1
|
Emergence of an abstract categorical code enabling the discrimination of temporally structured tactile stimuli. Proc Natl Acad Sci U S A 2016; 113:E7966-E7975. [PMID: 27872293 DOI: 10.1073/pnas.1618196113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The problem of neural coding in perceptual decision making revolves around two fundamental questions: (i) How are the neural representations of sensory stimuli related to perception, and (ii) what attributes of these neural responses are relevant for downstream networks, and how do they influence decision making? We studied these two questions by recording neurons in primary somatosensory (S1) and dorsal premotor (DPC) cortex while trained monkeys reported whether the temporal pattern structure of two sequential vibrotactile stimuli (of equal mean frequency) was the same or different. We found that S1 neurons coded the temporal patterns in a literal way and only during the stimulation periods and did not reflect the monkeys' decisions. In contrast, DPC neurons coded the stimulus patterns as broader categories and signaled them during the working memory, comparison, and decision periods. These results show that the initial sensory representation is transformed into an intermediate, more abstract categorical code that combines past and present information to ultimately generate a perceptually informed choice.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
40 |
2
|
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices. J Neurosci 2017; 37:1733-1746. [PMID: 28077725 DOI: 10.1523/jneurosci.1537-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023] Open
Abstract
Classically, it has been hypothesized that reach-to-grasp movements arise from two discrete parietofrontal cortical networks. As part of these networks, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. Recent studies have shown that such a strict delineation of function along anatomical boundaries is unlikely, partly because reaching to different locations can alter distal hand kinematics and grasping different objects can affect kinematics of the proximal arm. Here, we used chronically implanted multielectrode arrays to record unit-spiking activity in both PMd and PMv simultaneously while rhesus macaques engaged in a reach-to-grasp task. Generalized linear models were used to predict the spiking activity of cells in both areas as a function of different kinematic parameters, as well as spike history. To account for the influence of reaching on hand kinematics and vice versa, we applied demixed principal components analysis to define kinematics synergies that maximized variance across either different object locations or grip types. We found that single cells in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that this classical division of reach and grasp in PMd and PMv, respectively, does not accurately reflect the encoding preferences of cells in those areas.SIGNIFICANCE STATEMENT For reach-to-grasp movements, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. We recorded unit-spiking activity in PMd and PMv simultaneously while macaques performed a reach-to-grasp task. We modeled the spiking activity of neurons as a function of kinematic parameters and spike history. We applied demixed principal components analysis to define kinematics synergies. We found that single units in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that the division of reach and grasp in PMd and PMv, respectively, cannot be made based on their encoding properties.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
36 |
3
|
Rossi-Pool R, Zainos A, Alvarez M, Zizumbo J, Vergara J, Romo R. Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex. Neuron 2017; 96:1432-1446.e7. [PMID: 29224726 DOI: 10.1016/j.neuron.2017.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
Abstract
When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
35 |
4
|
Pellegrino G, Tomasevic L, Herz DM, Larsen KM, Siebner HR. Theta Activity in the Left Dorsal Premotor Cortex During Action Re-Evaluation and Motor Reprogramming. Front Hum Neurosci 2018; 12:364. [PMID: 30297991 PMCID: PMC6161550 DOI: 10.3389/fnhum.2018.00364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The ability to rapidly adjust our actions to changes in the environment is a key function of human motor control. Previous work implicated the dorsal premotor cortex (dPMC) in the up-dating of action plans based on environmental cues. Here we used electroencephalography (EEG) to identify neural signatures of up-dating cue-action relationships in the dPMC and connected frontoparietal areas. Ten healthy subjects performed a pre-cued alternate choice task. Simple geometric shapes cued button presses with the right or left index finger. The shapes of the pre-cue and go-cue differed in two third of trials. In these incongruent trials, the go-cue prompted a re-evaluation of the pre-cued action plan, slowing response time relative to trials with identical cues. This re-evaluation selectively increased theta band activity without modifying activity in alpha and beta band. Source-based analysis revealed a widespread theta increase in dorsal and mesial frontoparietal areas, including dPMC, supplementary motor area (SMA), primary motor and posterior parietal cortices (PPC). Theta activity scaled positively with response slowing and increased more strongly when the pre-cue was invalid and required subjects to select the alternate response. Together, the results indicate that theta activity in dPMC and connected frontoparietal areas is involved in the re-adjustment of cue-induced action tendencies.
Collapse
|
Journal Article |
7 |
32 |
5
|
Giovannelli F, Innocenti I, Rossi S, Borgheresi A, Ragazzoni A, Zaccara G, Viggiano MP, Cincotta M. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS. Cereb Cortex 2012; 24:1009-16. [PMID: 23236203 DOI: 10.1093/cercor/bhs386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synchronization of body movements to an external beat is a universal human ability, which has also been recently documented in nonhuman species. The neural substrates of this rhythmic motor entrainment are still under investigation. Correlational neuroimaging data suggest an involvement of the dorsal premotor cortex (dPMC) and the supplementary motor area (SMA). In 14 healthy volunteers, we more specifically investigated the neural network underlying this phenomenon using a causal approach by an established 1-Hz repetitive transcranial magnetic stimulation (rTMS) protocol, which produces a focal suppression of cortical excitability outlasting the stimulation period. Synchronization accuracy between rhythmic cues and right index finger tapping, as measured by the mean time lag (asynchrony) between motor and auditory events, was significantly affected when the right dPMC function was transiently perturbed by "off-line" focal rTMS, whereas the reproduction of the rhythmic sequence per se (inter-tap-interval) was spared. This approach affected metrical rhythms of different complexity, but not non-metrical or isochronous sequences. Conversely, no change in auditory-motor synchronization was observed with rTMS of the SMA, of the left dPMC or over a control site (midline occipital area). Our data strongly support the view that the right dPMC is crucial for rhythmic auditory-motor synchronization in humans.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
22 |
6
|
Pani P, Di Bello F, Brunamonti E, D'Andrea V, Papazachariadis O, Ferraina S. Alpha- and beta-band oscillations subserve different processes in reactive control of limb movements. Front Behav Neurosci 2014; 8:383. [PMID: 25414649 PMCID: PMC4220745 DOI: 10.3389/fnbeh.2014.00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023] Open
Abstract
The capacity to rapidly suppress a behavioral act in response to sudden instruction to stop is a key cognitive function. This function, called reactive control, is tested in experimental settings using the stop signal task, which requires subjects to generate a movement in response to a go signal or suppress it when a stop signal appears. The ability to inhibit this movement fluctuates over time: sometimes, subjects can stop their response, and at other times, they can not. To determine the neural basis of this fluctuation, we recorded local field potentials (LFPs) in the alpha (6–12 Hz) and beta (13–35 Hz) bands from the dorsal premotor cortex of two nonhuman primates that were performing the task. The ability to countermand a movement after a stop signal was predicted by the activity of both bands, each purportedly representing a distinct neural process. The beta band represents the level of movement preparation; higher beta power corresponds to a lower level of movement preparation, whereas the alpha band supports a proper phasic, reactive inhibitory response: movements are inhibited when alpha band power increases immediately after a stop signal. Our findings support the function of LFP bands in generating the signatures of various neural computations that are multiplexed in the brain.
Collapse
|
Journal Article |
11 |
21 |
7
|
Temporal signals underlying a cognitive process in the dorsal premotor cortex. Proc Natl Acad Sci U S A 2019; 116:7523-7532. [PMID: 30918128 DOI: 10.1073/pnas.1820474116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During discrimination between two sequential vibrotactile stimulus patterns, the primate dorsal premotor cortex (DPC) neurons exhibit a complex repertoire of coding dynamics associated with the working memory, comparison, and decision components of this task. In addition, these neurons and neurons with no coding responses show complex strong fluctuations in their firing rate associated with the temporal sequence of task events. Here, to make sense of this temporal complexity, we extracted the temporal signals that were latent in the population. We found a strong link between the individual and population response, suggesting a common neural substrate. Notably, in contrast to coding dynamics, these time-dependent responses were unaffected during error trials. However, in a nondemanding task in which monkeys did not require discrimination for reward, these time-dependent signals were largely reduced and changed. These results suggest that temporal dynamics in DPC reflect the underlying cognitive processes of this task.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
20 |
8
|
Meehan SK, Zabukovec JR, Dao E, Cheung KL, Linsdell MA, Boyd LA. One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence-specific implicit learning. Eur J Neurosci 2013; 38:3071-9. [PMID: 23834742 DOI: 10.1111/ejn.12291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/14/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Abstract
Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
16 |
9
|
Baboyan V, Basilakos A, Yourganov G, Rorden C, Bonilha L, Fridriksson J, Hickok G. Isolating the white matter circuitry of the dorsal language stream: Connectome-Symptom Mapping in stroke induced aphasia. Hum Brain Mapp 2021; 42:5689-5702. [PMID: 34469044 PMCID: PMC8559486 DOI: 10.1002/hbm.25647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
The application of ℓ1-regularized machine learning models to high-dimensional connectomes offers a promising methodology to assess clinical-anatomical correlations in humans. Here, we integrate the connectome-based lesion-symptom mapping framework with sparse partial least squares regression (sPLS-R) to isolate elements of the connectome associated with speech repetition deficits. By mapping over 2,500 connections of the structural connectome in a cohort of 71 stroke-induced cases of aphasia presenting with varying left-hemisphere lesions and repetition impairment, sPLS-R was trained on 50 subjects to algorithmically identify connectomic features on the basis of their predictive value. The highest ranking features were subsequently used to generate a parsimonious predictive model for speech repetition whose predictions were evaluated on a held-out set of 21 subjects. A set of 10 short- and long-range parieto-temporal connections were identified, collectively delineating the broader circuitry of the dorsal white matter network of the language system. The strongest contributing feature was a short-range connection in the supramarginal gyrus, approximating the cortical localization of area Spt, with parallel long-range pathways interconnecting posterior nodes in supramarginal and superior temporal cortex with anterior nodes in both ventral and-notably-in dorsal premotor cortex, respectively. The collective disruption of these pathways indexed repetition performance in the held-out set of participants, suggesting that these impairments might be characterized as a parietotemporal disconnection syndrome impacting cortical area Spt and its associated white matter circuits of the frontal lobe as opposed to being purely a disconnection of the arcuate fasciculus.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
15 |
10
|
Atmaca S, Stadler W, Keitel A, Ott DVM, Lepsien J, Prinz W. Prediction processes during multiple object tracking (MOT): involvement of dorsal and ventral premotor cortices. Brain Behav 2013; 3:683-700. [PMID: 24363971 PMCID: PMC3868173 DOI: 10.1002/brb3.180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/22/2013] [Accepted: 09/02/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. AIMS The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. MATERIALS AND METHODS Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). RESULTS We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. DISCUSSION The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. CONCLUSION We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well.
Collapse
|
research-article |
12 |
13 |
11
|
Suminski AJ, Mardoum P, Lillicrap TP, Hatsopoulos NG. Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics. J Neurophysiol 2015; 113:2812-23. [PMID: 25673733 DOI: 10.1152/jn.00486.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery, and therefore, its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortexes exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
13 |
12
|
Tscherpel C, Hensel L, Lemberg K, Freytag J, Michely J, Volz LJ, Fink GR, Grefkes C. Age affects the contribution of ipsilateral brain regions to movement kinematics. Hum Brain Mapp 2019; 41:640-655. [PMID: 31617272 PMCID: PMC7268044 DOI: 10.1002/hbm.24829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
Healthy aging is accompanied by changes in brain activation patterns in the motor system. In older subjects, unilateral hand movements typically rely on increased recruitment of ipsilateral frontoparietal areas. While the two central concepts of aging‐related brain activity changes, “Hemispheric Asymmetry Reduction in Older Adults” (HAROLD), and “Posterior to Anterior Shift in Aging” (PASA), have initially been suggested in the context of cognitive tasks and were attributed to compensation, current knowledge regarding the functional significance of increased motor system activity remains scarce. We, therefore, used online interference transcranial magnetic stimulation in young and older subjects to investigate the role of key regions of the ipsilateral frontoparietal cortex, that is, (a) primary motor cortex (M1), (b) dorsal premotor cortex (dPMC), and (c) anterior intraparietal sulcus (IPS) in the control of hand movements of different motor demands. Our data suggest a change of the functional roles of ipsilateral brain areas in healthy age with a reduced relevance of ipsilateral M1 and a shift of importance toward dPMC for repetitive high‐frequency movements. These results support the notion that mechanisms conceptualized in the models of “PASA” and “HAROLD” also apply to the motor system.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
10 |
13
|
Harrington RM, Chan E, Rounds AK, Wutzke CJ, Dromerick AW, Turkeltaub PE, Harris-Love ML. Roles of Lesioned and Nonlesioned Hemispheres in Reaching Performance Poststroke. Neurorehabil Neural Repair 2020; 34:61-71. [PMID: 31858870 PMCID: PMC6954952 DOI: 10.1177/1545968319876253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Severe poststroke arm impairment is associated with greater activation of the nonlesioned hemisphere during movement of the affected arm. The circumstances under which this activation may be adaptive or maladaptive remain unclear. Objective. To identify the functional relevance of key lesioned and nonlesioned hemisphere motor areas to reaching performance in patients with mild versus severe arm impairment. Methods. A total of 20 participants with chronic stroke performed a reaching response time task with their affected arm. During the reaction time period, a transient magnetic stimulus was applied over the primary (M1) or dorsal premotor cortex (PMd) of either hemisphere, and the effect of the perturbation on movement time (MT) was calculated. Results. For perturbation of the nonlesioned hemisphere, there was a significant interaction effect of Site of perturbation (PMd vs M1) by Group (mild vs severe; P < .001). Perturbation of PMd had a greater effect on MT in the severe versus the mild group. This effect was not observed with perturbation of M1. For perturbation of the lesioned hemisphere, there was a main effect of site of perturbation (P < .05), with perturbation of M1 having a greater effect on MT than PMd. Conclusions. These results demonstrate that, in the context of reaching movements, the role of the nonlesioned hemisphere depends on both impairment severity and the specific site that is targeted. A deeper understanding of these individual-, task-, and site-specific factors is essential for advancing the potential usefulness of neuromodulation to enhance poststroke motor recovery.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
10 |
14
|
Stephan MA, Brown R, Lega C, Penhune V. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex. Front Neurosci 2016; 10:210. [PMID: 27242414 PMCID: PMC4862034 DOI: 10.3389/fnins.2016.00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/25/2016] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.
Collapse
|
Journal Article |
9 |
9 |
15
|
Albertini D, Lanzilotto M, Maranesi M, Bonini L. Largely shared neural codes for biological and nonbiological observed movements but not for executed actions in monkey premotor areas. J Neurophysiol 2021; 126:906-912. [PMID: 34379489 PMCID: PMC8846967 DOI: 10.1152/jn.00296.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural processing of others' observed actions recruits a large network of brain regions (the action observation network, AON), in which frontal motor areas are thought to play a crucial role. Since the discovery of mirror neurons (MNs) in the ventral premotor cortex, it has been assumed that their activation was conditional upon the presentation of biological rather than nonbiological motion stimuli, supporting a form of direct visuomotor matching. Nonetheless, nonbiological observed movements have rarely been used as control stimuli to evaluate visual specificity, thereby leaving the issue of similarity among neural codes for executed actions and biological or nonbiological observed movements unresolved. Here, we addressed this issue by recording from two nodes of the AON that are attracting increasing interest, namely the ventro-rostral part of the dorsal premotor area F2 and the mesial pre-supplementary motor area F6 of macaques while they 1) executed a reaching-grasping task, 2) observed an experimenter performing the task, and 3) observed a nonbiological effector moving in the same context. Our findings revealed stronger neuronal responses to the observation of biological than nonbiological movement, but biological and nonbiological visual stimuli produced highly similar neural dynamics and relied on largely shared neural codes, which in turn remarkably differed from those associated with executed actions. These results indicate that, in highly familiar contexts, visuo-motor remapping processes in premotor areas hosting MNs are more complex and flexible than predicted by a direct visuomotor matching hypothesis.
Collapse
|
Journal Article |
4 |
9 |
16
|
Calderazzo SM, Busch SE, Moore TL, Rosene DL, Medalla M. Distribution and overlap of entorhinal, premotor, and amygdalar connections in the monkey anterior cingulate cortex. J Comp Neurol 2021; 529:885-904. [PMID: 32677044 PMCID: PMC8214921 DOI: 10.1002/cne.24986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
The anterior cingulate cortex (ACC) is important for decision-making as it integrates motor plans with affective and contextual limbic information. Disruptions in these networks have been observed in depression, bipolar disorder, and post-traumatic stress disorder. Yet, overlap of limbic and motor connections within subdivisions of the ACC is not well understood. Hence, we administered a combination of retrograde and anterograde tracers into structures important for contextual memories (entorhinal cortex), affective processing (amygdala), and motor planning (dorsal premotor cortex) to assess overlap of labeled projection neurons from (outputs) and axon terminals to (inputs) the ACC of adult rhesus monkeys (Macaca mulatta). Our data show that entorhinal and dorsal premotor cortical (dPMC) connections are segregated across ventral (A25, A24a) and dorsal (A24b,c) subregions of the ACC, while amygdalar connections are more evenly distributed across subregions. Among all areas, the rostral ACC (A32) had the lowest relative density of connections with all three regions. In the ventral ACC, entorhinal and amygdalar connections strongly overlap across all layers, especially in A25. In the dorsal ACC, outputs to dPMC and the amygdala strongly overlap in deep layers. However, dPMC input to the dorsal ACC was densest in deep layers, while amygdalar inputs predominantly localized in upper layers. These connection patterns are consistent with diverse roles of the dorsal ACC in motor evaluation and the ventral ACC in affective and contextual memory. Further, distinct laminar circuits suggest unique interactions within specific ACC compartments that are likely important for the temporal integration of motor and limbic information during flexible goal-directed behavior.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
8 |
17
|
van der Hoorn A, Potgieser ARE, de Jong BM. Transcallosal connection patterns of opposite dorsal premotor regions support a lateralized specialization for action and perception. Eur J Neurosci 2014; 40:2980-6. [PMID: 24945328 DOI: 10.1111/ejn.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/14/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022]
Abstract
Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal-directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole-brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.
Collapse
|
|
11 |
6 |
18
|
Meichtry JR, Cazzoli D, Chaves S, von Arx S, Pflugshaupt T, Kalla R, Bassetti CL, Gutbrod K, Müri RM. Pure optic ataxia and visual hemiagnosia - extending the dual visual hypothesis. J Neuropsychol 2017; 12:271-290. [PMID: 28258660 DOI: 10.1111/jnp.12119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/01/2017] [Indexed: 11/28/2022]
Abstract
Goodale and Milner's two visual system hypothesis is an influential model for the understanding of the primate visual system. Lesions of either the ventral (occipito-temporal) or the dorsal (occipito-parietal) stream produce distinct and dissociated syndromes in humans: visual agnosia is typical for ventral damage, whereas optic ataxia (OA) for dorsal damage. We studied the case of a 59-year-old left-handed woman with a circumscribed lesion around the left posterior occipital sulcus, extending to the underlying white matter. Initially, she presented with a central visual field OA, which regressed to an OA to the right visual hemifield during the 3 months observation period. In addition, tachistoscopic experiments showed visual hemiagnosia to the right visual hemifield. In line with the findings of the neuropsychological experiments, the analysis of the structural MR data by means of a trackwise hodologic probabilistic approach revealed damage to the left superior longitudinal fasciculus and to the left inferior longitudinal fasciculus, indicating an impairment of both the dorsal and the ventral stream. The combination of OA and visual hemiagnosia in the same patient has never been previously described. The present case study thus provides further insights for the understanding of visual processing.
Collapse
|
Journal Article |
8 |
5 |
19
|
Van Hoornweder S, Debeuf R, Verstraelen S, Meesen R, Cuypers K. Unravelling Ipsilateral Interactions Between Left Dorsal Premotor and Primary Motor Cortex: A Proof of Concept Study. Neuroscience 2021; 466:36-46. [PMID: 33971265 DOI: 10.1016/j.neuroscience.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Few studies have identified the intrahemispheric functional connectivity between the ipsilateral dorsal premotor cortex (PMd) and the primary motor hand area (M1hand) due to technical limitations. In this proof-of-concept study, a novel neuronavigated dsTMS set-up was employed, combining stimulation over left PMd and left M1hand using the edge of a butterfly coil and a small cooled-coil. This arrangement was warranted because coil (over)heating and inter coil distance are limiting factors when investigating connectivity between stimulation targets in close proximity and over a longer duration. The proposed set-up was designed to deal with these limitations. Specifically, the effect of four dual-site transcranial magnetic stimulation (dsTMS) protocols on twenty-eight right-handed participants (12 males) was evaluated. These protocols differed in stimulus order, interstimulus interval and current direction induced in PMd. A structural scan with electric (E-)field modeling was obtained from seven participants prior to dsTMS, demonstrating that PMd and M1hand were effectively stimulated. Results indicate that one protocol, in which a latero-medial current was induced in PMd 2.8 ms prior to stimulation over M1hand, induced a sex-mediated effect. In males, significant inhibition of motor-evoked potentials was identified, whereas females demonstrated a facilitatory effect that did not survive correction for multiple comparisons. E-field simulations revealed that the E-field induced by the coil targeting PMd was maximal in PMd, with weaker E-field strengths extending to regions beyond PMd. Summarizing, the current dsTMS set-up enabled stimulating at an inter-target distance of 35 mm without any indications of coil-overheating.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
4 |
20
|
Ruiu E, Dubbioso R, Madsen KH, Svolgaard O, Raffin E, Andersen KW, Karabanov AN, Siebner HR. Probing Context-Dependent Modulations of Ipsilateral Premotor-Motor Connectivity in Relapsing-Remitting Multiple Sclerosis. Front Neurol 2020; 11:193. [PMID: 32431655 PMCID: PMC7214689 DOI: 10.3389/fneur.2020.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: We employed dual-site TMS to test whether ipsilateral functional premotor-motor connectivity is altered in relapsing-remitting Multiple Sclerosis (RR-MS) and is related to central fatigue. Methods: Twelve patients with RR-MS and 12 healthy controls performed a visually cued Pinch-NoPinch task with their right hand. During the reaction time (RT) period of Pinch and No-Pinch trials, single-site TMS was applied to the left primary motor cortex (M1) or dual-site TMS was applied to the ipsilateral dorsal premotor cortex (PMd) and to M1. We traced context-dependent changes of corticospinal excitability and premotor–motor connectivity by measuring Motor-Evoked Potentials (MEPs) in the right first dorsal interosseus muscle. Central fatigue was evaluated with the Fatigue Scale for Motor and Cognitive Functions (FSMS). Results: In both groups, single-pulse TMS revealed a consistent increase in mean MEP amplitude during the Reaction Time (RT) period relative to a resting condition. Task-related corticospinal facilitation increased toward the end of the RT period in Pinch trials, while it decreased in No-Pinch trials. Again, this modulation of MEP facilitation by trial type was comparable in patients and controls. Dual-site TMS showed no significant effect of a conditioning PMd pulse on ipsilateral corticospinal excitability during the RT period in either group. However, patients showed a trend toward a relative attenuation in functional PMd-M1 connectivity at the end of the RT period in No-Pinch trials, which correlated positively with the severity of motor fatigue (r = 0.69; p = 0.007). Conclusions: Dynamic regulation of corticospinal excitability and ipsilateral PMd-M1 connectivity is preserved in patients with RR-MS. MS-related fatigue scales positively with an attenuation of premotor-to-motor functional connectivity during cued motor inhibition. Significance: The temporal, context-dependent modulation of ipsilateral premotor-motor connectivity, as revealed by dual-site TMS of ipsilateral PMd and M1, constitutes a promising neurophysiological marker of fatigue in MS.
Collapse
|
Journal Article |
5 |
3 |
21
|
Denyer R, Greenhouse I, Boyd LA. PMd and action preparation: bridging insights between TMS and single neuron research. Trends Cogn Sci 2023; 27:759-772. [PMID: 37244800 DOI: 10.1016/j.tics.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Transcranial magnetic stimulation (TMS) research has furthered understanding of human dorsal premotor cortex (PMd) function due to its unrivalled ability to measure the inhibitory and facilitatory influences of PMd over the primary motor cortex (M1) in a temporally precise manner. TMS research indicates that PMd transiently modulates inhibitory output to effector representations within M1 during motor preparation, with the direction of modulation depending on which effectors are selected for response, and the timing of modulations co-varying with task selection demands. In this review, we critically assess this literature in the context of a dynamical systems approach used to model nonhuman primate (NHP) PMd/M1 single-neuron recordings during action preparation. Through this process, we identify gaps in the literature and propose future experiments.
Collapse
|
Review |
2 |
2 |
22
|
Patai EZ, Foltynie T, Limousin P, Akram H, Zrinzo L, Bogacz R, Litvak V. Conflict Detection in a Sequential Decision Task Is Associated with Increased Cortico-Subthalamic Coherence and Prolonged Subthalamic Oscillatory Response in the β Band. J Neurosci 2022; 42:4681-4692. [PMID: 35501153 PMCID: PMC9186803 DOI: 10.1523/jneurosci.0572-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Making accurate decisions often involves the integration of current and past evidence. Here, we examine the neural correlates of conflict and evidence integration during sequential decision-making. Female and male human patients implanted with deep-brain stimulation (DBS) electrodes and age-matched and gender-matched healthy controls performed an expanded judgment task, in which they were free to choose how many cues to sample. Behaviorally, we found that while patients sampled numerically more cues, they were less able to integrate evidence and showed suboptimal performance. Using recordings of magnetoencephalography (MEG) and local field potentials (LFPs; in patients) in the subthalamic nucleus (STN), we found that β oscillations signaled conflict between cues within a sequence. Following cues that differed from previous cues, β power in the STN and cortex first decreased and then increased. Importantly, the conflict signal in the STN outlasted the cortical one, carrying over to the next cue in the sequence. Furthermore, after a conflict, there was an increase in coherence between the dorsal premotor cortex and STN in the β band. These results extend our understanding of cortico-subcortical dynamics of conflict processing, and do so in a context where evidence must be accumulated in discrete steps, much like in real life. Thus, the present work leads to a more nuanced picture of conflict monitoring systems in the brain and potential changes because of disease.SIGNIFICANCE STATEMENT Decision-making often involves the integration of multiple pieces of information over time to make accurate predictions. We simultaneously recorded whole-head magnetoencephalography (MEG) and local field potentials (LFPs) from the human subthalamic nucleus (STN) in a novel task which required integrating sequentially presented pieces of evidence. Our key finding is prolonged β oscillations in the STN, with a concurrent increase in communication with frontal cortex, when presented with conflicting information. These neural effects reflect the behavioral profile of reduced tendency to respond after conflict, as well as relate to suboptimal cue integration in patients, which may be directly linked to clinically reported side-effects of deep-brain stimulation (DBS) such as impaired decision-making and impulsivity.
Collapse
|
research-article |
3 |
1 |
23
|
Abstract
The dorsal premotor cortex (DPC) has classically been associated with a role in preparing and executing the physical motor variables during cognitive tasks. While recent work has provided nuanced insights into this role, here we propose that DPC also participates more actively in decision-making. We recorded neuronal activity in DPC while two trained monkeys performed a vibrotactile categorization task, utilizing two partially overlapping ranges of stimulus values that varied on two physical attributes: vibrotactile frequency and amplitude. We observed a broad heterogeneity across DPC neurons, the majority of which maintained the same response patterns across attributes and ranges, coding in the same periods, mixing temporal and categorical dynamics. The predominant categorical signal was maintained throughout the delay, movement periods and notably during the intertrial period. Putting the entire population's data through two dimensionality reduction techniques, we found strong temporal and categorical representations without remnants of the stimuli's physical parameters. Furthermore, projecting the activity of one population over the population axes of the other yielded identical categorical and temporal responses. Finally, we sought to identify functional subpopulations based on the combined activity of all stimuli, neurons, and time points; however, we found that single-unit responses mixed temporal and categorical dynamics and couldn't be clustered. All these point to DPC playing a more decision-related role than previously anticipated.
Collapse
|
research-article |
3 |
1 |
24
|
Sugiyama T, Uehara S, Izawa J. Meta-learning of human motor adaptation via the dorsal premotor cortex. Proc Natl Acad Sci U S A 2024; 121:e2417543121. [PMID: 39441634 PMCID: PMC11536165 DOI: 10.1073/pnas.2417543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Meta-learning enables us to learn how to learn the same or similar tasks more efficiently. Decision-making literature theorizes that a prefrontal network, including the orbitofrontal and anterior cingulate cortices, underlies meta-learning of decision making by reinforcement learning. Recently, computationally similar meta-learning has been theorized and empirically demonstrated in motor adaptation. However, it remains unclear whether meta-learning of motor adaptation also relies on a prefrontal network. Considering hierarchical information flow from the prefrontal to motor cortices, this study explores whether meta-learning is processed in the dorsolateral prefrontal cortex (DLPFC) or in the dorsal premotor cortex (PMd), which is situated upstream of the primary motor cortex, but downstream of the DLPFC. Transcranial magnetic stimulation (TMS) was delivered to either PMd or DLPFC during a motor meta-learning task, in which human participants were trained to regulate the rate and retention of motor adaptation to maximize rewards. While motor adaptation itself was intact, TMS to PMd, but not DLPFC, attenuated meta-learning, impairing the ability to regulate motor adaptation to maximize rewards. Further analyses revealed that TMS to PMd attenuated meta-learning of memory retention. These results suggest that meta-learning of motor adaptation relies more on the premotor area than on a prefrontal network. Thus, while PMd is traditionally viewed as crucial for planning motor actions, this study suggests that PMd is also crucial for meta-learning of motor adaptation, processing goal-directed planning of how long motor memory should be retained to fit the long-term goal of motor adaptation.
Collapse
|
research-article |
1 |
|
25
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
|
|
1 |
|