Ale-Ebrahim M, Rahmani R, Faryabi K, Mohammadifar N, Mortazavi P, Karkhaneh L. Atheroprotective and hepatoprotective effects of trans-chalcone through modification of
eNOS/AMPK/KLF-2 pathway and regulation of COX-2, Ang-II, and PDGF mRNA expression in NMRI mice fed HCD.
Mol Biol Rep 2022;
49:3433-3443. [PMID:
35190927 DOI:
10.1007/s11033-022-07174-x]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND
The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD.
METHODS AND RESULTS
Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections.
CONCLUSION
Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.
Collapse