1
|
Guerrero A, Guiho R, Herranz N, Uren A, Withers DJ, Martínez‐Barbera JP, Tietze LF, Gil J. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 2020; 19:e13133. [PMID: 32175667 PMCID: PMC7189988 DOI: 10.1111/acel.13133] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
Senescence is a stable growth arrest that impairs the replication of damaged, old or preneoplastic cells, therefore contributing to tissue homeostasis. Senescent cells accumulate during ageing and are associated with cancer, fibrosis and many age-related pathologies. Recent evidence suggests that the selective elimination of senescent cells can be effective on the treatment of many of these senescence-associated diseases. A universal characteristic of senescent cells is that they display elevated activity of the lysosomal β-galactosidase, and this has been exploited as a marker for senescence (senescence-associated β-galactosidase activity). Consequently, we hypothesized that galactose-modified cytotoxic prodrugs will be preferentially processed by senescent cells, resulting in their selective killing. Here, we show that different galactose-modified duocarmycin (GMD) derivatives preferentially kill senescent cells. GMD prodrugs induce selective apoptosis of senescent cells in a lysosomal β-galactosidase (GLB1)-dependent manner. GMD prodrugs can eliminate a broad range of senescent cells in culture, and treatment with a GMD prodrug enhances the elimination of bystander senescent cells that accumulate upon whole-body irradiation treatment of mice. Moreover, taking advantage of a mouse model of adamantinomatous craniopharyngioma (ACP), we show that treatment with a GMD prodrug selectively reduced the number of β-catenin-positive preneoplastic senescent cells. In summary, the above results make a case for testing the potential of galactose-modified duocarmycin prodrugs to treat senescence-related pathologies.
Collapse
|
research-article |
5 |
103 |
2
|
Mecklenburg L. A Brief Introduction to Antibody-Drug Conjugates for Toxicologic Pathologists. Toxicol Pathol 2018; 46:746-752. [PMID: 30295169 DOI: 10.1177/0192623318803059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapeutics, delivering highly cytotoxic molecules directly to cancer cells. ADCs are composed of an antibody, a small molecule drug, and a linker attaching one to another. Antibodies are directed to a large variety of antigens overexpressed on tumor cells, tumor vasculature, or tumor-supporting stroma. After internalization, the ADC is transferred to lysosomes where the cytotoxic component is released, finally killing the target cell. All ADCs are administered via intravenous injection. Once in the circulation, linker stability in plasma is of high importance. In vivo studies in animals address the release of payload over time and typically measure total antibody, conjugated ADC, and free drug. ADC development is driven by ICH (International Council for Harmonisation) guidelines S6(R1) and S9. Dose-limiting toxicities of current ADCs are mainly associated with the payload and correlate well between clinical trials and nonclinical studies in rodents and nonrodents. This mini review is intended to provide general information about ADCs in oncology and shall assist the toxicologic pathologist in correctly interpreting morphological findings acquired in toxicity studies with this entity.
Collapse
|
Review |
7 |
34 |
3
|
Ogasawara H, Nishio K, Kanzawa F, Lee YS, Funayama Y, Ohira T, Kuraishi Y, Isogai Y, Saijo N. Intracellular carboxyl esterase activity is a determinant of cellular sensitivity to the antineoplastic agent KW-2189 in cell lines resistant to cisplatin and CPT-11. Jpn J Cancer Res 1995; 86:124-9. [PMID: 7737904 PMCID: PMC5920586 DOI: 10.1111/j.1349-7006.1995.tb02997.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
KW-2189, a novel antitumor antibiotic belonging to the duocarmycins, possesses marked DNA-binding activity upon activation by carboxyl esterase to its active form, DU-86. Three duocarmycins, KW-2189, DU-86 and duocarmycin SA, were active against the cisplatin (CDDP)-resistant human non-small cell lung cancer cell lines PC-9/CDDP and PC-14/CDDP, and the multidrug-resistant human small cell lung cancer cell line H69/VP. However, HAC2/0.1, a CDDP-resistant human ovarian cancer cell line which is also resistant to CPT-11 because of decreased intracellular activation of CPT-11, was about 12.8-fold more resistant to KW-2189. HAC2/0.1 was not resistant to other duocarmycins as compared to its parental cell line, HAC2. There was no difference between HAC2 and HAC2/0.1 with regard to the intracellular accumulation of KW-2189. Addition of 130 mU/ml of carboxyl esterase to the culture medium did not influence the sensitivity of HAC2 cells to KW-2189. However, the sensitivity of HAC2/0.1 cells to KW-2189 was enhanced to the level of HAC2. These results suggest that HAC2/0.1 is less potent than HAC2 in activating KW-2189. The carboxyl esterase activity of whole-cell and microsomal extracts from HAC2/0.1 was approximately 60% of that from HAC2. The cell-free experiment revealed that KW-2189 bound to DNA more efficiently in the presence of HAC2 than HAC2/0.1 cell extract. It was concluded that decreased intracellular carboxyl esterase activity in HAC2/0.1 cells caused decreased intracellular conversion of KW-2189 to its active form, thus producing resistance to KW-2189. The decreased conversion of CPT-11 to SN-38 in HAC2/0.1 cells might be explained by decreased carboxyl esterase activity.
Collapse
|
research-article |
30 |
33 |
4
|
Gomi K, Kobayashi E, Miyoshi K, Ashizawa T, Okamoto A, Ogawa T, Katsumata S, Mihara A, Okabe M, Hirata T. Anticellular and antitumor activity of duocarmycins, novel antitumor antibiotics. Jpn J Cancer Res 1992; 83:113-20. [PMID: 1544867 PMCID: PMC5918644 DOI: 10.1111/j.1349-7006.1992.tb02360.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The anticellular and antitumor activities of novel antitumor antibiotics, duocarmycins (DUMs), were examined against human and murine tumor cells. DUMs consist of five compounds, A, B1, B2, C1 and C2, which possess a pharmacophore similar to that of CC-1065, a previously isolated antibiotic. Among them, DUMA exhibited ultrapotent growth-inhibitory activity with an IC50 value of 6 pM against human uterine cervix carcinoma HeLa S3 cells. DUMA and DUMB1 also inhibited the growth of adriamycin (ADM)-resistant lines of human nasopharynx carcinoma KB cells and breast carcinoma MCF-7 cells as well as their sensitive lines. DUMs inhibited the growth of s.c.-inoculated murine tumors such as B16 melanoma, sarcoma 180, M5076 sarcoma and colon 26. DUMs were also significantly effective in increasing the lifespan of i.p.-inoculated B16 melanoma-bearing mice, although their effect was marginal against other i.p.-inoculated tumors. As a whole, DUMB1 exhibited superior activity to the other four compounds. DUMB1 rapidly inhibited the incorporation of [3H]-TdR into macromolecules of HeLa S3 cells as compared with that of [3H]UR or [3H]leucine. DNA strand breaks were detected in DUMB1-treated HeLa S3 cells by agarose gel electrophoresis with a contour-clamped homogeneous electric field apparatus. These results indicate that DUMs possess interesting biological activities as DNA-targeting antitumor antibiotics.
Collapse
|
research-article |
33 |
33 |
5
|
Beck A, Lambert J, Sun M, Lin K. Fourth World Antibody-Drug Conjugate Summit: February 29-March 1, 2012, Frankfurt, Germany. MAbs 2012; 4:637-47. [PMID: 22909934 PMCID: PMC3502230 DOI: 10.4161/mabs.21697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 4th World Antibody Drug Conjugate (WADC) Summit, organized by Hanson Wade was held on February 29‑March 1, 2012 in Frankfurt, Germany, which was also the location for the Antibody Drug Conjugate Summit Europe held in February 2011. During the one year between these meetings, antibody drug conjugates (ADCs) have confirmed their technological maturity and their clinical efficacy in oncology. Brentuximab vedotin (ADCETRISTM) gained approval by the US Food and Drug Administration in August 2011 and trastuzumab emtansine (T-DM1) confirmed impressive clinical efficacy responses in a large cohort of breast cancer patients. During the 4th WADC meeting, antibody-maytansinoid conjugates were showcased by representatives of ImmunoGen (T-DM1, SAR3419, lorvotuzumab mertansine/IMGN801, IMGN529 and IMG853) and Biotest (BT-062). Data on antibody-auristatin conjugates were presented by scientists and clinicians from Seattle Genetics and Takeda (brentuximab vedotin), Pfizer (5T4-MMAF), Agensys/Astella (AGS-16M8F), Progenics (PSMA-ADC) and Genmab (anti-TF ADCs). Alternative payloads such as calicheamicins and duocarmycin used for preparation of ADCs were discussed by Pfizer and Synthon representatives, respectively. In addition, emerging technologies, including site-directed conjugation (Ambrx), a protein toxin as payload (Viventia), hapten-binding bispecific antibodies (Roche), and use of light activated drugs (Photobiotics), were also presented. Last but not least, progresses in solving Chemistry Manufacturing and Control, and pharmacokinetic issues were addressed by scientists from Genentech, Pfizer, Novartis and Pierre Fabre.
Collapse
|
Congress |
13 |
28 |
6
|
Lowe DB, Bivens CK, Mobley AS, Herrera CE, McCormick AL, Wichner T, Sabnani MK, Wood LM, Weidanz JA. TCR-like antibody drug conjugates mediate killing of tumor cells with low peptide/HLA targets. MAbs 2018; 9:603-614. [PMID: 28273004 DOI: 10.1080/19420862.2017.1302630] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The currently marketed antibody-drug conjugates (ADC) destabilize microtubule assembly in cancer cells and initiate apoptosis in patients. However, few tumor antigens (TA) are expressed at high densities on cancer lesions, potentially minimizing the therapeutic index of current ADC regimens. The peptide/human leukocyte antigen (HLA) complex can be specifically targeted by therapeutic antibodies (designated T cell receptor [TCR]-like antibodies) and adequately distinguish malignant cells, but has not been the focus of ADC development. We analyzed the killing potential of TCR-like ADCs when cross-linked to the DNA alkylating compound duocarmycin. Our data comprise proof-of-principle results that TCR-like ADCs mediate potent tumor cytotoxicity, particularly under common scenarios of low TA/HLA density, and support their continued development alongside agents that disrupt DNA replication. Additionally, TCR-like antibody ligand binding appears to play an important role in ADC functionality and should be addressed during therapy development to avoid binding patterns that negate ADC killing efficacy.
Collapse
|
Journal Article |
7 |
24 |
7
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
|
Review |
4 |
20 |
8
|
Capone E, Piccolo E, Fichera I, Ciufici P, Barcaroli D, Sala A, De Laurenzi V, Iacobelli V, Iacobelli S, Sala G. Generation of a novel Antibody-Drug Conjugate targeting endosialin: potent and durable antitumor response in sarcoma. Oncotarget 2017; 8:60368-60377. [PMID: 28947977 PMCID: PMC5601145 DOI: 10.18632/oncotarget.19499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
The endosialin/CD248/TEM1 receptor is expressed on the cell surface of tumor-associated stroma cells as well as in sarcoma and neuroblastoma cells. This receptor is emerging as an attractive molecule in diagnostics and therapeutics because of its expression across the stroma of many human tumors, the low to absent expression in normal tissues and accessibility from the vascular circulation. In this study, we present evidence of the preclinical efficacy of a novel Antibody-Drug Conjugate (ENDOS/ADC). It consists of a humanized endosialin monoclonal antibody, named hMP-E-8.3, conjugated to a potent duocarmycin derivative. In endosialin expressing cancer cell lines, this ENDOS/ADC showed a powerful, specific and target-dependent killing activity. High expression levels of endosialin in cells correlated with efficient internalization and cytotoxic effects in vitro. Efficacy studies demonstrated that ENDOS/ADC treatment led to a long-lasting tumor growth inhibition of a cell line-based model of human osteosarcoma. Taken together, our results demonstrate that endosialin is an attractive target in sarcoma and suggest that ENDOS/ADC has the potential to be developed into a bio-therapeutic agent for these malignancies.
Collapse
|
Journal Article |
8 |
18 |
9
|
Felber JG, Thorn-Seshold O. 40 Years of Duocarmycins: A Graphical Structure/Function Review of Their Chemical Evolution, from SAR to Prodrugs and ADCs. JACS AU 2022; 2:2636-2644. [PMID: 36590260 PMCID: PMC9795467 DOI: 10.1021/jacsau.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/16/2023]
Abstract
Synthetic analogues of the DNA-alkylating cytotoxins of the duocarmycin class have been extensively investigated in the past 40 years, driven by their high potency, their unusual mechanism of bioactivity, and the beautiful modularity of their structure-activity relationship (SAR). This Perspective analyzes how the molecular designs of synthetic duocarmycins have evolved: from (1) early SAR studies, through to modern applications for directed cancer therapy as (2) prodrugs and (3) antibody-drug conjugates in late-stage clinical development. Analyzing 583 primary research articles and patents from 1978 to 2022, we distill out a searchable A0-format "Minard map" poster of ca. 200 key structure/function-tuning steps tracing chemical developments across these three key areas. This structure-based overview showcases the ingenious approaches to tune and target bioactivity, that continue to drive development of the elegant and powerful duocarmycin platform.
Collapse
|
Review |
3 |
16 |
10
|
Okamoto A, Okabe M, Gomi K. Analysis of DNA fragmentation in human uterine cervix carcinoma HeLa S3 cells treated with duocarmycins or other antitumor agents by pulse field gel electrophoresis. Jpn J Cancer Res 1993; 84:93-8. [PMID: 8449832 PMCID: PMC5919028 DOI: 10.1111/j.1349-7006.1993.tb02789.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Pulse field gel electrophoresis using a contour-clamped homogeneous electric field was applied for the analysis of DNA-fragmenting activity of antitumor agents towards human uterine cervix carcinoma HeLa S3 cells. Duocarmycins (DUMs), novel antitumor antibiotics with ultrapotent cell growth-inhibitory activities, caused DNA fragmentation at 10 times their IC50 values at 2 h exposure. At 100 times their IC50 values, the size of the smallest fragments was about 245 kilobase pairs (kbp). DUMA, DUMB1 and DUMB2 exhibited similar DNA fragmentation patterns, suggesting similar action mechanisms. DNA fragmentation was also detected in cells treated with radical producers, intercalators and topoisomerase inhibitors. Two bands of about 1800 and 1500 kbp were commonly detected in the cells treated with DUMs and these agents. In addition, fragments of about 900 kbp were detected in the cells treated with a topoisomerase inhibitor, 4'-(9-acridinylamino)methane-sulfon-m-anisidine, and fragments in the broad size range between 700 and 245 kbp in the cells treated with radical producers, bleomycin and neocarzinostatin. DUMs showed a characteristic DNA fragmentation pattern, since both types of fragments induced by the topoisomerase inhibitor and the radical producers were simultaneously detected, suggesting a novel mode of interaction with DNA. DNA-crosslinking agents and mitotic inhibitors did not induce DNA fragmentation under these conditions. The pulse field gel electrophoresis is potentially useful for characterizing DNA-cleaving activity of various antitumor agents at the cellular level.
Collapse
|
research-article |
32 |
13 |
11
|
Ogasawara H, Nishio K, Ishida T, Arioka H, Fukuoka K, Saijo N. In vitro enhancement of antitumor activity of a water-soluble duocarmycin derivative, KW-2189, by caffeine-mediated DNA-repair inhibition in human lung cancer cells. Jpn J Cancer Res 1997; 88:1033-7. [PMID: 9439677 PMCID: PMC5921316 DOI: 10.1111/j.1349-7006.1997.tb00326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duocarmycins, including KW-2189, bind in the minor groove of double-stranded DNA at A-T-rich sequences, followed by covalent bonding with N-3 of adenine in preferred sequences. We examined the effect of DNA-repair modulators, such as caffeine and aphidicolin, on the cytotoxicity of duocarmycins towards human lung cancer cells, as determined by dye formation assay. Caffeine (0.5 or 1 mM), but not aphidicolin, enhanced the growth-inhibitory activity of KW-2189, DU-86, and duocarmycin SA. Caffeine inhibited repair of DNA strand breaks induced by KW-2189, as assayed by the alkaline elution technique. This suggests that duocarmycin-induced DNA strand breaks, which are potentially lethal to cells, are repaired through a caffeine-sensitive pathway.
Collapse
|
brief-report |
28 |
11 |
12
|
Vielhauer GA, Swink M, Parelkar NK, Lajiness JP, Wolfe AL, Boger D. Evaluation of a reductively activated duocarmycin prodrug against murine and human solid cancers. Cancer Biol Ther 2014; 14:527-36. [PMID: 23760495 DOI: 10.4161/cbt.24348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In treating cancer with clinically approved chemotherapies, the high systemic toxicity and lack of selectivity for malignant cells often result in an overall poor response rate. One pharmacological approach to improve patient response is to design targeted therapies that exploit the cancer milieu by reductively activating prodrugs, which results in the selective release of the free drug in the tumor tissue. Previously, we characterized prodrugs of seco-CBI-indole 2 (CBI-indole 2) designed to be activated in hypoxic tumor microenvironments, wherein the tumor maintains higher concentrations of "reducing" nucleophiles capable of preferentially releasing the free drug by nucleophilic attack on a weak N-O bond. Of these prodrugs, BocNHO-CBI-indole 2 (BocNHO) surpassed the efficacy of the free drug, CBI-indole 2, when examined in vivo in the murine L1210 leukemia model and demonstrated reduced toxicity suggesting a targeted or sustained release in vivo. Herein, we further examine the biological activity of the BocNHO prodrug in murine breast cancer, as well as human prostate and lung cancer cell lines, in vitro. Notably, BocNHO manifests potent antiproliferative and cytotoxic activity in all three tumor cell lines. However, in comparison to the activity observed in the murine cancer cell line, the human cancer cell lines were less sensitive, especially at early timepoints for cytotoxicity. Based on these findings, BocNHO was tested in a more clinically relevant orthotopic lung tumor model, revealing significant efficacy and reduced toxicity compared with the free drug. The data suggests that this pharmacological approach to designing targeted therapies is amenable to human solid tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
8 |
13
|
Hudson R, Yao HP, Suthe SR, Patel D, Wang MH. Antibody-Drug Conjugate PCMC1D3- Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase. Curr Cancer Drug Targets 2021; 22:312-327. [PMID: 34951367 DOI: 10.2174/1568009621666211222154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. OBJECTIVE Here we report the preclinical and therapeutic evaluation of a novel anti-MET antibody-drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. METHODS The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. RESULTS Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg bodyweight. Taken together, PCMC1D3-DCM was effective in targeting inhibition of tumor growth in xenograft models. CONCLUSION This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.
Collapse
|
|
4 |
4 |
14
|
Capone E, Lattanzio R, Gasparri F, Orsini P, Rossi C, Iacobelli V, De Laurenzi V, Natali PG, Valsasina B, Iacobelli S, Sala G. EV20/NMS-P945, a Novel Thienoindole Based Antibody-Drug Conjugate Targeting HER-3 for Solid Tumors. Pharmaceutics 2021; 13:pharmaceutics13040483. [PMID: 33918158 PMCID: PMC8066800 DOI: 10.3390/pharmaceutics13040483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
HER-3 is becoming an attractive target for antibody-drug conjugate (ADC)-based therapy. Indeed, this receptor and its ligands are found to be overexpressed in several malignancies, and re-activation of its downstream signaling axis is known to play a critical role in modulating the sensitivity of targeted therapeutics in different tumors. In this study, we generated a novel ADC named EV20/NMS-P945 by coupling the anti-HER-3 antibody EV20 with a duocarmycin-like derivative, the thienoindole (TEI) NMS-P528, a DNA minor groove alkylating agent through a peptidic cleavable linker. This ADC showed target-dependent cytotoxic activity in vitro on several tumor cell lines and therapeutic activity in mouse xenograft tumor models, including those originating from pancreatic, prostatic, head and neck, gastric and ovarian cancer cells and melanoma. Pharmacokinetics and toxicological studies in monkeys demonstrated that this ADC possesses a favorable terminal half-life and stability and it is well tolerated. These data support further EV20/NMS-P945 clinical development as a therapeutic agent against HER-3-expressing malignancies.
Collapse
|
Journal Article |
4 |
3 |
15
|
Selective Targeting of Breast Cancer by Tafuramycin A Using SMA-Nanoassemblies. Molecules 2021; 26:molecules26123532. [PMID: 34207832 PMCID: PMC8227162 DOI: 10.3390/molecules26123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of tumors that tests negative for estrogen receptors, progesterone receptors, and excess HER2 protein. The mainstay of treatment remains chemotherapy, but the therapeutic outcome remains inadequate. This paper investigates the potential of a duocarmycin derivative, tafuramycin A (TFA), as a new and more effective chemotherapy agent in TNBC treatment. To this extent, we optimized the chemical synthesis of TFA, and we encapsulated TFA in a micellar system to reduce side effects and increase tumor accumulation. In vitro and in vivo studies suggest that both TFA and SMA–TFA possess high anticancer effects in TNBC models. Finally, the encapsulation of TFA offered a preferential avenue to tumor accumulation by increasing its concentration at the tumor tissues by around four times in comparison with the free drug. Overall, the results provide a new potential strategy useful for TNBC treatment.
Collapse
|
Journal Article |
4 |
|
16
|
Uematsu M, Brody DM, Boger DL. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins. Tetrahedron Lett 2015; 56:3101-3104. [PMID: 26069351 PMCID: PMC4459655 DOI: 10.1016/j.tetlet.2014.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation, characterization and examination of the CBI-based 5-membered lactone 5 capable of serving as a prodrug or protein (antibody) conjugation reagent are disclosed along with its incorporation into the corresponding CC-1065 and duocarmycin analog 6, and the establishment of their properties.
Collapse
|
research-article |
10 |
|
17
|
Bengtsson C, Gravenfors Y. Rapid Construction of a Chloromethyl-Substituted Duocarmycin-like Prodrug. Molecules 2023; 28:4818. [PMID: 37375372 DOI: 10.3390/molecules28124818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of duocarmycin-like compounds is often associated with lengthy synthetic routes. Presented herein is the development of a short and convenient synthesis of a type of duocarmycin prodrug. The 1,2,3,6-tetrahydropyrrolo[3,2-e]indole-containing core is here constructed from commercially available Boc-5-bromoindole in four steps and 23% overall yield, utilizing a Buchwald-Hartwig amination followed by a sodium hydride-induced regioselective bromination. In addition, protocols for selective mono- and di-halogenations of positions 3 and 4 were also developed, which could be useful for further exploration of this scaffold.
Collapse
|
|
2 |
|
18
|
Morcos A, Jung Y, Galvan Bustillos J, Fuller RN, Caba Molina D, Bertucci A, Boyle KE, Vazquez ME, Wall NR. A Comprehensive Review of the Antitumor Properties and Mechanistic Insights of Duocarmycin Analogs. Cancers (Basel) 2024; 16:3293. [PMID: 39409913 PMCID: PMC11475672 DOI: 10.3390/cancers16193293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The duocarmycin family is a group of potent cytotoxic agents originally isolated from the bacterium Streptomyces. This discovery has spurred significant interest due to duocarmycins' unique chemical structures and powerful mechanism of action. This review comprehensively details the history of the duocarmycin family, the current understanding of their therapeutic potential, and the major clinical trials that have been conducted. Chemically, the duocarmycin family is characterized by a DNA-binding unit that confers specificity, a subunit-linking amide that positions the molecule within the DNA helix, and an alkylating unit that interacts with the DNA. This configuration allows them to bind selectively to the minor groove of DNA and alkylate adenine bases, a notable deviation from the more common guanine targeting performed by other alkylating agents. Duocarmycin's mechanism of action involves the formation of covalent adducts with DNA, leading to the disruption of the DNA architecture and subsequent inhibition of replication and transcription. Recent advancements in drug delivery systems, such as antibody-drug conjugates (ADCs), have further elevated the therapeutic prospects of duocarmycin analogs by providing a promising mechanism for enhancing intracellular concentrations and selective tumor delivery. Preclinical studies have highlighted the efficacy of duocarmycin derivatives in various in vitro models, providing a strong foundation for translational research. However, further biological research is required to fully understand the toxicology of duocarmycin family members before it can be clinically relevant. The major focus of this review is to cache the major biologically relevant findings of different duocarmycin analogs as well as their biological shortcomings to propose next steps in the field of cancer therapy with these potent therapeutics.
Collapse
|
Review |
1 |
|
19
|
Valsasina B, Orsini P, Terenghi C, Ocana A. Present Scenario and Future Landscape of Payloads for ADCs: Focus on DNA-Interacting Agents. Pharmaceuticals (Basel) 2024; 17:1338. [PMID: 39458979 PMCID: PMC11510327 DOI: 10.3390/ph17101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
ADCs have emerged as a promising class of therapeutics, combining the targeting specificity of monoclonal antibodies with the cytotoxic potency of small-molecule drugs. Although the majority of approved ADCs are still based on microtubule binder payloads, the recent success of topoisomerase I inhibitors has revitalized interest in the identification of novel agents overcoming present limitations in the field including narrow therapeutic window and chemoresistance. The success of DNA binders as payload for ADCs has been very limited, up to now, due, among other factors, to high hydrophobicity and planar chemical structures resulting in most cases in ADCs with a strong tendency to aggregate, poor plasma stability, and limited therapeutic index. Some of these molecules, however, continue to be of interest due to their favorable properties in terms of cytotoxic potency even in chemoresistant settings, bystander and immunogenic cell death effects, and known combinability with approved drugs. We critically evaluated several clinically tested ADCs containing DNA binders, focusing on payload physicochemical properties, cytotoxic potency, and obtained clinical results. Our analysis suggests that further exploration of certain chemical classes, specifically anthracyclines and duocarmycins, based on the optimization of physicochemical parameters, reduction of cytotoxic potency, and careful design of targeting molecules is warranted. This approach will possibly result in a novel generation of payloads overcoming the limitations of clinically validated ADCs.
Collapse
|
Review |
1 |
|
20
|
Morcos A, Jung Y, Fuller RN, Bertucci A, Nguyen A, Zhang Q, Emge T, Boyle KE, Wall NR, Vazquez M. Seco- Duocarmycin SA in Aggressive Glioblastoma Cell Lines. Int J Mol Sci 2025; 26:2766. [PMID: 40141405 PMCID: PMC11943345 DOI: 10.3390/ijms26062766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is among the most lethal primary brain tumors and is characterized by significant cellular heterogeneity and resistance to conventional therapies. This study investigates the efficacy of seco-duocarmycin SA (seco-DSA), a novel DNA alkylating agent. Initial investigations using a colony formation assay revealed that seco-DSA exhibits remarkable potential with IC50 values lower than its natural DSA counterpart. Cell viability assay indicated that LN18 cells showed a markedly greater sensitivity to DSA than T98G cells. Furthermore, seco-DSA achieved its full cytotoxic effect within 8 h of drug incubation in GBM cell lines. Although seco-DSA induced a concentration-dependent increase in apoptotic cell death, the extent of apoptosis did not fully account for the observed decrease in cell viability. Instead, seco-DSA treatment resulted in significant cell cycle arrest in S and G2/M phases. These findings suggest that seco-DSA's cytotoxicity in GBM cells is primarily due to its ability to disrupt cell cycle progression, though the precise mechanisms of action remain to be fully established, and further research is needed. Proteomic analysis of treated cells also indicates dysregulation of proteins involved in senescence, apoptosis, and DNA repair, alluding to seco-DSA-induced arrest as a major mechanism of GBM disruption. Data are available via ProteomeXchange with the dataset identifier "PXD061023". Our reports promote the future exploration of seco-DSA's therapeutic potential, representing a critical step toward developing a more targeted and effective treatment for GBM.
Collapse
|
research-article |
1 |
|