1
|
A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage 2013; 85 Pt 1:451-60. [PMID: 23684867 DOI: 10.1016/j.neuroimage.2013.05.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11 and 46). The results have indicated that the errors increased between the first and the second level of difficulty of the ISBT, then decreased and remained constant; the returning time progressively increased during the first three levels of difficulty and then remained constant. During the CSBT, the errors and the returning time did not change. In the ISBT, the increase of the first three levels of difficulty was accompanied by a progressive increase in PFC O2Hb and a less consistent decrease in HHb. A tendency to plateau was observable for PFC O2Hb and HHb changes in the fourth level of difficulty of the ISBT, which could be partly explained by a learning effect. A right hemispheric lateralization was not found. A lower amplitude of increase in O2Hb and decrease in HHb was found in the PFC in response to the CSBT with respect to the ISBT. This study has demonstrated that the oxygenation increased over the PFC while performing an ISBT in a semi-immersive VR environment. These data reinforce the involvement of the PFC in attention-demanding balance tasks. Considering the adaptability of this virtual balance task to specific neurological disorders, the absence of motion sensing devices, and the motivating/safe semi-immersive VR environment, the ISBT adopted in this study could be considered valuable for diagnostic testing and for assessing the effectiveness of functional neurorehabilitation.
Collapse
|
Journal Article |
12 |
68 |
2
|
Imai M, Watanabe H, Yasui K, Kimura Y, Shitara Y, Tsuchida S, Takahashi N, Taga G. Functional connectivity of the cortex of term and preterm infants and infants with Down's syndrome. Neuroimage 2013; 85 Pt 1:272-8. [PMID: 23631984 DOI: 10.1016/j.neuroimage.2013.04.080] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) imaging studies have revealed the functional development of the human brain in early infancy. By measuring spontaneous fluctuations in cerebral blood oxygenation with NIRS, we can examine the developmental status of the functional connectivity of networks in the cortex. However, it has not been clarified whether premature delivery and/or chromosomal abnormalities affect the development of the functional connectivity of the cortex. In the current study, we investigated the spontaneous brain activity of sleeping infants who were admitted to a neonatal intensive care unit at term age. We classified them into the 3 following infant groups: (i) term-or-late-preterm, (ii) early-preterm, and (iii) Down's syndrome (DS). We used multichannel NIRS to measure the spontaneous changes in oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) at 10 measurement channels, which covered the frontal, temporal, and occipital regions. In order to reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of the time-course signals among all of the pairs of measurement channels. The functional connectivity was classified into the 4 following types: (i) short-range, (ii) contralateral-transverse, (iii) ipsilateral-longitudinal, and (iv) control. In order to examine whether the local properties of hemodynamics reflected any pathological conditions, we calculated the phase differences between the oxy- and deoxy-Hb time-course signals in the 3 groups. The statistical analyses of the functional connectivity data showed main effects of group and the types of connectivity. For the group effect, the mean functional connectivity of the infants in the term-or-late-preterm group did not differ from that in the early-preterm group, and the mean functional connectivity of the infants in the DS group was lower than that in the other 2 groups. For the effect of types of connectivity, short-range connectivity was highest compared to any of the other types of connectivity, and the second highest connectivity was the contralateral-transverse one. The phase differences between the oxy- and deoxy-Hb changes showed that there were significant differences between the DS group and the other 2 groups. Our findings suggested that the development of the functional connectivity of cortical networks did not differ between term-or-late-preterm infants and early-preterm infants around term-equivalent ages, while DS infants had alterations in their functional connectivity development and local hemodynamics at term age. The highest short-range connectivity and the second highest contralateral-transverse connectivity suggested that the precursors for the basic cortical networks of functional connectivity were present at term age.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
51 |
3
|
Kozel FA, Tian F, Dhamne S, Croarkin PE, McClintock SM, Elliott A, Mapes KS, Husain MM, Liu H. Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity. Neuroimage 2009; 47:1177-84. [PMID: 19446635 PMCID: PMC2728000 DOI: 10.1016/j.neuroimage.2009.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/16/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Simultaneously acquiring functional Near Infrared Spectroscopy (fNIRS) during Transcranial Magnetic Stimulation (rTMS) offers the possibility of directly investigating superficial cortical brain activation and connectivity. In addition, the effects of rTMS in distinct brain regions without quantifiable behavioral changes can be objectively measured. METHODS Healthy, nonmedicated participants age 18-50 years were recruited from the local community. After written informed consent was obtained, the participants were screened to ensure that they met inclusion criteria. They underwent two visits of simultaneous rTMS/fNIRS separated by 2 to 3 days. In each visit, the motor cortex and subsequently the prefrontal cortex (5 cm anterior to the motor cortex) were stimulated (1 Hz, max 120% MT, 10 s on with 80 s off, for 15 trains) while simultaneous fNIRS data were acquired from the ipsilateral and contralateral brain regions. RESULTS Twelve healthy volunteers were enrolled with one excluded prior to stimulation. The 11 participants studied (9 male) had a mean age of 31.8 (s.d. 10.2, range 20-49) years. There was no significant difference in fNIRS between Visit 1 and Visit 2. Stimulation of both the motor and prefrontal cortices resulted in a significant decrease in oxygenated hemoglobin (HbO(2)) concentration in both the ipsilateral and contralateral cortices. The ipsilateral and contralateral changes showed high temporal consistency. DISCUSSION Simultaneous rTMS/fNIRS provides a reliable measure of regional cortical brain activation and connectivity that could be very useful in studying brain disorders as well as cortical changes induced by rTMS.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
43 |
4
|
Inglis EC, Iannetta D, Murias JM. The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O 2 extraction in the vastus lateralis. Am J Physiol Regul Integr Comp Physiol 2017; 313:R723-R729. [PMID: 28931547 DOI: 10.1152/ajpregu.00261.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
This study aimed to examine, at the level of the active muscles, whether the plateau in oxygen (O2) extraction normally observed near the end of a ramp incremental (RI) exercise test to exhaustion is caused by the achievement of an upper limit in O2 extraction. Eleven healthy men (27.3 ± 3.0 yr, 81.6 ± 8.1 kg, 183.9 ± 6.3 cm) performed a RI cycling test to exhaustion. O2 extraction of the vastus lateralis (VL) was measured continuously throughout the test using the near-infrared spectroscopy (NIRS)-derived deoxygenated hemoglobin [HHb] signal. A leg blood flow occlusion was performed at rest (LBFOCC1) and immediately after the RI test (LBFOCC2). The [HHb] values during the resting occlusion (108.1 ± 21.7%; LBFOCC1) and the peak values during exercise (100 ± 0%; [HHb]plateau) were significantly greater than those observed at baseline (0.84 ± 10.6% at baseline 1 and 0 ± 0% at baseline 2) (P < 0.05). No significant difference was found between LBFOCC1 and [HHb]plateau (P > 0.05) or between the baseline measurements (P > 0.05). [HHb] values at LBFOCC2 (130.5 ± 19.7%) were significantly greater than all other time points (P < 0.05). These results support the existence of an O2 extraction reserve in the VL muscle at the end of a RI cycling test and suggest that the observed plateau in the [HHb] signal toward the end of a RI test is not representative of an upper limit in O2 extraction.
Collapse
|
Journal Article |
8 |
31 |
5
|
Kober SE, Wood G. Hemodynamic signal changes during saliva and water swallowing: a near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29388413 DOI: 10.1117/1.jbo.23.1.015009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Here, we compared the hemodynamic response observed during swallowing of water or saliva using near-infrared spectroscopy (NIRS). Sixteen healthy adults swallowed water or saliva in a randomized order. Relative concentration changes in oxygenated and deoxygenated hemoglobin during swallowing were assessed. Both swallowing tasks led to the strongest NIRS signal change over the bilateral inferior frontal gyrus. Water swallowing led to a stronger activation over the right hemisphere while the activation focus for saliva swallowing was stronger left lateralized. The NIRS time course also differed between both swallowing tasks especially at the beginning of the tasks, which might be a sign of differences in task effort. Our results show that NIRS is a sensitive measure to reveal differences in the topographical distribution and time course of the hemodynamic response between distinct swallowing tasks and might be therefore an adequate diagnostic and therapy tool for swallowing difficulties.
Collapse
|
|
7 |
12 |
6
|
He JW, Liu H, Peng YB. Hemodynamic and Light-Scattering Changes of Rat Spinal Cord and Primary Somatosensory Cortex in Response to Innocuous and Noxious Stimuli. Brain Sci 2015; 5:400-18. [PMID: 26426059 PMCID: PMC4701020 DOI: 10.3390/brainsci5040400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/24/2015] [Indexed: 12/28/2022] Open
Abstract
Neuroimaging technologies with an exceptional spatial resolution and noninvasiveness have become a powerful tool for assessing neural activity in both animals and humans. However, the effectiveness of neuroimaging for pain remains unclear partly because the neurovascular coupling during pain processing is not completely characterized. Our current work aims to unravel patterns of neurovascular parameters in pain processing. A novel fiber-optic method was used to acquire absolute values of regional oxy- (HbO) and deoxy-hemoglobin concentrations, oxygen saturation rates (SO₂), and the light-scattering coefficients from the spinal cord and primary somatosensory cortex (SI) in 10 rats. Brief mechanical and electrical stimuli (ranging from innocuous to noxious intensities) as well as a long-lasting noxious stimulus (formalin injection) were applied to the hindlimb under pentobarbital anesthesia. Interhemispheric comparisons in the spinal cord and SI were used to confirm functional activation during sensory processing. We found that all neurovascular parameters showed stimulation-induced changes; however, patterns of changes varied with regions and stimuli. Particularly, transient increases in HbO and SO₂ were more reliably attributed to brief stimuli, whereas a sustained decrease in SO₂ was more reliably attributed to formalin. Only the ipsilateral SI showed delayed responses to brief stimuli. In conclusion, innocuous and noxious stimuli induced significant neurovascular responses at critical centers (e.g., the spinal cord and SI) along the somatosensory pathway; however, there was no single response pattern (as measured by amplitude, duration, lateralization, decrease or increase) that was able to consistently differentiate noxious stimuli. Our results strongly suggested that the neurovascular response patterns differ between brief and long-lasting noxious stimuli, and can also differ between the spinal cord and SI. Therefore, a use of multiple-parameter strategy tailored by stimulus modality (brief or long-lasting) as well as region-dependent characteristics may be more effective in detecting pain using neuroimaging technologies.
Collapse
|
research-article |
10 |
7 |
7
|
The Effects of High-Intensity Interval Exercise on Skeletal Muscle and Cerebral Oxygenation during Cycling and Isokinetic Concentric and Eccentric Exercise. J Funct Morphol Kinesiol 2021; 6:jfmk6030062. [PMID: 34287318 PMCID: PMC8293372 DOI: 10.3390/jfmk6030062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to study the effects of cycling and pure concentric and pure eccentric high-intensity interval exercise (HIIE) on skeletal muscle (i.e., vastus lateralis) and cerebral oxygenation. Twelve healthy males (n = 12, age 26 ± 1 yr, body mass 78 ± 2 kg, height 176 ± 2 cm, body fat 17 ± 1% of body mass) performed, in a random order, cycling exercise and isokinetic concentric and eccentric exercise. The isokinetic exercises were performed on each randomly selected leg. The muscle and the cerebral oxygenation were assessed by measuring oxyhemoglobin, deoxyhemoglobin, total hemoglobin, and tissue saturation index. During the cycling exercise, participants performed seven sets of seven seconds maximal intensity using a load equal to 7.5% of their body mass while, during isokinetic concentric and eccentric exercise, they were performed seven sets of five maximal muscle contractions. In all conditions, a 15 s rest was adopted between sets. The cycling HIIE caused greater fatigue (i.e., greater decline in fatigue index) compared to pure concentric and pure eccentric isokinetic exercise. Muscle oxygenation was significantly reduced during HIIE in the three exercise modes, with no difference between them. Cerebral oxygenation was affected only marginally during cycling exercise, while no difference was observed between conditions. It is concluded that a greater volume of either concentric or eccentric isokinetic maximal intensity exercise is needed to cause exhaustion which, in turn, may cause greater alterations in skeletal muscle and cerebral oxygenation.
Collapse
|
research-article |
4 |
5 |
8
|
Inagaki Y, Sato R, Uchiyama T, Kojima S, Morishita S, Qin W, Tsubaki A. Sex Differences in the Oxygenation of the Left and Right Prefrontal Cortex during Moderate-Intensity Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105212. [PMID: 34068936 PMCID: PMC8157032 DOI: 10.3390/ijerph18105212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Differences in cognitive performance with exercise between men and women have previously been reported. In this study, we evaluated between-sex differences in oxygenation of the prefrontal cortex (PFC) with moderate-intensity aerobic exercise (AE), which could contribute to noted differences in cognitive function. METHOD The subjects were ten men (age, 21.5 ± 0.5 years; height, 171.7 ± 4.8 cm; weight, 65.6 ± 5.6 kg) and ten women (age, 21.4 ± 0.5 years; height, 157.6 ± 4.9 cm; weight, 51.3 ± 6.5 kg). They completed our AE protocol, consisting of a 30-min leg-ergometer cycling at an intensity of 50% peak oxygen uptake, with an initial 4-min rest period for baseline measurement. Measures of the dynamics of cerebral oxygenation included: oxygenated hemoglobin (O2Hb) in the left and right PFC (LR-PFC) and deoxygenated hemoglobin (HHb). The 30-min exercise period was subdivided into six 5-min phases, with the average and peak values determined in each phase. RESULTS A significant interaction was found between LR-PFC HHb and sex (p < 0.001), with significantly higher values in men than in women in phases 3-6 (p < 0.05). CONCLUSION We report a significant sex effect of HHb in the LR-PFC.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
3 |
9
|
In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique. Int J Mol Sci 2021; 22:ijms22041528. [PMID: 33546389 PMCID: PMC7913506 DOI: 10.3390/ijms22041528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Cyanosis is a pathological condition that is characterized by a bluish discoloration of the skin or mucous membranes. It may result from a number of medical conditions, including disorders of the respiratory system and central nervous system, cardiovascular diseases, peripheral vascular diseases, deep vein thrombosis, and regional ischemia. Cyanosis can also be elicited from methemoglobin. Therefore, a simple, rapid, and simultaneous monitoring of changes in oxygenated hemoglobin and deoxygenated hemoglobin is useful for protective strategies against organ ischemic injury. We previously developed a red-green-blue camera-based spectral imaging method for the measurements of melanin concentration, oxygenated hemoglobin concentration (CHbO), deoxygenated hemoglobin concentration (CHbR), total hemoglobin concentration (CHbT) and tissue oxygen saturation (StO2) in skin tissues. We leveraged this approach in this study and extended it to the simultaneous quantifications of methemoglobin concentration (CmetHb), CHbO, CHbR, and StO2. The aim of the study was to confirm the feasibility of the method to monitor CmetHb, CHbO, CHbR, CHbT, and StO2. We performed in vivo experiments using rat dorsal skin during methemoglobinemia induced by the administration of sodium nitrite (NaNO2) and changing the fraction of inspired oxygen (FiO2), including normoxia, hypoxia, and anoxia. Spectral diffuse reflectance images were estimated from an RGB image by the Wiener estimation method. Multiple regression analysis based on Monte Carlo simulations of light transport was used to estimate CHbO, CHbR, CmetHb, CHbT, and StO2. CmetHb rapidly increased with a half-maximum time of less than 30 min and reached maximal values nearly 60 min after the administration of NaNO2, whereas StO2 dramatically dropped after the administration of NaNO2, indicating the temporary production of methemoglobin and severe hypoxemia during methemoglobinemia. Time courses of CHbT and StO2, while changing the FiO2, coincided with well-known physiological responses to hyperoxia, normoxia, and hypoxia. The results indicated the potential of this method to evaluate changes in skin hemodynamics due to loss of tissue viability and vitality.
Collapse
|
Journal Article |
4 |
1 |
10
|
Ušaj A, Mekjavic IB, Kapus J, McDonnell AC, Jaki Mekjavic P, Debevec T. Muscle Oxygenation During Hypoxic Exercise in Children and Adults. Front Physiol 2019; 10:1385. [PMID: 31787903 PMCID: PMC6854007 DOI: 10.3389/fphys.2019.01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION While hypoxia is known to decrease peak oxygen uptake ( V . o 2 max) and maximal power output in both adults and children its influence on submaximal exercise cardiorespiratory and, especially, muscle oxygenation responses remains unclear. METHODS Eight pre-pubertal boys (age = 8 ± 2 years.; body mass (BM) = 29 ± 7 kg) and seven adult males (age = 39 ± 4 years.; BM = 80 ± 8 kg) underwent graded exercise tests in both normoxic (PiO2 = 134 ± 0.4 mmHg) and hypoxic (PiO2 = 105 ± 0.6 mmHg) condition. Continuous breath-by-breath gas exchange and near infrared spectroscopy measurements, to assess the vastus lateralis oxygenation, were performed during both tests. The gas exchange threshold (GET) and muscle oxygenation thresholds were subsequently determined for both groups in both conditions. RESULTS In both groups, hypoxia did not significantly alter either GET or the corresponding V . o 2 at GET. In adults, higher V . E levels were observed in hypoxia (45 ± 6 l/min) compared to normoxia (36 ± 6 l/min, p < 0.05) at intensities above GET. In contrast, in children both the hypoxic V . E and V . o 2 responses were significantly greater than those observed in normoxia only at intensities below GET (p < 0.01 for V . E and p < 0.05 for V . o 2). Higher exercise-related heart rate (HR) levels in hypoxia, compared to normoxia, were only noted in adults (p < 0.01). Interestingly, hypoxia per se did not influence the muscle oxygenation thresholds during exercise in neither group. However, and in contrast to adults, the children exhibited significantly higher total hemoglobin concentration during hypoxic as compared to normoxic exercise (tHb) at lower exercise intensities (30 and 60 W, p = 0.01). CONCLUSION These results suggest that in adults, hypoxia augments exercise ventilation at intensities above GET and might also maintain muscle blood oxygenation via increased HR. On the other hand, children exhibit a greater change of muscle blood perfusion, oxygen uptake as well as ventilation at exercise intensities below GET.
Collapse
|
|
6 |
1 |
11
|
Gjonaj E, Formica C, Cartella E, Muscarà N, Marino S, Quartarone A, De Salvo S. The Role of Near-Infrared Spectroscopy (NIRS) in Neurological and Neurodegenerative Diseases as Support to Clinical Practice: An Overview of the Literature. Diagnostics (Basel) 2025; 15:869. [PMID: 40218219 PMCID: PMC11988768 DOI: 10.3390/diagnostics15070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Near-Infrared Spectroscopy (NIRS) is a non-invasive technique that measures the oxygenation variations of brain tissue in response to different stimuli. It has many advantages such as being easy to use, portable, and non-invasive. Several studies over the years have demonstrated the usefulness of NIRS in neurological and neurodegenerative diseases. NIRS remains relatively underutilized in clinical practice. The aim of this brief review was to describe the use of NIRS in neurological and neurodegenerative diseases and how its use can modify clinical, therapeutic, and rehabilitative approaches. A total of 54 relevant articles were selected from the PUBMED research database related to the diagnostic and prognostic role of fNIRS in the main neurological and neurodegenerative diseases; significant outcomes have been reported in a descriptive form with careful considerations. In addition, we excluded studies using fNIRS in co-registration with other neurophysiological techniques. The use of NIRS should be applied even in the field of neurological and neurodegenerative diseases; in dementia, NIRS can aid in differential diagnosis and predict possible evolutions from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) stage; in stroke, it plays an important role especially in the post-acute phase, giving information about the patient's chances of recovery; in Parkinson's Disease (PD), the results showed the important role of cognitive aspects; in epilepsy, NIRS can localize the epileptic focus or potentially predict seizure onset.
Collapse
|
Review |
1 |
|
12
|
He JW, Liu H, Peng YB. The Scalp Confounds Near-Infrared Signal from Rat Brain Following Innocuous and Noxious Stimulation. Brain Sci 2015; 5:387-99. [PMID: 26426058 PMCID: PMC4701019 DOI: 10.3390/brainsci5040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Functional near-infrared imaging (fNIRI) is a non-invasive, low-cost and highly portable technique for assessing brain activity and functions. Both clinical and experimental evidence suggest that fNIRI is able to assess brain activity at associated regions during pain processing, indicating a strong possibility of using fNIRI-derived brain activity pattern as a biomarker for pain. However, it remains unclear how, especially in small animals, the scalp influences fNIRI signal in pain processing. Previously, we have shown that the use of a multi-channel system improves the spatial resolution of fNIRI in rats (without the scalp) during pain processing. Our current work is to investigate a scalp effect by comparing with new data from rats with the scalp during innocuous or noxious stimulation (n = 6). Results showed remarkable stimulus-dependent differences between the no-scalp and intact-scalp groups. In conclusion, the scalp confounded the fNIRI signal in pain processing likely via an autonomic mechanism; the scalp effect should be a critical factor in image reconstruction and data interpretation.
Collapse
|
Journal Article |
10 |
|