1.58; 95% CI: 0.84-2.99; p = 0.16). Among survivors after craniectomy, there were fewer good (OR 0.33; 95% CI: 0.12-0.91; p = 0.03) and more vegetative (OR 5.12; 95% CI: 1.04-25.2; p = 0.04) outcomes. Similar outcomes in survivors were found at 6 months after injury. Vegetative (OR 5.85; 95% CI: 1.21-28.30; p = 0.03) and severely disabled outcomes (OR 2.49; 95% CI: 1.21-5.11; p = 0.01) were increased. Twelve months after severe diffuse TBI and early refractory intracranial hypertension, decompressive craniectomy did not improve outcomes and increased vegetative survivors.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
47 |
8
|
Walcott BP, Miller JC, Kwon CS, Sheth SA, Hiller M, Cronin CA, Schwamm LH, Simard JM, Kahle KT, Kimberly WT, Sheth KN. Outcomes in severe middle cerebral artery ischemic stroke. Neurocrit Care 2014; 21:20-6. [PMID: 23839704 PMCID: PMC3880600 DOI: 10.1007/s12028-013-9838-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Severe middle cerebral artery stroke (MCA) is associated with a high rate of morbidity and mortality. We assessed the hypothesis that patient-specific variables may be associated with outcomes. We also sought to describe under-recognized patient-centered outcomes. METHODS A consecutive, multi-institution, retrospective cohort of adult patients (≤70 years) was established from 2009 to 2011. We included patients with NIHSS score ≥15 and infarct volume ≥60 mL measured within 48 h of symptom onset. Malignant edema was defined as the development of midline brain shift of ≥5 mm in the first 5 days. Exclusion criterion was enrollment in any experimental trial. A univariate and multivariate logistic regression analysis was performed to model and predict the factors related to outcomes. RESULTS 46 patients (29 female, 17 male; mean age 57.3 ± 1.5 years) met study criteria. The mortality rate was 28% (n = 13). In a multivariate analysis, only concurrent anterior cerebral artery (ACA) involvement was associated with mortality (OR 9.78, 95% CI 1.15, 82.8, p = 0.04). In the malignant edema subgroup (n = 23, 58%), 4 died (17%), 7 underwent decompressive craniectomy (30%), 7 underwent tracheostomy (30%), and 15 underwent gastrostomy (65%). CONCLUSIONS Adverse outcomes after severe stroke are common. Concurrent ACA involvement predicts mortality in severe MCA stroke. It is useful to understand the incidence of life-sustaining procedures, such as tracheostomy and gastrostomy, as well as factors that contribute to their necessity.
Collapse
|
research-article |
11 |
40 |
9
|
Abstract
Large hemispheric infarcts occur in up to 10% of all ischemic strokes and can cause devastating disability. Significant research and clinical efforts have been made in hopes of mitigating the morbidity and mortality of this disease. Areas of interest include identifying predictors of malignant edema, optimizing medical and surgical techniques, selecting the patient population that would benefit most from decompressive hemicraniectomy, and studying the impact on quality of life of those who survive. Decompressive surgery can be a life-saving measure, and here we discuss the most up-to-date literature and provide a review on the surgical management of large hemispheric ischemic strokes.
Collapse
|
Journal Article |
4 |
40 |
10
|
Vedantam A, Yamal JM, Hwang H, Robertson CS, Gopinath SP. Factors associated with shunt-dependent hydrocephalus after decompressive craniectomy for traumatic brain injury. J Neurosurg 2018; 128:1547-1552. [PMID: 28621627 DOI: 10.3171/2017.1.jns162721] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Posttraumatic hydrocephalus (PTH) affects 11.9%-36% of patients undergoing decompressive craniectomy (DC) and is an important cause of morbidity after traumatic brain injury (TBI). Early diagnosis and treatment of PTH can prevent further neurological compromise in patients who are recovering from TBI. There is limited data on predictors of shunting for PTH after DC for TBI. METHODS Prospectively collected data from the erythropoietin severe TBI randomized controlled trial were studied. Demographic, clinical, and imaging data were analyzed for enrolled patients who underwent a DC. All head CT scans during admission were reviewed and assessed for PTH by the Gudeman criteria or the modified Frontal Horn Index ≥ 33%. The presence of subdural hygromas was categorized as unilateral/bilateral hemispheric or interhemispheric. Using L1-regularized logistic regression to select variables, a multiple logistic regression model was created with ventriculoperitoneal shunting as the binary outcome. Statistical significance was set at p < 0.05. RESULTS A total of 60 patients who underwent DC were studied. Fifteen patients (25%) underwent placement of a ventriculoperitoneal shunt for PTH. The majority of patients underwent unilateral decompressive hemicraniectomy (n = 46, 77%). Seven patients (12%) underwent bifrontal DC. Unilateral and bilateral hemispheric hygromas were noted in 31 (52%) and 7 (11%) patients, respectively. Interhemispheric hygromas were observed in 19 patients (32%). The mean duration from injury to first CT scan showing hemispheric subdural hygroma and interhemispheric hygroma was 7.9 ± 6.5 days and 14.9 ± 11.7 days, respectively. The median duration from injury to shunt placement was 43.7 days. Multivariate analysis showed that the presence of interhemispheric hygroma (OR 63.6, p = 0.001) and younger age (OR 0.78, p = 0.009) were significantly associated with the need for a shunt after DC. CONCLUSIONS The presence of interhemispheric subdural hygromas and younger age were associated with shunt-dependent hydrocephalus after DC in patients with severe TBI.
Collapse
|
Randomized Controlled Trial |
7 |
39 |
11
|
Caro-Osorio E, De la Garza-Ramos R, Martínez-Sánchez SR, Olazarán-Salinas F. Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes. Surg Neurol Int 2013; 4:136. [PMID: 24232827 PMCID: PMC3815033 DOI: 10.4103/2152-7806.119535] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
Background: Decompressive craniectomies (DC) mandate future cranioplasties, accounting for the large array of biomaterials for this purpose. Polymethylmethacrylate (PMMA) is a very reliable thermoplastic that can be prefabricated or even molded intraoperatively to create an adequate prosthesis. Preformed PMMA implants made by hand have been superseded by newer 3-D printed implants, but this is accompanied by higher costs and timing issues, apart from having limited availability in developing and third-world countries. Methods: A total of 26 patients were operated over a span of 11 years. A total of 26 custom hand-made PMMA prostheses were fabricated using original bone flaps with the aid of a prosthodontist, in a process that took approximately 70 minutes for each implant. The result was an exact duplication of the patient's bone flap. Results: Of the 26 patients who underwent cranioplasty, the majority of patients were males, with a mean age of 39.2 years and traumatic brain injury as main indication for DC. After a mean interval of 2.4 months, all 26 patients underwent a cranioplasty and prosthesis placement. Only two patients (7.6%) suffered from direct cranioplasty-related complications after a median follow-up of 10.4 months. Median Glasgow Outcome Scale scores improved significantly from 3 to 4 after cranioplasty (P = 0.008). Conclusion: Prefabrication of custom PMMA prostheses by hand when original bone flaps are available is an excellent alternative to newer 3-D printing techniques, because it is relatively cheaper, less time consuming, and offers excellent results in terms of anatomical reconstruction and improvement of neurological function in long-term follow-ups.
Collapse
|
Journal Article |
12 |
36 |
12
|
Zeiler FA, Aries M, Cabeleira M, van Essen TA, Stocchetti N, Menon DK, Timofeev I, Czosnyka M, Smielewski P, Hutchinson P, Ercole A. Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. J Neurotrauma 2020; 37:1306-1314. [PMID: 31950876 PMCID: PMC7249464 DOI: 10.1089/neu.2019.6726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Decompressive craniectomy (DC) in traumatic brain injury (TBI) has been suggested to influence cerebrovascular reactivity. We aimed to determine if the statistical properties of vascular reactivity metrics and slow-wave relationships were impacted after DC, as such information would allow us to comment on whether vascular reactivity monitoring remains reliable after craniectomy. Using the CENTER-TBI High Resolution Intensive Care Unit (ICU) Sub-Study cohort, we selected those secondary DC patients with high-frequency physiological data for both at least 24 h pre-DC, and more than 48 h post-DC. Data for all physiology measures were separated into the 24 h pre-DC, the first 48 h post-DC, and beyond 48 h post-DC. We produced slow-wave data sheets for intracranial pressure (ICP) and mean arterial pressure (MAP) per patient. We also derived a Pressure Reactivity Index (PRx) as a continuous cerebrovascular reactivity metric updated every minute. The time-series behavior of the PRx was modeled for each time period per patient. Finally, the relationship between ICP and MAP during these three time periods was assessed using time-series vector autoregressive integrative moving average (VARIMA) models, impulse response function (IRF) plots, and Granger causality testing. Ten patients were included in this study. Mean PRx and proportion of time above PRx thresholds were not affected by craniectomy. Similarly, PRx time-series structure was not affected by DC, when assessed in each individual patient. This was confirmed with Granger causality testing, and VARIMA IRF plotting for the MAP/ICP slow-wave relationship. PRx metrics and statistical time-series behavior appear not to be substantially influenced by DC. Similarly, there is little change in the relationship between slow waves of ICP and MAP before and after DC. This may suggest that cerebrovascular reactivity monitoring in the setting of DC may still provide valuable information regarding autoregulation.
Collapse
|
Multicenter Study |
5 |
34 |
13
|
Alotaibi NM, Elkarim GA, Samuel N, Ayling OGS, Guha D, Fallah A, Aldakkan A, Jaja BNR, de Oliveira Manoel AL, Ibrahim GM, Macdonald RL. Effects of decompressive craniectomy on functional outcomes and death in poor-grade aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurosurg 2017; 127:1315-1325. [PMID: 28059660 DOI: 10.3171/2016.9.jns161383] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) (World Federation of Neurosurgical Societies Grade IV or V) are often considered for decompressive craniectomy (DC) as a rescue therapy for refractory intracranial hypertension. The authors performed a systematic review and meta-analysis to assess the impact of DC on functional outcome and death in patients after poor-grade aSAH. METHODS A systematic review and meta-analysis were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles were identified through the Ovid Medline, Embase, Web of Science, and Cochrane Library databases from inception to October 2015. Only studies dedicated to patients with poor-grade aSAH were included. Primary outcomes were death and functional outcome assessed at any time period. Patients were grouped as having a favorable outcome (modified Rankin Scale [mRS] Scores 1-3, Glasgow Outcome Scale [GOS] Scores 4 and 5, extended Glasgow Outcome Scale [GOSE] Scores 5-8) or unfavorable outcome (mRS Scores 4-6, GOS Scores 1-3, GOSE Scores 1-4). Pooled estimates of event rates and odds ratios with 95% confidence intervals were calculated using the random-effects model. RESULTS Fifteen studies encompassing 407 patients were included in the meta-analysis (all observational cohorts). The pooled event rate for poor outcome across all studies was 61.2% (95% CI 52%-69%) and for death was 27.8% (95% CI 21%-35%) at a median of 12 months after aSAH. Primary (or early) DC resulted in a lower overall event rate for unfavorable outcome than secondary (or delayed) DC (47.5% [95% CI 31%-64%] vs 74.4% [95% CI 43%-91%], respectively). Among studies with comparison groups, there was a trend toward a reduced mortality rate 1–3 months after discharge among patients who underwent DC (OR 0.58 [95% CI 0.27–1.25]; p = 0.168). However, this trend was not sustained at the 1-year follow-up (OR 1.09 [95% CI 0.55-2.13]; p = 0.79). CONCLUSIONS Results of this study summarize the best evidence available in the literature for DC in patients with poor-grade aSAH. DC is associated with high rates of unfavorable outcome and death. Because of the lack of robust control groups in a majority of the studies, the effect of DC on functional outcomes versus that of other interventions for refractory intracranial hypertension is still unknown. A randomized trial is needed.
Collapse
|
Meta-Analysis |
8 |
33 |
14
|
Di Rienzo A, Pangrazi PP, Riccio M, Colasanti R, Ghetti I, Iacoangeli M. Skin flap complications after decompressive craniectomy and cranioplasty: Proposal of classification and treatment options. Surg Neurol Int 2016; 7:S737-S745. [PMID: 27904753 PMCID: PMC5114861 DOI: 10.4103/2152-7806.193724] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/10/2016] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The list of complications reported after decompressive craniectomy (DC) and cranioplasty is progressively increasing. Nonetheless, the exact incidence of these events is still ill-defined. Problems affecting skin flaps after DC and cranioplasty have never been accurately analyzed in papers and their impact on patients' prognosis is largely underestimated. METHODS In a 10-year time, we treated by DC 450 patients, 344 of whom underwent cranioplasty, either with autologous bone or artificial implants (hydroxyapatite, polyetheretherketone, titanium, polymethylmethacrylate). Complications involving skin flaps and requiring re-surgery were observed and treated in 38 cases. We classified three main types of lesions: (1) dehiscence, (2) ulcer, and (3) necrosis. In all cases surgical decision making was performed in cooperation with plastic surgeons, to select the best treatment option. RESULTS Dehiscence was reported in 28 cases, ulcer in 6, and necrosis in 4. Surgeries included flap re-opening and re-suturing, Z-plasty, rotational, advancement, or free flaps. Treatment complications required further surgical procedures in six patients. CONCLUSIONS In our experience, complications involving skin flaps after DC and post-DC cranioplasty cannot be considered a minor event because of their potential to further compromise the yet fragile conditions of these patients. Their management is complex and requires a multidisciplinary approach to get the better results.
Collapse
|
Journal Article |
9 |
32 |
15
|
Kolias AG, Bulters DO, Cowie CJ, Wilson MH, Afshari FT, Helmy A, Broughton E, Joannides AJ, Zebian B, Harrisson SE, Hill CS, Ahmed AI, Barone DG, Thakur B, McMahon CJ, Adlam DM, Bentley RP, Tolias CM, Mitchell PM, Whitfield PC, Critchley GR, Belli A, Brennan PM, Hutchinson PJ. Proposal for establishment of the UK Cranial Reconstruction Registry (UKCRR). Br J Neurosurg 2013; 28:310-4. [PMID: 24237069 DOI: 10.3109/02688697.2013.859657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The increasing utilisation of decompressive craniectomy for traumatic brain injury and stroke has led to an increase in the number of cranioplasties undertaken. Cranioplasty is also undertaken following excision of tumours originating from or invading the skull vault, removal of bone flaps due to post-operative infection, and decompressive craniectomy for the management of rarer causes of brain oedema and/or refractory intracranial hypertension. The existing literature which mainly consists of single-centre, retrospective studies, shows a significant variation in practice patterns and a wide range of morbidity. There also exists a need to measure the outcome as perceived by the patients themselves with patient reported outcome measures (PROMs; functional outcome, quality of life, satisfaction with cosmesis). In the UK, the concept of long-term surveillance of neurosurgical implants is well established with the UK shunt registry. Based on this background, we propose to establish the UK Cranial Reconstruction Registry (UKCRR). AIM The overarching aim of the UKCRR is to collect high-quality data about cranioplasties undertaken across the UK and Ireland in order to improve outcomes for patients. METHODS Any patient undergoing reconstruction of the skull vault with autologous bone, titanium, or synthetic material in participating units will be eligible for inclusion. Data will be submitted directly by participating units to the Outcome Registry Intervention and Operation Network secure platform. A Steering Committee will be responsible for overseeing the strategic direction and running of the UKCRR. OUTCOME MEASURES These will include re-operation due to a cranioplasty-related issue, surgical site infection, re-admission due to a cranioplasty-related issue, unplanned post-operative escalation of care, adverse events, length of stay in admitting unit, destination at discharge from admitting unit, mortality at discharge from admitting unit, neurological status and PROMs during routine follow-up. CONCLUSION The UKCRR will be an important pillar in the ongoing efforts to optimise the outcomes of patients undergoing cranioplasty.
Collapse
|
Journal Article |
12 |
31 |
16
|
Zhao HX, Liao Y, Xu D, Wang QP, Gan Q, You C, Yang CH. Prospective randomized evaluation of therapeutic decompressive craniectomy in severe traumatic brain injury with mass lesions (PRECIS): study protocol for a controlled trial. BMC Neurol 2016; 16:1. [PMID: 26727957 PMCID: PMC4700654 DOI: 10.1186/s12883-015-0524-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For cases of severe traumatic brain injury, during primary operation, neurosurgeons usually face a dilemma of whether or not to remove the bone flap after mass lesion evacuation. Decompressive craniectomy, which involves expansion of fixed cranial cavity, is used to treat intra-operative brain swelling and post-operative malignant intracranial hypertension. However, due to indefinite indication, the decision to perform this procedure heavily relies on personal experiences. In addition, decompressive craniectomy is associated with various complications, and the procedure lacks strong evidence of better outcomes. In the present study, we designed a prospective, randomized, controlled trial to clarify the effect of decompressive craniectomy in severe traumatic brain injury patients with mass lesions. METHODS PRECIS is a prospective, randomized, assessor-blind, single center clinical trial. In this trial, 336 patients with traumatic mass lesions will be randomly allocated to a therapeutic decompressive craniectomy group or a prophylactic decompressive craniectomy group. In the therapeutic decompressive craniectomy group, the bone flap will be removed or replaced depending on the emergence of brain swelling. In the prophylactic decompressive craniectomy group, the bone flap will be removed after mass lesion evacuation. A stepwise management of intracranial pressure will be provided according to the Brain Trauma Foundation guidelines. Salvage decompressive craniectomy will be performed for craniotomy patients once there is evidence of imaging deterioration and post-operative malignant intracranial hypertension. Participants will be assessed at 1, 6 and 12 months after randomization. The primary endpoint is favorable outcome according to the Extended Glasgow Outcome Score (5-8) at 12 months. The secondary endpoints include quality of life measured by EQ-5D, mortality, complications, intracranial pressure and cerebral perfusion pressure control and incidence of salvage craniectomy in craniotomy patients at each investigation time point. DISCUSSION This study will provide evidence to optimize primary decompressive craniectomy application and assess outcomes and risks for mass lesions in severe traumatic brain injury. TRIAL REGISTRATION ISRCTN20139421.
Collapse
|
research-article |
9 |
28 |
17
|
Wen L, Lou HY, Xu J, Wang H, Huang X, Gong JB, Xiong B, Yang XF. The impact of cranioplasty on cerebral blood perfusion in patients treated with decompressive craniectomy for severe traumatic brain injury. Brain Inj 2015; 29:1654-60. [PMID: 26513495 DOI: 10.3109/02699052.2015.1075248] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A large cranial defect following decompressive craniectomy (DC) is a common sequela in patients with severe traumatic brain injury (TBI). Such a defect can cause severe disturbance of cerebral blood flow (CBF) regulation. This study investigated the impact of cranioplasty on CBF in these patients. METHODS Patients who underwent DC and secondary cranioplasty were prospectively studied for a severe TBI. CT perfusion was used to measure CBF before and after cranioplasty. The basal ganglia, parietal lobe and occipital lobe on the decompressed side were chosen as zones of interest for CBF evaluation. RESULTS Nine patients representing nine cranioplasty procedures were included in the study. Before cranioplasty, CBF on the decompressed side was lower than that on the contralateral side. During the early stage (10 days) after cranioplasty, CBF on the decompressed side was increased and this increase was significant in the parietal and occipital lobe. CBF was also increased on the contralateral side. In addition, the difference in CBF between the contralateral side and the decompressed side was reduced after cranioplasty. Further, the CT perfusion showed that the CBFs decreased again 3 months post-cranioplasty among four cases, but was still higher than those before cranioplasty. CONCLUSIONS This study indicates that cranioplasty may increase CBF and benefit the recovery in patients with DC for TBI.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
28 |
18
|
Rossini Z, Nicolosi F, Kolias AG, Hutchinson PJ, De Sanctis P, Servadei F. The History of Decompressive Craniectomy in Traumatic Brain Injury. Front Neurol 2019; 10:458. [PMID: 31133965 PMCID: PMC6517544 DOI: 10.3389/fneur.2019.00458] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
Decompressive craniectomy consists of removal of piece of bone of the skull in order to reduce intracranial pressure. It is an age-old procedure, taking ancient roots from the Egyptians and Romans, passing through the experience of Berengario da Carpi, until Theodore Kocher, who was the first to systematically describe this procedure in traumatic brain injury (TBI). In the last century, many neurosurgeons have reported their experience, using different techniques of decompressive craniectomy following head trauma, with conflicting results. It is thanks to the successes and failures reported by these authors that we are now able to better understand the pathophysiology of brain swelling in head trauma and the role of decompressive craniectomy in mitigating intracranial hypertension and its impact on clinical outcome. Following a historical description, we will describe the steps that led to the conception of the recent randomized clinical trials, which have taught us that decompressive craniectomy is still a last-tier measure, and decisions to recommend it should been made not only according to clinical indications but also after consideration of patients' preferences and quality of life expectations.
Collapse
|
Review |
6 |
25 |
19
|
Avanali R, Gopalakrishnan MS, Devi BI, Bhat DI, Shukla DP, Shanbhag NC. Role of Decompressive Craniectomy in the Management of Cerebral Venous Sinus Thrombosis. Front Neurol 2019; 10:511. [PMID: 31156540 PMCID: PMC6529953 DOI: 10.3389/fneur.2019.00511] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cerebral venous sinus thrombosis (CVST) is a relatively uncommon cause of stroke more often affecting women and younger individuals. Blockage of the venous outflow rapidly causes edema and space-occupying venous infarctions and it seems intuitive that decompressive craniectomy (DC) can effectively reduce intracranial pressure just like it works for malignant middle cerebral artery infarcts and traumatic brain injury. But because of the relative rarity of this type of stroke, strong evidence from randomized controlled trials that DC is a life-saving procedure is not available unlike in the latter two conditions. There is a possibility that other forms of interventions like endovascular recanalization, thrombectomy, thrombolysis, and anticoagulation, which cannot be used in established middle cerebral artery infarcts and TBI, can reverse the ongoing pathology of increasing edema in CVST. Such interventions, although presently unproven, could theoretically obviate the need for DC when used in early stages. However, in the absence of such evidence, we recommend that DC be considered early as a life-saving measure whenever there are large hemorrhagic infarcts, expanding edema, radiological, and clinical features of impending herniation. This review gives an overview of the etiology and risk factors of CVST in different patient populations and examines the effectiveness of DC and other forms of interventions.
Collapse
|
Review |
6 |
25 |
20
|
Vieira E, Guimarães TC, Faquini IV, Silva JL, Saboia T, Andrade RVCL, Gemir TL, Neri VC, Almeida NS, Azevedo-Filho HRC. Randomized controlled study comparing 2 surgical techniques for decompressive craniectomy: with watertight duraplasty and without watertight duraplasty. J Neurosurg 2017; 129:1017-1023. [PMID: 29148904 DOI: 10.3171/2017.4.jns152954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Decompressive craniectomy (DC) is a widely used procedure in neurosurgery; however, few studies focus on the best surgical technique for the procedure. The authors' objective was to conduct a prospective randomized controlled trial comparing 2 techniques for performing DC: with watertight duraplasty and without watertight duraplasty (rapid-closure DC). METHODS The study population comprised patients ranging in age from 18 to 60 years who were admitted to the Neurotrauma Service of the Hospital da Restauração with a clinical indication for unilateral decompressive craniectomy. Patients were randomized by numbered envelopes into 2 groups: with watertight duraplasty (control group) and without watertight duraplasty (test group). After unilateral DC was completed, watertight duraplasty was performed in the control group, while in the test group, no watertight duraplasty was performed and the exposed parenchyma was covered with Surgicel and the remaining dura mater. Patients were then monitored daily from the date of surgery until hospital discharge or death. The primary end point was the incidence of surgical complications (CSF leak, wound infection, brain abscess, or subgaleal fluid collections). The following were analyzed as secondary end points: clinical outcome (analyzed using the Glasgow Outcome Scale [GOS]), surgical time, and hospital costs. RESULTS Fifty-eight patients were enrolled, 29 in each group. Three patients were excluded, leaving 27 in the test group and 28 in the control group. There were no significant differences between groups regarding age, Glasgow Coma Scale score at the time of surgery, GOS score, and number of postoperative follow-up days. There were 9 surgical complications (5 in the control group and 4 in the test group), with no significant differences between the groups. The mean surgical time in the control group was 132 minutes, while in the test group the average surgical time was 101 minutes, a difference of 31 minutes (p = 0.001). The mean reduction in total cost was $420.00 USD (a 23.4% reduction) per procedure in the test group. CONCLUSIONS Rapid-closure DC without watertight duraplasty is a safe procedure. It is not associated with a higher incidence of surgical complications (CSF leak, wound infection, brain abscess, or subgaleal fluid collections), and it decreased surgical time by 31 minutes on average. There was also a hospital cost reduction of $420.00 USD (23.4% reduction) per procedure. Clinical trial registration no.: NCT02594137 (clinicaltrials.gov).
Collapse
|
Randomized Controlled Trial |
8 |
25 |
21
|
Yang XF, Yao Y, Hu WW, Li G, Xu JF, Zhao XQ, Liu WG. Is decompressive craniectomy for malignant middle cerebral artery infarction of any worth? J Zhejiang Univ Sci B 2005; 6:644-9. [PMID: 15973766 PMCID: PMC1389798 DOI: 10.1631/jzus.2005.b0644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 02/26/2005] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Malignant middle cerebral artery (MCA) infarction is characterized by mortality rate of up to 80%. The aim of this study was to determine the value of decompressive craniectomy in patients presenting malignant MCA infarction compared with those receiving medical treatment alone. METHODS Patients with malignant MCA infarction treated in our hospital between January 1996 and March 2004 were included in this retrospective analysis. The National Institute of Health Stroke Scale (NIHSS) was used to assess neurological status on admission and at one week after surgery. All patients were followed up for assessment of functional outcome by the Barthel index (BI) and modified Rankin Scale (RS) at 3 months after infarction. RESULTS Ten out of 24 patients underwent decompressive craniectomy. The mean interval between stroke onset and surgery was 62.10 h. The mortality was 10.0% compared with 64.2% in patients who received medical treatment alone (P<0.001). The mean NIHSS score before surgery was 26.0 and 15.4 after surgery (P<0.001). At follow up, patients who underwent surgery had significantly better outcome with mean BI of 53.3, RS of 3.3 as compared to only 16.0 and 4.60 in medically treated patients. Speech function also improved in patients with dominant hemispherical infarction. CONCLUSION Decompressive craniectomy in patients with malignant MCA infarction improves both survival rates and functional outcomes compared with medical treatment alone. A randomized controlled trial is required to substantiate those findings.
Collapse
|
research-article |
20 |
23 |
22
|
Kim MJ, Park SK, Song J, Oh SY, Lim YC, Sim SY, Shin YS, Chung J. Preventive Suboccipital Decompressive Craniectomy for Cerebellar Infarction: A Retrospective-Matched Case-Control Study. Stroke 2016; 47:2565-73. [PMID: 27608818 DOI: 10.1161/strokeaha.116.014078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE No evidence is available on the benefits of preventive suboccipital decompressive craniectomy (SDC) for patients with cerebellar infarction. The purpose of this matched case-control study was to investigate whether preventive SDC was associated with good clinical outcomes in patients with cerebellar infarction and to evaluate its predisposing factors. METHODS Between March 2007 and September 2015, 28 patients underwent preventive SDC. We performed propensity score matching to establish a proper control group among 721 patients with cerebellar infarction during the same period. Group A (n=28) consists of those who underwent preventive SDC, and group B (n=56) consists of those who did not undergo preventive SDC. We analyzed and compared clinical outcomes between groups. RESULTS Clinical outcomes were better in group A than in group B at discharge (P=0.048) and 12-month follow-up (P=0.030). Group B had more deaths within 12 months than group A (log-rank, P<0.05). Logistic regression analysis showed that preventive SDC (odds ratio, 4.815; P=0.009) and the absence of brain stem infarction (odds ratio, 2.862; P=0.033) were independently associated with favorable outcomes (modified Rankin Scale score of 0-2) at 12-month follow-up. CONCLUSIONS Favorable clinical outcomes including overall survival can be expected after preventive SDC in patients with a volume ratio between 0.25 and 0.33 and the absence of brain stem infarction. Among these patients, preventive SDC might be better than the best medical treatment alone.
Collapse
|
Journal Article |
9 |
21 |
23
|
Posti JP, Yli-Olli M, Heiskanen L, Aitasalo KMJ, Rinne J, Vuorinen V, Serlo W, Tenovuo O, Vallittu PK, Piitulainen JM. Cranioplasty After Severe Traumatic Brain Injury: Effects of Trauma and Patient Recovery on Cranioplasty Outcome. Front Neurol 2018; 9:223. [PMID: 29695995 PMCID: PMC5904383 DOI: 10.3389/fneur.2018.00223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 11/16/2022] Open
Abstract
Background In patients with severe traumatic brain injury (sTBI) treated with decompressive craniectomy (DC), factors affecting the success of later cranioplasty are poorly known. Objective We sought to investigate if injury- and treatment-related factors, and state of recovery could predict the risk of major complications in cranioplasty requiring implant removal, and how these complications affect the outcome. Methods A retrospective cohort of 40 patients with DC following sTBI and subsequent cranioplasty was studied. Non-injury-related factors were compared with a reference population of 115 patients with DC due to other conditions. Results Outcome assessed 1 day before cranioplasty did not predict major complications leading to implant removal. Successful cranioplasty was associated with better outcome, whereas a major complication attenuates patient recovery: in patients with favorable outcome assessed 1 year after cranioplasty, major complication rate was 7%, while in patients with unfavorable outcome the rate was 42% (p = 0.003). Of patients with traumatic subarachnoid hemorrhage (tSAH) on admission imaging 30% developed a major complication, while none of patients without tSAH had a major complication (p = 0.014). Other imaging findings, age, admission Glasgow Coma Scale, extracranial injuries, length of stay at intensive care unit, cranioplasty materials, and timing of cranioplasty were not associated with major complications. Conclusion A successful cranioplasty after sTBI and DC predicts favorable outcome 1 year after cranioplasty, while stage of recovery before cranioplasty does not predict cranioplasty success or failure. tSAH on admission imaging is a major risk factor for a major complication leading to implant removal.
Collapse
|
Journal Article |
7 |
20 |
24
|
Said M, Gümüs M, Herten A, Dinger TF, Chihi M, Darkwah Oppong M, Deuschl C, Wrede KH, Kleinschnitz C, Sure U, Jabbarli R. Subarachnoid Hemorrhage Early Brain Edema Score (SEBES) as a radiographic marker of clinically relevant intracranial hypertension and unfavorable outcome after subarachnoid hemorrhage. Eur J Neurol 2021; 28:4051-4059. [PMID: 34293828 DOI: 10.1111/ene.15033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE The severity of early brain edema (EBE) after aneurysm rupture was reported to be strongly associated with the risk of poor outcome after aneurysmal subarachnoid hemorrhage (SAH). Using the recently developed Subarachnoid Hemorrhage Early Brain Edema Score (SEBES), we analyzed the predictors of EBE and its impact on complications related to intracranial pressure (ICP) increase after SAH and on poor outcome. METHODS All consecutive SAH cases treated between January 2003 and June 2016 with assessable SEBES were included (n = 745). Data on demographic characteristics, medical history, initial severity of SAH, need for conservative ICP treatment and decompressive craniectomy, occurrence of cerebral infarctions and unfavorable outcome at 6 months (modified Rankin scale score > 2) were collected. Univariable and multivariable analyses were performed. RESULTS Younger age (<55 years; adjusted odds ratio [aOR] 3.16, 95% confidence interval [CI] 2.28-4.38), female sex (aOR 1.64, 95% CI 1.16-2.31), poor initial clinical condition (World Federation of Neurosurgical Societies score 4-5; aOR 1.74, 95% CI 1.23-2.46), presence of intracerebral hemorrhage (aOR 1.63, 95% CI 1.12-2.36), hypothyroidism (aOR 0.60, 95% CI 0.37-0.98) and renal comorbidity (aOR 0.29, 95% CI 0.11-0.78) were independently associated with SEBES (scores 3-4). There was an independent association between SEBES 3-4 and the need for conservative ICP treatment (aOR 2.43, 95% CI 1.73-3.42), decompressive craniectomy (aOR 2.68, 95% CI 1.84-3.89), development of cerebral infarcts (aOR 2.24, 95% CI 1.53-3.29) and unfavorable outcome (aOR 1.48, 95% CI 1.0-2.17). CONCLUSIONS SEBES is a reliable predictor of ICP-related complications and poor outcome of SAH. Our findings highlight the need for further research of the impact of patients' demographic characteristics and comorbidities on the severity of EBE after SAH.
Collapse
|
Journal Article |
4 |
20 |
25
|
Honeybul S. Neurological susceptibility to a skull defect. Surg Neurol Int 2014; 5:83. [PMID: 25024883 PMCID: PMC4093740 DOI: 10.4103/2152-7806.133886] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/07/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND There continues to be considerable interest in the use of decompressive craniectomy in the management of neurological emergencies. The procedure is technically straightforward; however, it is becoming increasingly apparent that it is associated with significant complications. One complication that has received relatively little attention is the neurological dysfunction that can occur due to the absence of the bone flap and the subsequent distortion of the brain under the scalp as cerebral swelling subsides. The aim of this narrative review was to examine the literature available regarding the clinical features described, outline the proposed pathophysiology for these clinical manifestations and highlight the implications that this may have for rehabilitation of patients with a large skull defect. METHODS A literature search was performed in the MEDLINE database (1966 to June 2012). The following keywords were used: Hemicraniectomy, decompressive craniectomy, complications, syndrome of the trephined, syndrome of the sinking scalp flap, motor trephined syndrome. The bibliographies of retrieved reports were searched for additional references. RESULTS Various terms have been used to describe the different neurological signs and symptoms with which patients with a skull defect can present. These include; syndrome of the trephined, posttraumatic syndrome, syndrome of the sinking scalp flap, and motor trephined syndrome. There is, however, considerable overlap between the conditions described and a patient's individual clinical presentation. CONCLUSION It is becoming increasingly apparent that certain patients are particularly susceptible to the presence of a large skull defect. The term "Neurological Susceptibility to a Skull Defect" (NSSD) is therefore suggested as a blanket term to describe any neurological change attributable to the absence of cranial coverage.
Collapse
|
Review |
11 |
19 |