1
|
Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5:1207-1213.e2. [PMID: 17916548 PMCID: PMC2276978 DOI: 10.1016/j.cgh.2007.06.012] [Citation(s) in RCA: 710] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Accurate detection of hepatic fibrosis is crucial for assessing prognosis and candidacy for treatment in patients with chronic liver disease. Magnetic resonance (MR) elastography, a technique for quantitatively assessing the mechanical properties of soft tissues, has been shown previously to have potential for noninvasively detecting liver fibrosis. The goal of this work was to obtain preliminary estimates of the sensitivity and specificity of the technique in diagnosing liver fibrosis, and to assess its potential for identifying patients who potentially can avoid a biopsy procedure. METHODS MR elastography was performed in 35 normal volunteers and 50 patients with chronic liver disease. MR imaging measurements of hepatic fat to water ratios were obtained to assess the potential for fat infiltration to affect stiffness-based detection of fibrosis. RESULTS Liver stiffness increased systematically with fibrosis stage. Receiver operating curve analysis showed that, with a shear stiffness cut-off value of 2.93 kilopascals, the predicted sensitivity and specificity for detecting all grades of liver fibrosis is 98% and 99%, respectively. Receiver operating curve analysis also provided evidence that MR elastography can discriminate between patients with moderate and severe fibrosis (grades 2-4) and those with mild fibrosis (sensitivity, 86%; specificity, 85%). Hepatic stiffness does not appear to be influenced by the degree of steatosis. CONCLUSIONS MR elastography is a safe, noninvasive technique with excellent diagnostic accuracy for assessing hepatic fibrosis. Based on the high negative predictive value of MR elastography, an initial clinical application may be to triage patients who are under consideration for biopsy examination to assess possible hepatic fibrosis.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
710 |
2
|
Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG, Castera L, Choi BI, Chou YH, Cosgrove D, Dietrich CF, Ding H, Amy D, Farrokh A, Ferraioli G, Filice C, Friedrich-Rust M, Nakashima K, Schafer F, Sporea I, Suzuki S, Wilson S, Kudo M. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1126-1147. [PMID: 25805059 DOI: 10.1016/j.ultrasmedbio.2015.03.009] [Citation(s) in RCA: 637] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conventional diagnostic ultrasound images of the anatomy (as opposed to blood flow) reveal differences in the acoustic properties of soft tissues (mainly echogenicity but also, to some extent, attenuation), whereas ultrasound-based elasticity images are able to reveal the differences in the elastic properties of soft tissues (e.g., elasticity and viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities but may have different mechanical properties that can be used to clearly visualize normal anatomy and delineate pathologic lesions. Typically, all elasticity measurement and imaging methods introduce a mechanical excitation and monitor the resulting tissue response. Some of the most widely available commercial elasticity imaging methods are 'quasi-static' and use external tissue compression to generate images of the resulting tissue strain (or deformation). In addition, many manufacturers now provide shear wave imaging and measurement methods, which deliver stiffness images based upon the shear wave propagation speed. The goal of this review is to describe the fundamental physics and the associated terminology underlying these technologies. We have included a questions and answers section, an extensive appendix, and a glossary of terms in this manuscript. We have also endeavored to ensure that the terminology and descriptions, although not identical, are broadly compatible across the WFUMB and EFSUMB sets of guidelines on elastography (Bamber et al. 2013; Cosgrove et al. 2013).
Collapse
|
Review |
10 |
637 |
3
|
Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 2008; 121:3794-802. [PMID: 18957515 PMCID: PMC2740334 DOI: 10.1242/jcs.029678] [Citation(s) in RCA: 636] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibrotic rigidification following a myocardial infarct is known to impair cardiac output, and it is also known that cardiomyocytes on rigid culture substrates show a progressive loss of rhythmic beating. Here, isolated embryonic cardiomyocytes cultured on a series of flexible substrates show that matrices that mimic the elasticity of the developing myocardial microenvironment are optimal for transmitting contractile work to the matrix and for promoting actomyosin striation and 1-Hz beating. On hard matrices that mechanically mimic a post-infarct fibrotic scar, cells overstrain themselves, lack striated myofibrils and stop beating; on very soft matrices, cells preserve contractile beating for days in culture but do very little work. Optimal matrix leads to a strain match between cell and matrix, and suggests dynamic differences in intracellular protein structures. A 'cysteine shotgun' method of labeling the in situ proteome reveals differences in assembly or conformation of several abundant cytoskeletal proteins, including vimentin, filamin and myosin. Combined with recent results, which show that stem cell differentiation is also highly sensitive to matrix elasticity, the methods and analyses might be useful in the culture and assessment of cardiogenesis of both embryonic stem cells and induced pluripotent stem cells. The results described here also highlight the need for greater attention to fibrosis and mechanical microenvironments in cell therapy and development.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
636 |
4
|
Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS NANO 2015; 9:3169-77. [PMID: 25715979 DOI: 10.1021/acsnano.5b00147] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The impact of physical and chemical modifications of nanoparticles on their biological function has been systemically investigated and exploited to improve their circulation and targeting. However, the impact of nanoparticles' flexibility (i.e., elastic modulus) on their function has been explored to a far lesser extent, and the potential benefits of tuning nanoparticle elasticity are not clear. Here, we describe a method to synthesize polyethylene glycol (PEG)-based hydrogel nanoparticles of uniform size (200 nm) with elastic moduli ranging from 0.255 to 3000 kPa. These particles are used to investigate the role of particle elasticity on key functions including blood circulation time, biodistribution, antibody-mediated targeting, endocytosis, and phagocytosis. Our results demonstrate that softer nanoparticles (10 kPa) offer enhanced circulation and subsequently enhanced targeting compared to harder nanoparticles (3000 kPa) in vivo. Furthermore, in vitro experiments show that softer nanoparticles exhibit significantly reduced cellular uptake in immune cells (J774 macrophages), endothelial cells (bEnd.3), and cancer cells (4T1). Tuning nanoparticle elasticity potentially offers a method to improve the biological fate of nanoparticles by offering enhanced circulation, reduced immune system uptake, and improved targeting.
Collapse
|
|
10 |
451 |
5
|
Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR, Ehman RL. Magnetic resonance elastography of the brain. Neuroimage 2008; 39:231-7. [PMID: 17913514 PMCID: PMC2387120 DOI: 10.1016/j.neuroimage.2007.08.030] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/10/2007] [Accepted: 08/10/2007] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to obtain normative data using magnetic resonance elastography (MRE) (a) to obtain estimates of the shear modulus of human cerebral tissue in vivo and (b) to assess a possible age dependence of the shear modulus of cerebral tissue in healthy adult volunteers. MR elastography studies were performed on tissue-simulating gelatin phantoms and 25 healthy adult volunteers. The data were analyzed using spatiotemporal filters and a local frequency estimating algorithm. Statistical analysis was performed using a paired t-test. The mean shear stiffness of cerebral white matter was 13.6 kPa (95% CI 12.3 to 14.8 kPa); while that of gray matter was lower at 5.22 kPa (95% CI 4.76 to 5.66 kPa). The difference was statistically significant (p<0.0001).
Collapse
|
research-article |
17 |
288 |
6
|
Abstract
Ecologists seek general explanations for the dramatic variation in species abundances in space and time. An increasingly popular solution is to predict species distributions, dynamics, and responses to environmental change based on easily measured anatomical and morphological traits. Trait-based approaches assume that simple functional traits influence fitness and life history evolution, but rigorous tests of this assumption are lacking, because they require quantitative information about the full lifecycles of many species representing different life histories. Here, we link a global traits database with empirical matrix population models for 222 species and report strong relationships between functional traits and plant life histories. Species with large seeds, long-lived leaves, or dense wood have slow life histories, with mean fitness (i.e., population growth rates) more strongly influenced by survival than by growth or fecundity, compared with fast life history species with small seeds, short-lived leaves, or soft wood. In contrast to measures of demographic contributions to fitness based on whole lifecycles, analyses focused on raw demographic rates may underestimate the strength of association between traits and mean fitness. Our results help establish the physiological basis for plant life history evolution and show the potential for trait-based approaches in population dynamics.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
266 |
7
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
research-article |
14 |
255 |
8
|
Palmeri ML, Wang MH, Rouze NC, Abdelmalek MF, Guy CD, Moser B, Diehl AM, Nightingale KR. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 2011; 55:666-672. [PMID: 21256907 PMCID: PMC3092839 DOI: 10.1016/j.jhep.2010.12.019] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease in developed countries, may progress to nonalcoholic steatohepatitis (NASH) in a minority of people. Those with NASH are at increased risk for cirrhosis and hepatocellular carcinoma. The potential risk and economic burden of utilizing liver biopsy to stage NAFLD in an overwhelmingly large at-risk population are enormous; thus, the discovery of sensitive, inexpensive, and reliable noninvasive diagnostic modalities is essential for population-based screening. METHODS Acoustic Radiation Force Impulse (ARFI) shear wave imaging, a noninvasive method of assessing tissue stiffness, was used to evaluate liver fibrosis in 172 patients diagnosed with NAFLD. Liver shear stiffness measures in three different imaging locations were reconstructed and compared to the histologic features of NAFLD and AST-to-platelet ratio indices (APRI). RESULTS Reconstructed shear stiffnesses were not associated with ballooned hepatocytes (p=0.11), inflammation (p=0.69), nor imaging location (p=0.11). Using a predictive shear stiffness threshold of 4.24kPa, shear stiffness distinguished low (fibrosis stage 0-2) from high (fibrosis stage 3-4) fibrosis stages with a sensitivity of 90% and a specificity of 90% (AUC of 0.90). Shear stiffness had a mild correlation with APRI (R(2)=0.22). BMI>40kg/m(2) was not a limiting factor for ARFI imaging, and no correlation was noted between BMI and shear stiffness (R(2)=0.05). CONCLUSIONS ARFI imaging is a promising imaging modality for assessing the presence or absence of advanced fibrosis in patients with obesity-related liver disease.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
248 |
9
|
Guan H, Cheng Z, Wang X. Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents. ACS NANO 2018; 12:10365-10373. [PMID: 30272949 DOI: 10.1021/acsnano.8b05763] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aerogels derived from nanocellulose have emerged as attractive absorbents for cleaning up oil spills and organic pollutants due to their lightweight, exceptional absorption capacity, and sustainability. However, the majority of the nanocellulose aerogels based on the bottom-up fabrication process still lack sufficient mechanical robustness because of their disordered architecture with randomly assembled cellulose nanofibrils, which is an obstacle to their practical application as oil absorbents. Herein, we report an effective strategy to create anisotropic cellulose-based wood sponges with a special spring-like lamellar structure directly from natural balsa wood. The selective removal of lignin and hemicelluloses via chemical treatment broke the thin cell walls of natural wood, leading to a lamellar structure with wave-like stacked layers upon freeze-drying. A subsequent silylation reaction allowed the growth of polysiloxane coatings on the skeleton surface. The resulting silylated wood sponge exhibited high mechanical compressibility (reversible compression of 60%) and elastic recovery (∼99% height retention after 100 cycles at 40% strain). The wood sponge showed excellent oil/water absorption selectivity with a high oil absorption capacity of 41 g g-1. Moreover, the absorbed oils can be recovered by simple mechanical squeezing, and the porous sponge maintained a high oil-absorption capacity upon multiple squeezing-absorption cycles, displaying excellent recyclability. Taking advantage of the unidirectional liquid transport of the porous sponge, an oil-collecting device was successfully designed to continuously separate contaminants from water. Such an easy, low-cost, and scalable top-down approach holds great potential for developing effective and reusable oil absorbents for oil/water separation.
Collapse
|
|
7 |
224 |
10
|
Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao CX. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS NANO 2019; 13:7410-7424. [PMID: 31287659 DOI: 10.1021/acsnano.9b03924] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The physicochemical properties of nanoparticles play critical roles in regulating nano-bio interactions. Whereas the effects of the size, shape, and surface charge of nanoparticles on their biological performances have been extensively investigated, the roles of nanoparticle mechanical properties in drug delivery, which have only been recognized recently, remain the least explored. This review article provides an overview of the impacts of nanoparticle mechanical properties on cancer drug delivery, including (1) basic terminologies of the mechanical properties of nanoparticles and techniques for characterizing these properties; (2) current methods for fabricating nanoparticles with tunable mechanical properties; (3) in vitro and in vivo studies that highlight key biological performances of stiff and soft nanoparticles, including blood circulation, tumor or tissue targeting, tumor penetration, and cancer cell internalization, with a special emphasis on the underlying mechanisms that control those complicated nano-bio interactions at the cellular, tissue, and organ levels. The interesting research and findings discussed in this review article will offer the research community a better understanding of how this research field evolved during the past years and provide some general guidance on how to design and explore the effects of nanoparticle mechanical properties on nano-bio interactions. These fundamental understandings, will in turn, improve our ability to design better nanoparticles for enhanced drug delivery.
Collapse
|
Review |
6 |
221 |
11
|
Stein JS, Koffarnus MN, Snider SE, Quisenberry AJ, Bickel WK. Identification and management of nonsystematic purchase task data: Toward best practice. Exp Clin Psychopharmacol 2015; 23:377-86. [PMID: 26147181 PMCID: PMC4579007 DOI: 10.1037/pha0000020] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental assessments of demand allow the examination of economic phenomena relevant to the etiology, maintenance, and treatment of addiction and other pathologies (e.g., obesity). Although such assessments have historically been resource intensive, development and use of purchase tasks-in which participants purchase 1 or more hypothetical or real commodities across a range of prices-have made data collection more practical and have increased the rate of scientific discovery. However, extraneous sources of variability occasionally produce nonsystematic demand data, in which price exerts either no or inconsistent effects on the purchases of individual participants. Such data increase measurement error, can often not be interpreted in light of research aims, and likely obscure effects of the variable(s) under investigation. Using data from 494 participants, we introduce and evaluate an algorithm (derived from prior methods) for identifying nonsystematic demand data, wherein individual participants' demand functions are judged against 2 general, empirically based assumptions: (a) global, price-dependent reduction in consumption and (b) consistency in purchasing across prices. We also introduce guidelines for handling nonsystematic data, noting some conditions in which excluding such data from primary analyses may be appropriate and others in which doing so may bias conclusions. Adoption of the methods presented here may serve to unify the research literature and facilitate discovery.
Collapse
|
research-article |
10 |
202 |
12
|
Cabrera Escobar MA, Veerman JL, Tollman SM, Bertram MY, Hofman KJ. Evidence that a tax on sugar sweetened beverages reduces the obesity rate: a meta-analysis. BMC Public Health 2013; 13:1072. [PMID: 24225016 PMCID: PMC3840583 DOI: 10.1186/1471-2458-13-1072] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Excess intake of sugar sweetened beverages (SSBs) has been shown to result in weight gain. To address the growing epidemic of obesity, one option is to combine programmes that target individual behaviour change with a fiscal policy such as excise tax on SSBs. This study evaluates the literature on SSB taxes or price increases, and their potential impact on consumption levels, obesity, overweight and body mass index (BMI). The possibility of switching to alternative drinks is also considered. METHODS The following databases were used: Pubmed/Medline, The Cochrane Database of Systematic Reviews, Google Scholar, Econlit, National Bureau of Economics Research (NBER), Research Papers in Economics (RePEc). Articles published between January 2000 and January 2013, which reported changes in diet or BMI, overweight and/or obesity due to a tax on, or price change of, SSBs were included. RESULTS Nine articles met the criteria for the meta-analysis. Six were from the USA and one each from Mexico, Brazil and France. All showed negative own-price elasticity, which means that higher prices are associated with a lower demand for SSBs. Pooled own price-elasticity was -1.299 (95% CI: -1.089 - -1.509). Four articles reported cross-price elasticities, three from the USA and one from Mexico; higher prices for SSBs were associated with an increased demand for alternative beverages such as fruit juice (0.388, 95% CI: 0.009 - 0.767) and milk (0.129, 95% CI: -0.085 - 0.342), and a reduced demand for diet drinks (-0.423, 95% CI: -0.628 - -1.219). Six articles from the USA showed that a higher price could also lead to a decrease in BMI, and decrease the prevalence of overweight and obesity. CONCLUSIONS Taxing SSBs may reduce obesity. Future research should estimate price elasticities in low- and middle-income countries and identify potential health gains and the wider impact on jobs, monetary savings to the health sector, implementation costs and government revenue. Context-specific cost-effectiveness studies would allow policy makers to weigh these factors.
Collapse
|
Meta-Analysis |
12 |
192 |
13
|
Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999; 146:631-44. [PMID: 10444071 PMCID: PMC2150553 DOI: 10.1083/jcb.146.3.631] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/1999] [Accepted: 07/08/1999] [Indexed: 11/22/2022] Open
Abstract
In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment. We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.
Collapse
|
research-article |
26 |
188 |
14
|
Cocciolone AJ, Hawes JZ, Staiculescu MC, Johnson EO, Murshed M, Wagenseil JE. Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Heart Circ Physiol 2018; 315:H189-H205. [PMID: 29631368 DOI: 10.1152/ajpheart.00087.2018] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large, elastic arteries are composed of cells and a specialized extracellular matrix that provides reversible elasticity and strength. Elastin is the matrix protein responsible for this reversible elasticity that reduces the workload on the heart and dampens pulsatile flow in distal arteries. Here, we summarize the elastin protein biochemistry, self-association behavior, cross-linking process, and multistep elastic fiber assembly that provide large arteries with their unique mechanical properties. We present measures of passive arterial mechanics that depend on elastic fiber amounts and integrity such as the Windkessel effect, structural and material stiffness, and energy storage. We discuss supravalvular aortic stenosis and autosomal dominant cutis laxa-1, which are genetic disorders caused by mutations in the elastin gene. We present mouse models of supravalvular aortic stenosis, autosomal dominant cutis laxa-1, and graded elastin amounts that have been invaluable for understanding the role of elastin in arterial mechanics and cardiovascular disease. We summarize acquired diseases associated with elastic fiber defects, including hypertension and arterial stiffness, diabetes, obesity, atherosclerosis, calcification, and aneurysms and dissections. We mention animal models that have helped delineate the role of elastic fiber defects in these acquired diseases. We briefly summarize challenges and recent advances in generating functional elastic fibers in tissue-engineered arteries. We conclude with suggestions for future research and opportunities for therapeutic intervention in genetic and acquired elastinopathies.
Collapse
|
Review |
7 |
187 |
15
|
Lin DC, Shreiber DI, Dimitriadis EK, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol 2009; 8:345-58. [PMID: 18979205 PMCID: PMC3615644 DOI: 10.1007/s10237-008-0139-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
The lack of practicable nonlinear elastic contact models frequently compels the inappropriate use of Hertzian models in analyzing indentation data and likely contributes to inconsistencies associated with the results of biological atomic force microscopy measurements. We derived and validated with the aid of the finite element method force-indentation relations based on a number of hyperelastic strain energy functions. The models were applied to existing data from indentation, using microspheres as indenters, of synthetic rubber-like gels, native mouse cartilage tissue, and engineered cartilage. For the biological tissues, the Fung and single-term Ogden models achieved the best fits of the data while all tested hyperelastic models produced good fits for the synthetic gels. The Hertz model proved to be acceptable for the synthetic gels at small deformations (strain < 0.05 for the samples tested), but not for the biological tissues. Although this finding supports the generally accepted view that many soft materials can be assumed to be linear elastic at small deformations, the nonlinear models facilitate analysis of intrinsically nonlinear tissues and large-strain indentation behavior.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
176 |
16
|
Annabi N, Shin SR, Tamayol A, Miscuglio M, Afshar M, Assmann A, Mostafalu P, Sun JY, Mithieux S, Cheung L, Tang X(S, Weiss AS, Khademhosseini A. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:40-9. [PMID: 26551969 PMCID: PMC4863466 DOI: 10.1002/adma.201503255] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/30/2015] [Indexed: 04/14/2023]
Abstract
A highly elastic hybrid hydrogel of methacryloyl-substituted recombinant human tropoelastin (MeTro) and graphene oxide (GO) nanoparticles are developed. The synergistic effect of these two materials significantly enhances both ultimate strain (250%), reversible rotation (9700°), and the fracture energy (38.8 ± 0.8 J m(-2) ) in the hybrid network. Furthermore, improved electrical signal propagation and subsequent contraction of the muscles connected by hybrid hydrogels are observed in ex vivo tests.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
176 |
17
|
Li Z, Zhu YL, Niu W, Yang X, Jiang Z, Lu ZY, Liu X, Sun J. Healable and Recyclable Elastomers with Record-High Mechanical Robustness, Unprecedented Crack Tolerance, and Superhigh Elastic Restorability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101498. [PMID: 34062022 DOI: 10.1002/adma.202101498] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Spider silk is one of the most robust natural materials, which has extremely high strength in combination with great toughness and good elasticity. Inspired by spider silk but beyond it, a healable and recyclable supramolecular elastomer, possessing superhigh true stress at break (1.21 GPa) and ultrahigh toughness (390.2 MJ m-3 ), which are, respectively, comparable to and ≈2.4 times higher than those of typical spider silk, is developed. The elastomer has the highest tensile strength (ultimate engineering stress, 75.6 MPa) ever recorded for polymeric elastomers, rendering it the strongest and toughest healable elastomer thus far. The hyper-robust elastomer exhibits superb crack tolerance with unprecedentedly high fracture energy (215.2 kJ m-2 ) that even exceeds that of metals and alloys, and superhigh elastic restorability allowing dimensional recovery from elongation over 12 times. These extraordinary mechanical performances mainly originate from the meticulously engineered hydrogen-bonding segments, consisting of multiple acylsemicarbazide and urethane moieties linked with flexible alicyclic hexatomic spacers. Such hydrogen-bonding segments, incorporated between extensible polymer chains, aggregate to form geometrically confined hydrogen-bond arrays resembling those in spider silk. The hydrogen-bond arrays act as firm but reversible crosslinks and sacrificial bonds for enormous energy dissipation, conferring exceptional mechanical robustness, healability, and recyclability on the elastomer.
Collapse
|
|
4 |
174 |
18
|
Wentzcovitch RM, Tsuchiya T, Tsuchiya J. MgSiO3 postperovskite at D'' conditions. Proc Natl Acad Sci U S A 2006; 103:543-6. [PMID: 16407135 PMCID: PMC1334645 DOI: 10.1073/pnas.0506879103] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Indexed: 11/18/2022] Open
Abstract
The postperovskite transition in MgSiO(3) at conditions similar to those expected at the D'' discontinuity of Earth's lower mantle offers a paradigm for interpreting the properties of this region. Despite consistent experimental and theoretical predictions of this phase transformation, the complexity of the D'' region raises questions about its geophysical significance. Here we report the thermoelastic properties of Cmcm postperovskite at appropriate conditions and evidences of its presence in the lowermost mantle. These are (i) the jumps in shear and longitudinal velocities similar to those observed in certain places of the D'' discontinuity and (ii) the anticorrelation between shear and bulk velocity anomalies as detected within the D'' region. In addition, the increase in shear modulus across the phase transition provides a possible explanation for the reported discrepancy between the calculated shear modulus of postperovskite free aggregates and the seismological counterpart in the lowermost mantle.
Collapse
|
research-article |
19 |
157 |
19
|
Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions. AJR Am J Roentgenol 2015; 205:33-40. [PMID: 25905762 DOI: 10.2214/ajr.15.14553] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The purpose of the article is to review the diagnostic performance of ultra-sound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
155 |
20
|
Tytell ED, Hsu CY, Williams TL, Cohen AH, Fauci LJ. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc Natl Acad Sci U S A 2010; 107:19832-7. [PMID: 21037110 PMCID: PMC2993357 DOI: 10.1073/pnas.1011564107] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
147 |
21
|
Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques. AJR Am J Roentgenol 2015; 205:22-32. [PMID: 25905647 PMCID: PMC4819982 DOI: 10.2214/ajr.15.14552] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The purpose of this article is to provide an overview of ultrasound and MR elastography, including a glossary of relevant terminology, a classification of elastography techniques, and a discussion of their respective strengths and limitations. CONCLUSION Elastography is an emerging technique for the noninvasive assessment of mechanical tissue properties. These techniques report metrics related to tissue stiffness, such as shear-wave speed, magnitude of the complex shear modulus, and the Young modulus.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
143 |
22
|
Pazmiño Betancourt BA, Hanakata PZ, Starr FW, Douglas JF. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc Natl Acad Sci U S A 2015; 112:2966-71. [PMID: 25713371 PMCID: PMC4364219 DOI: 10.1073/pnas.1418654112] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computations on a model coarse-grained polymer melt, with and without nanoparticle additives, and for supported polymer films with smooth or rough surfaces, allowing for substantial variation of the glass transition temperature and the fragility of glass formation. We find quantitative relations between emergent elasticity, the average local volume accessible for particle motion, and the growth of collective motion in cooled liquids. Surprisingly, we find that each of these models of glass formation can equally well describe the relaxation data for all of the systems that we simulate. In this way, we uncover some unity in our understanding of glass-forming materials from perspectives formerly considered as distinct.
Collapse
|
research-article |
10 |
139 |
23
|
Urbina EM, Kimball TR, McCoy CE, Khoury PR, Daniels SR, Dolan LM. Youth with obesity and obesity-related type 2 diabetes mellitus demonstrate abnormalities in carotid structure and function. Circulation 2009; 119:2913-9. [PMID: 19470890 PMCID: PMC2741387 DOI: 10.1161/circulationaha.108.830380] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Adults with obesity or type 2 diabetes mellitus (T2DM) are at higher risk for stroke and myocardial infarction. Increased carotid intima-media thickness (cIMT) and stiffness are associated with these adverse outcomes. We compared carotid arteries in youth who were lean, were obese, or had T2DM. METHODS AND RESULTS Carotid ultrasound for cIMT measurement was performed, the Young elastic modulus and beta stiffness index were calculated, and anthropometric and laboratory values and blood pressure were measured in 182 lean, 136 obese, and 128 T2DM youth (aged 10 to 24 years). Mean differences were evaluated by ANOVA. Independent determinants of cIMT, Young elastic modulus, and beta stiffness index were determined with general linear models. Cardiovascular risk factors worsened from lean to obese to T2DM groups. T2DM subjects had greater cIMT than that in lean and obese subjects for the common carotid artery and bulb. For the internal carotid artery, cIMT measurements in both obese and T2DM groups were thicker than in the lean group. The carotid arteries were stiffer in obese and T2DM groups than in the lean group. Determinants of cIMT were group, group x age interaction, sex, and systolic blood pressure for the common carotid artery (r2=0.17); age, race, and systolic blood pressure for the bulb (r2=0.16); and age, race, sex, systolic blood pressure, and total cholesterol for the internal carotid artery (r2=0.21). Age, systolic blood pressure, and diastolic blood pressure were determinants of all measures of carotid stiffness, with sex adding to the Young elastic modulus (r2=0.23), and body mass index Z score, group, and group x age interaction contributing to the beta stiffness index (r2=0.31; all P<0.0001). CONCLUSIONS Youth with obesity and T2DM have abnormalities in carotid thickness and stiffness that are only partially explained by traditional cardiovascular risk factors. These vascular changes should alert healthcare practitioners to address cardiovascular risk factors early to prevent an increase in the incidence of stroke and myocardial infarction.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
139 |
24
|
Abstract
Numerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate--a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis. By modulating substrate stiffness, we obtain fine control of droplet position on soft, flat substrates. Unlike other control mechanisms, droplet durotaxis works without imposing chemical, thermal, electrical, or topographical gradients. We show that droplet durotaxis can be used to create large-scale droplet patterns and is potentially useful for many applications, such as microfluidics, thermal control, and microfabrication.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
126 |
25
|
Hung KC, Tseng CS, Hsu SH. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 2014; 3:1578-87. [PMID: 24729580 DOI: 10.1002/adhm.201400018] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Indexed: 01/26/2023]
Abstract
Biodegradable materials that can undergo degradation in vivo are commonly employed to manufacture tissue engineering scaffolds, by techniques including the customized 3D printing. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. So far, there is no investigation on water-based 3D printing for synthetic materials. In this study, the water dispersion of elastic and biodegradable polyurethane (PU) nanoparticles is synthesized, which is further employed to fabricate scaffolds by 3D printing using polyethylene oxide (PEO) as a viscosity enhancer. The surface morphology, degradation rate, and mechanical properties of the water-based 3D-printed PU scaffolds are evaluated and compared with those of polylactic-co-glycolic acid (PLGA) scaffolds made from the solution in organic solvent. These scaffolds are seeded with chondrocytes for evaluation of their potential as cartilage scaffolds. Chondrocytes in 3D-printed PU scaffolds have excellent seeding efficiency, proliferation, and matrix production. Since PU is a category of versatile materials, the aqueous 3D printing process developed in this study is a platform technology that can be used to fabricate devices for biomedical applications.
Collapse
|
|
11 |
126 |