1
|
Segal DM, Padlan EA, Cohen GH, Rudikoff S, Potter M, Davies DR. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A 1974; 71:4298-302. [PMID: 4530984 PMCID: PMC433869 DOI: 10.1073/pnas.71.11.4298] [Citation(s) in RCA: 289] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The structure of the Fab of McPC 603, a mouse myeloma protein with phosphorylcholine binding activity, has been determined to 3.1-A resoltuion. The four domains are found to be structurally similar with a well-defined double-layer structure. A large cavity exists at one end of the fragment, the walls of which are formed exclusively of hypervariable residues. Phosphorylcholine binds in this cavity and forms specific interactions with several well-defined amino-acid side chains of the protein. The hapten is bound asymmetrically and interacts more with the heavy chain than with the light chain.
Collapse
|
research-article |
51 |
289 |
2
|
Saito Y, Sato N, Hirashima M, Takebe G, Nagasawa S, Takahashi K. Domain structure of bi-functional selenoprotein P. Biochem J 2004; 381:841-846. [PMID: 15117283 PMCID: PMC1133894 DOI: 10.1042/bj20040328] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 04/19/2004] [Accepted: 04/30/2004] [Indexed: 02/05/2023]
Abstract
Human selenoprotein P (SeP), a selenium-rich plasma glycoprotein, is presumed to contain ten selenocysteine residues; one of which is located at the 40th residue in the N-terminal region and the remaining nine localized in the C-terminal third part. We have shown that SeP not only catalyses the reduction of phosphatidylcholine hydroperoxide by glutathione [Saito, Hayashi, Tanaka, Watanabe, Suzuki, Saito and Takahashi (1999) J. Biol. Chem. 274, 2866-2871], but also supplies its selenium to proliferating cells [Saito and Takahashi (2002) Eur. J. Biochem. 269, 5746-5751]. Treatment of SeP with plasma kallikrein resulted in a sequential limited proteolysis (Arg-235-Gln-236 and Arg-242-Asp-243). The N-terminal (residues 1-235) and C-terminal (residues 243-361) fragments exhibited enzyme activity and selenium-supply activity respectively. These results confirm that SeP is a bi-functional protein and suggest that the first selenocysteine residue is the active site of the enzyme and the remaining nine residues function as a selenium supplier.
Collapse
|
research-article |
21 |
97 |
3
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
|
Review |
5 |
95 |
4
|
Podzimska-Sroka D, O'Shea C, Gregersen PL, Skriver K. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. PLANTS (BASEL, SWITZERLAND) 2015; 4:412-48. [PMID: 27135336 PMCID: PMC4844398 DOI: 10.3390/plants4030412] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.
Collapse
|
Review |
10 |
82 |
5
|
Haridas D, Ponnusamy MP, Chugh S, Lakshmanan I, Seshacharyulu P, Batra SK. MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB J 2014; 28:4183-4199. [PMID: 25002120 DOI: 10.1096/fj.14-257352] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
MUC16 is a high-molecular-weight glycoprotein that is expressed by the various epithelial cell surfaces of the human body to protect the cell layer from a myriad of insults. It is the largest mucin known to date, with an ∼22,152 aa sequence. Structurally, MUC16 is characterized into 3 distinct domains: the amino terminal, the tandem repeat, and the carboxyl terminal domain, with each domain having unique attributes. The extracellular portion of MUC16 is shed into the bloodstream and serves as a biomarker for diagnosing and monitoring patients with cancer; however, its functional role in cancer is yet to be elucidated. Several factors contribute to this challenge, which include the large protein size; the extensive glycosylation that the protein undergoes, which confers functional heterogeneity; lack of specific antibodies that detect the unique domains of MUC16; and the existence of splicing variants. Despite these limitations, MUC16 has been established as a molecule of significant application in cancer. Hence, in this review, we discuss the various aspects of MUC16, which include its discovery, structure, and biological significance both in benign and malignant conditions with an attempt to dissect its functional relevance
Collapse
|
Review |
11 |
80 |
6
|
Kinch LN, Li W, Monastyrskyy B, Kryshtafovych A, Grishin NV. Evaluation of free modeling targets in CASP11 and ROLL. Proteins 2016; 84 Suppl 1:51-66. [PMID: 26677002 DOI: 10.1002/prot.24973] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/12/2015] [Indexed: 12/25/2022]
Abstract
We present an assessment of 'template-free modeling' (FM) in CASP11and ROLL. Community-wide server performance suggested the use of automated scores similar to previous CASPs would provide a good system of evaluating performance, even in the absence of comprehensive manual assessment. The CASP11 FM category included several outstanding examples, including successful prediction by the Baker group of a 256-residue target (T0806-D1) that lacked sequence similarity to any existing template. The top server model prediction by Zhang's Quark, which was apparently selected and refined by several manual groups, encompassed the entire fold of target T0837-D1. Methods from the same two groups tended to dominate overall CASP11 FM and ROLL rankings. Comparison of top FM predictions with those from the previous CASP experiment revealed progress in the category, particularly reflected in high prediction accuracy for larger protein domains. FM prediction models for two cases were sufficient to provide functional insights that were otherwise not obtainable by traditional sequence analysis methods. Importantly, CASP11 abstracts revealed that alignment-based contact prediction methods brought about much of the CASP11 progress, producing both of the functionally relevant models as well as several of the other outstanding structure predictions. These methodological advances enabled de novo modeling of much larger domain structures than was previously possible and allowed prediction of functional sites. Proteins 2016; 84(Suppl 1):51-66. © 2015 Wiley Periodicals, Inc.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
65 |
7
|
Chan KW, Csanády L, Seto-Young D, Nairn AC, Gadsby DC. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. J Gen Physiol 2000; 116:163-80. [PMID: 10919864 PMCID: PMC2229491 DOI: 10.1085/jgp.116.2.163] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain and by ATP binding, and, likely, hydrolysis at the NBDs. Exon 13 of the CFTR gene encodes amino acids (aa's) 590-830, which were originally ascribed to the R domain. In this study, CFTR channels were severed near likely NH(2)- or COOH-terminal boundaries of NBD1. CFTR channel activity, assayed using two-microelectrode voltage clamp and excised patch recordings, provided a sensitive measure of successful assembly of each pair of channel segments as the sever point was systematically shifted along the primary sequence. Substantial channel activity was taken as an indication that NBD1 was functionally intact. This approach revealed that the COOH terminus of NBD1 extends beyond aa 590 and lies between aa's 622 and 634, while the NH(2) terminus of NBD1 lies between aa's 432 and 449. To facilitate biochemical studies of the expressed proteins, a Flag epitope was added to the NH(2) termini of full length CFTR, and of CFTR segments truncated before the normal COOH terminus (aa 1480). The functionally identified NBD1 boundaries are supported by Western blotting, coimmunoprecipitation, and deglycosylation studies, which showed that an NH(2)-terminal segment representing aa's 3-622 (Flag3-622) or 3-633 (Flag3-633) could physically associate with a COOH-terminal fragment representing aa's 634-1480 (634-1480); however, the latter fragment was glycosylated to the mature form only in the presence of Flag3-633. Similarly, 433-1480 could physically associate with Flag3-432 and was glycosylated to the mature form; however, 449-1480 protein seemed unstable and could hardly be detected even when expressed with Flag3-432. In excised-patch recordings, all functional severed CFTR channels displayed the hallmark characteristics of CFTR, including the requirement of phosphorylation and exposure to MgATP for gating, ability to be locked open by pyrophosphate or AMP-PNP, small single channel conductances, and high apparent affinity of channel opening by MgATP. Our definitions of the boundaries of the NBD1 domain in CFTR are supported by comparison with the solved NBD structures of HisP and RbsA.
Collapse
|
research-article |
25 |
64 |
8
|
Alcorn T, Juers DH. Progress in rational methods of cryoprotection in macromolecular crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:366-73. [PMID: 20382989 PMCID: PMC2852300 DOI: 10.1107/s090744490903995x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 10/01/2009] [Indexed: 11/11/2022]
Abstract
Cryogenic cooling of macromolecular crystals is commonly used for X-ray data collection both to reduce crystal damage from radiation and to gather functional information by cryogenically trapping intermediates. However, the cooling process can damage the crystals. Limiting cooling-induced crystal damage often requires cryoprotection strategies, which can involve substantial screening of solution conditions and cooling protocols. Here, recent developments directed towards rational methods for cryoprotection are described. Crystal damage is described in the context of the temperature response of the crystal as a thermodynamic system. As such, the internal and external parts of the crystal typically have different cryoprotection requirements. A key physical parameter, the thermal contraction, of 26 different cryoprotective solutions was measured between 294 and 72 K. The range of contractions was 2-13%, with the more polar cryosolutions contracting less. The potential uses of these results in the development of cryocooling conditions, as well as recent developments in determining minimum cryosolution soaking times, are discussed.
Collapse
|
research-article |
15 |
36 |
9
|
Choi BH, Philips MR, Chen Y, Lu L, Dai W. K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion. J Biol Chem 2018; 293:17574-17581. [PMID: 30228186 PMCID: PMC6231119 DOI: 10.1074/jbc.ra118.003723] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Ras proteins participate in multiple signal cascades, regulating crucial cellular processes, including cell survival, proliferation, and differentiation. We have previously reported that Ras proteins are modified by sumoylation and that Lys-42 plays an important role in mediating the modification. In the current study, we further investigated the role of Lys-42 in regulating cellular activities of K-Ras. Inducible expression of K-RasV12 led to the activation of downstream components, including c-RAF, MEK1, and extracellular signal-regulated kinases (ERKs), whereas expression of K-RasV12/R42 mutant compromised the activation of the RAF/MEK/ERK signaling axis. Expression of K-RasV12/R42 also led to reduced phosphorylation of several other protein kinases, including c-Jun N-terminal kinase (JNK), Chk2, and focal adhesion kinase (FAK). Significantly, K-RasV12/R42 expression inhibited cellular migration and invasion in vitro in multiple cell lines, including transformed pancreatic cells. Given that K-Ras plays a crucial role in mediating oncogenesis in the pancreas, we treated transformed pancreatic cells of both BxPC-3 and MiaPaCa-2 with 2-D08, a small ubiquitin-like modifier (SUMO) E2 inhibitor. Treatment with the compound inhibited cell migration in a concentration-dependent manner, which was correlated with a reduced level of K-Ras sumoylation. Moreover, 2-D08 suppressed expression of ZEB1 (a mesenchymal cell marker) with concomitant induction of ZO-1 (an epithelial cell marker). Combined, our studies strongly suggest that posttranslational modification(s), including sumoylation mediated by Lys-42, plays a crucial role in K-Ras activities in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
33 |
10
|
Alikin D, Turygin A, Kholkin A, Shur V. Ferroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka 0.5Na 0.5)NbO₃ and BiFeO₃-Based Piezoelectric Ceramics. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E47. [PMID: 28772408 PMCID: PMC5344613 DOI: 10.3390/ma10010047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/17/2022]
Abstract
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO₃ (BFO) and (Ka0.5Na0.5)NbO₃ (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure-property relationship in these technologically important material families.
Collapse
|
Review |
8 |
30 |
11
|
Andreeva AV, Kutuzov MA. PPEF/PP7 protein Ser/Thr phosphatases. Cell Mol Life Sci 2009; 66:3103-10. [PMID: 19662497 PMCID: PMC11115641 DOI: 10.1007/s00018-009-0110-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
PPEF/PP7 represents one of the five subfamilies of the PPP protein Ser/Thr phosphatases. Studies published in recent years point to a role of plant PP7 at a crossroad of different pathways of light and stress signalling. In animals, PPEFs are highly expressed in sensory neurons, and Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. Expression profiling suggests that mammalian PPEF may play a role in stress-protective responses, cell survival, growth, proliferation, and oncogenesis. Despite structural similarities of the catalytic domains and the fact that some of these phosphatases are involved in light perception both in animals and in plants, the plant and non-plant representatives of this group have distinct domain architecture and appear not to be orthologues.
Collapse
|
Review |
16 |
27 |
12
|
Zhang J, Huang L, Zhu C, Zhou C, Jabar B, Li J, Zhu X, Wang L, Song C, Xin H, Li D, Qin X. Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record-High Thermoelectric Performance in Chalcopyrite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905210. [PMID: 31714630 DOI: 10.1002/adma.201905210] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Chalcopyrite compound CuGaTe2 is the focus of much research interest due to its high power factor. However, its high intrinsic lattice thermal conductivity seriously impedes the promotion of its thermoelectric performance. Here, it is shown that through alloying of isoelectronic elements In and Ag in CuGaTe2 , a quinary alloy compound system Cu1- x Agx Ga0.4 In0.6 Te2 (0 ≤ x ≤ 0.4) with complex nanosized strain domain structure is prepared. Due to strong phonon scattering mainly by this domain structure, thermal conductivity (at 300 K) drops from 6.1 W m-1 K-1 for the host compound to 1.5 W m-1 K-1 for the sample with x = 0.4. As a result, the optimized chalcopyrite sample Cu0.7 Ag0.3 Ga0.4 In0.6 Te2 presents an outstanding performance, with record-high figure of merit (ZT) reaching 1.64 (at 873 K) and average ZT reaching 0.73 (between ≈300 and 873 K), which are ≈37 and ≈35% larger than the corresponding values for pristine CuGaTe2 , respectively, demonstrating that such domain structure arising from isoelectronic multielement alloying in chalcopyrite compound can effectively suppress its thermal conductivity and elevate its thermoelectric performance remarkably.
Collapse
|
|
6 |
26 |
13
|
Baker JA, Simkovic F, Taylor HMC, Rigden DJ. Potential DNA binding and nuclease functions of ComEC domains characterized in silico. Proteins 2016; 84:1431-42. [PMID: 27318187 PMCID: PMC5031224 DOI: 10.1002/prot.25088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA-protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure-based DNA binding propensity; and by data-driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA-binding OB fold domain and that the β-lactamase-like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431-1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
25 |
14
|
Csépányi-Kömi R, Sáfár D, Grósz V, Tarján ZL, Ligeti E. In silico tissue-distribution of human Rho family GTPase activating proteins. Small GTPases 2013; 4:90-101. [PMID: 23518456 PMCID: PMC3747261 DOI: 10.4161/sgtp.23708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho family small GTPases are involved in the spatio-temporal regulation of several physiological processes. They operate as molecular switches based on their GTP- or GDP-bound state. Their GTPase activator proteins (Rho/Rac GAPs) are able to increase the GTP hydrolysis of small GTPases, which turns them to an inactive state. This regulatory step is a key element of signal termination. According to the human genome project the potential number of Rho family GAPs is approximately 70. Despite their significant role in cellular signaling our knowledge on their expression pattern is quite incomplete. In this study we tried to reveal the tissue-distribution of Rho/Rac GAPs based on expressed sequence tag (EST) database from healthy and tumor tissues and microarray experiments. Our accumulated data sets can provide important starting information for future research. However, the nomenclature of Rho family GAPs is quite heterogeneous. Therefore we collected the available names, abbreviations and aliases of human Rho/Rac GAPs in a useful nomenclature table. A phylogenetic tree and domain structure of 65 human RhoGAPs are also presented.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
24 |
15
|
Chouprik A, Zakharchenko S, Spiridonov M, Zarubin S, Chernikova A, Kirtaev R, Buragohain P, Gruverman A, Zenkevich A, Negrov D. Ferroelectricity in Hf 0.5Zr 0.5O 2 Thin Films: A Microscopic Study of the Polarization Switching Phenomenon and Field-Induced Phase Transformations. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8818-8826. [PMID: 29464951 DOI: 10.1021/acsami.7b17482] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of their full compatibility with the modern Si-based technology, the HfO2-based ferroelectric films have recently emerged as viable candidates for application in nonvolatile memory devices. However, despite significant efforts, the mechanism of the polarization switching in this material is still under debate. In this work, we elucidate the microscopic nature of the polarization switching process in functional Hf0.5Zr0.5O2-based ferroelectric capacitors during its operation. In particular, the static domain structure and its switching dynamics following the application of the external electric field have been monitored with the advanced piezoresponse force microscopy (PFM) technique providing a nm resolution. Separate domains with strong built-in electric field have been found. Piezoresponse mapping of pristine Hf0.5Zr0.5O2 films revealed the mixture of polar phase grains and regions with low piezoresponse as well as the continuum of polarization orientations in the grains of polar orthorhombic phase. PFM data combined with the structural analysis of pristine versus trained film by plan-view transmission electron microscopy both speak in support of a monoclinic-to-orthorhombic phase transition in ferroelectric Hf0.5Zr0.5O2 layer during the wake-up process under an electrical stress.
Collapse
|
|
7 |
23 |
16
|
Goult BT, Gingras AR, Bate N, Barsukov IL, Critchley DR, Roberts GC. The domain structure of talin: residues 1815-1973 form a five-helix bundle containing a cryptic vinculin-binding site. FEBS Lett 2010; 584:2237-41. [PMID: 20399778 PMCID: PMC2887493 DOI: 10.1016/j.febslet.2010.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/24/2010] [Accepted: 04/08/2010] [Indexed: 11/24/2022]
Abstract
Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. Its rod region consists of a series of helical bundles. Here we show that residues 1815-1973 form a 5-helix bundle, with a topology unique to talin which is optimally suited for formation of a long rod such as talin. This is much more stable than the 4-helix (1843-1973) domain described earlier and as a result its vinculin binding sequence is inaccessible to vinculin at room temperature, with implications for the overall mechanism of the talin-vinculin interaction.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
21 |
17
|
Yerabham ASK, Mas PJ, Decker C, Soares DC, Weiergräber OH, Nagel-Steger L, Willbold D, Hart DJ, Bradshaw NJ, Korth C. A structural organization for the Disrupted in Schizophrenia 1 protein, identified by high-throughput screening, reveals distinctly folded regions, which are bisected by mental illness-related mutations. J Biol Chem 2017; 292:6468-6477. [PMID: 28249940 DOI: 10.1074/jbc.m116.773903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
20 |
18
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
|
Review |
4 |
18 |
19
|
Ievlev AV, Alikin DO, Morozovska AN, Varenyk OV, Eliseev EA, Kholkin AL, Shur VY, Kalinin SV. Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals. ACS NANO 2015; 9:769-777. [PMID: 25506745 DOI: 10.1021/nn506268g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching at nonpolar cuts of uniaxial ferroelectrics. In this case, the in-plane component of the polarization vector switches, allowing for detailed observations of the resultant domain morphologies. We observe a surprising variability of resultant domain morphologies stemming from a fundamental instability of the formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling the vertical tip position allows the polarity of the switching to be controlled. This represents a very unusual form of symmetry breaking where mechanical motion in the vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.
Collapse
|
|
10 |
16 |
20
|
Strickland KC, Holmes RS, Oleinik NV, Krupenko NI, Krupenko SA. Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes. Chem Biol Interact 2011; 191:122-8. [PMID: 21215736 PMCID: PMC3103616 DOI: 10.1016/j.cbi.2010.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
15 |
21
|
Kim J, Takenaka H, Qi Y, Damodaran AR, Fernandez A, Gao R, McCarter MR, Saremi S, Chung L, Rappe AM, Martin LW. Epitaxial Strain Control of Relaxor Ferroelectric Phase Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901060. [PMID: 30968488 DOI: 10.1002/adma.201901060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Understanding and ultimately controlling the large electromechanical effects in relaxor ferroelectrics requires intimate knowledge of how the local-polar order evolves under applied stimuli. Here, the biaxial-strain-induced evolution of and correlations between polar structures and properties in epitaxial films of the prototypical relaxor ferroelectric 0.68PbMg1/3 Nb2/3 O3 -0.32PbTiO3 are investigated. X-ray diffuse-scattering studies reveal an evolution from a butterfly- to disc-shaped pattern and an increase in the correlation-length from ≈8 to ≈25 nm with increasing compressive strain. Molecular-dynamics simulations reveal the origin of the changes in the diffuse-scattering patterns and that strain induces polarization rotation and the merging of the polar order. As the magnitude of the strain is increased, relaxor behavior is gradually suppressed but is not fully quenched. Analysis of the dynamic evolution of dipole alignment in the simulations reveals that, while, for most unit-cell chemistries and configurations, strain drives a tendency toward more ferroelectric-like order, there are certain unit cells that become more disordered under strain, resulting in stronger competition between ordered and disordered regions and enhanced overall susceptibilities. Ultimately, this implies that deterministic creation of specific local chemical configurations could be an effective way to enhance relaxor performance.
Collapse
|
|
6 |
14 |
22
|
Guo T, Ouyang X, Xin Y, Wang Y, Zhang S, Kong J. Characterization of a New Cell Envelope Proteinase PrtP from Lactobacillus rhamnosus CGMCC11055. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6985-92. [PMID: 27585760 DOI: 10.1021/acs.jafc.6b03379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell envelope proteinases (CEPs) play essential roles in lactic acid bacteria growth in milk and health-promoting properties of fermented dairy products. The genome of Lactobacillus rhamnosus CGMCC11055 possesses two putative CEP genes prtP and prtR2, and the PrtP displays the distinctive domain organization from PrtR2 reported. The PrtP was purified and biochemically characterized. The results showed that the optimal activity occurred at 44 °C, pH 6.5. p-Amidinophenylmethylsulfonyl fluoride obviously inhibited enzymatic activity, suggesting PrtP was a member of serine proteinases. Under the optimal conditions, β-casein was a favorite substrate over αS1- and κ-casein, and 35 oligopeptides were identified in the β-casein hydrolysate, including the phosphoserine peptide and bioactive isoleucine-proline-proline. By analysis of the amino acid sequences of those oligopeptides, proline was the preferred residue at the breakdown site. Therefore, we speculated that PrtP was a new type of CEPs from Lb. rhamnosus.
Collapse
|
|
9 |
13 |
23
|
Turygin A, Alikin D, Alikin Y, Shur V. The Formation of Self-Organized Domain Structures at Non-Polar Cuts of Lithium Niobate as a Result of Local Switching by an SPM Tip. MATERIALS 2017; 10:ma10101143. [PMID: 28956822 PMCID: PMC5666949 DOI: 10.3390/ma10101143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022]
Abstract
We have studied experimentally the interaction of isolated needle-like domains created in an array via local switching using a biased scanning probe microscope (SPM) tip and visualized via piezoelectric force microscopy (PFM) at the non-polar cuts of MgO-doped lithium niobate (MgOLN) crystals. It has been found that the domain interaction leads to the intermittent quasiperiodic and chaotic behavior of the domain length in the array in a manner similar to that of polar cuts, but with greater spacing between the points of bias application and voltage amplitudes. It has also been found that the polarization reversal at the non-polar cuts and domain interaction significantly depend on humidity. The spatial distribution of the surface potential measured by Kelvin probe force microscopy in the vicinity of the charged domain walls revealed the decrease of the domain length as a result of the partial backswitching after pulse termination. The phase diagram of switching behavior as a function of tip voltage and spacing between the points of bias application has been plotted. The obtained results provide new insight into the problem of the domain interaction during forward growth and can provide a basis for useful application in nanodomain engineering and development of non-linear optical frequency converters, data storage, and computing devices.
Collapse
|
|
8 |
12 |
24
|
Baladi S, Tsvetkov PO, Petrova TV, Takagi T, Sakamoto H, Lobachov VM, Makarov AA, Cox JA. Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino- and carboxy-terminal halves. Protein Sci 2001; 10:771-8. [PMID: 11274468 PMCID: PMC2373976 DOI: 10.1110/ps.40601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44 degrees C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 microM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+) forms melt in the 111 degrees -123 degrees C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction.
Collapse
|
research-article |
24 |
10 |
25
|
Vasileva D, Vasilev S, Kholkin AL, Shur VY. Domain Diversity and Polarization Switching in Amino Acid β-Glycine. MATERIALS 2019; 12:ma12081223. [PMID: 30991625 PMCID: PMC6514944 DOI: 10.3390/ma12081223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 11/28/2022]
Abstract
Piezoelectric materials based on lead zirconate titanate are widely used in sensors and actuators. However, their application is limited because of high processing temperature, brittleness, lack of conformal deposition and, more importantly, intrinsic incompatibility with biological environments. Recent studies on bioorganic piezoelectrics have demonstrated their potential in these applications, essentially due to using the same building blocks as those used by nature. In this work, we used piezoresponse force microscopy (PFM) to study the domain structures and polarization reversal in the smallest amino acid glycine, which recently attracted a lot of attention due to its strong shear piezoelectric activity. In this uniaxial ferroelectric, a diverse domain structure that includes both 180° and charged domain walls was observed, as well as domain wall kinks related to peculiar growth and crystallographic structure of this material. Local polarization switching was studied by applying a bias voltage to the PFM tip, and the possibility to control the resulting domain structure was demonstrated. This study has shown that the as-grown domain structure and changes in the electric field in glycine are qualitatively similar to those found in the uniaxial inorganic ferroelectrics.
Collapse
|
|
6 |
9 |