1
|
Gu C, Chen Y, Zhang Z, Xue S, Sun S, Zhang K, Zhong C, Zhang H, Pan Y, Lv Y, Yang Y, Li F, Zhang S, Huang F, Ma Y. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3443-8. [PMID: 23696222 DOI: 10.1002/adma.201300839] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/29/2013] [Indexed: 05/19/2023]
Abstract
Film-like conjugated microporous polymers (CMPs) are fabricated by the novel strategy of carbazole-based electropolymerization. The CMP film storing a mass of counterions acting as an anode interlayer provides a significant power-conversion efficiency of 7.56% in polymer solar cells and 20.7 cd A(-1) in polymer light-emitting diodes, demonstrating its universality and potential as an electrode interlayer in organic electronics.
Collapse
|
|
12 |
137 |
2
|
Crapnell RD, Hudson A, Foster CW, Eersels K, Grinsven BV, Cleij TJ, Banks CE, Peeters M. Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1204. [PMID: 30857285 PMCID: PMC6427210 DOI: 10.3390/s19051204] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023]
Abstract
The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes.
Collapse
|
Review |
6 |
110 |
3
|
Chen S, Chen X, Zhang L, Gao J, Ma Q. Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5430-5436. [PMID: 28098973 DOI: 10.1021/acsami.6b12455] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, a facilely prepared electrochemiluminescence (ECL) biosensor was developed for Escherichia coli O157:H7 quantitative detection based on a polydopamine (PDA) surface imprinted polymer (SIP) and nitrogen-doped graphene quantum dots (N-GQDs). N-GQDs with a high quantum yield of 43.2% were synthesized. The uniform PDA SIP film for E. coli O157:H7 was established successfully with a facile route. The dopamine and target bacteria were electropolymerized directly on the electrode. After removal of the E. coli O157:H7 template, the established PDA SIP can selectively recognize E. coli O157:H7. Accordingly, E. coli O157:H7 polyclonal antibody (pAb) was labeled with N-GQDs. The bioconjugation of SIP-E. coli O157:H7/pAb-N-GQDs can generate intensive ECL irradiation with K2S2O8. As a result, E. coli O157:H7 was detected with the ECL sensing system. Under optimal conditions, the linear relationships between the ECL intensity and E. coli O157:H7 concentration were obtained from 101 colony-forming units (CFU) mL-1 to 107 CFU mL-1 with a limit of detection of 8 CFU mL-1. The biosensor based on this SIP film was applied in water sample detection successfully. The N-GQD-based ECL analytical method for E. coli O157:H7 was reported for the first time. The sensing system had high selectivity to the target analyte, provided new opportunities for use, and increased the rate of disease diagnosis and treatment and the prevention of pathogens.
Collapse
|
|
8 |
106 |
4
|
Qi D, Liu Z, Liu Y, Jiang Y, Leow WR, Pal M, Pan S, Yang H, Wang Y, Zhang X, Yu J, Li B, Yu Z, Wang W, Chen X. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702800. [PMID: 28869690 DOI: 10.1002/adma.201702800] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Polymeric microelectrode arrays (MEAs) are emerging as a new generation of biointegrated microelectrodes to transduce original electrochemical signals in living tissues to external electrical circuits, and vice versa. So far, the challenge of stretchable polymeric MEAs lies in the competition between high stretchability and good electrode-substrate adhesion. The larger the stretchability, the easier the delamination of electrodes from the substrate due to the mismatch in their Young's modulus. In this work, polypyrrole (PPy) electrode materials are designed, with PPy nanowires integrated on the high conductive PPy electrode arrays. By utilizing this electrode material, for the first time, stretchable polymeric MEAs are fabricated with both high stretchability (≈100%) and good electrode-substrate adhesion (1.9 MPa). In addition, low Young's modulus (450 kPa), excellent recycling stability (10 000 cycles of stretch), and high conductivity of the MEAs are also achieved. As a proof of concept, the as-prepared polymeric MEAs are successfully used for conformally recording the electrocorticograph signals from rats in normal and epileptic states, respectively. Further, these polymeric MEAs are also successful in stimulating the ischiadic nerve of the rat. This strategy provides a new perspective to the highly stretchable and mechanically stable polymeric MEAs, which are vital for compliant neural electrodes.
Collapse
|
|
8 |
95 |
5
|
Voltammetric Behaviour of Sulfamethoxazole on Electropolymerized-Molecularly Imprinted Overoxidized Polypyrrole. SENSORS 2008; 8:8463-8478. [PMID: 27873996 PMCID: PMC3791027 DOI: 10.3390/s8128463] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/07/2008] [Accepted: 12/18/2008] [Indexed: 11/16/2022]
Abstract
In this work, preparation of a molecularly imprinted polymer (MIP) film and its recognition properties for sulfamethoxazole were investigated. The overoxidized polypyrrole (OPPy) film was prepared by the cyclic voltammetric deposition of pyrrole (Py) in the presence of supporting electrolyte (tetrabutylammonium perchlorate-TBAP) with and without a template molecule (sulfamethoxazole) on a pencil graphite electrode (PGE). The voltammetric behaviour of sulfamethoxazole on imprinted and non-imprinted (NIP) films was investigated by differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions prepared in different ratio of acetonitrile-water binary mixture, between the pH 1.5 and 7.0. The effect of the acetonitrile-water ratio and pH, monomer and template concentrations, electropolymerization cycles on the performance of the MIP electrode was investigated and optimized. The MIP electrode exhibited the best reproducibility and highest sensitivity. The results showed that changing acetonitrile-water ratio and pH of BR buffer solution changes the oxidation peak current values. The highest anodic signal of sulfamethoxazole was obtained in BR buffer solution prepared in 50% (v/v) acetonitrile-water at pH 2.5. The calibration curve for sulfamethoxazole at MIP electrode has linear region for a concentration range of 25.10-3 to 0.75 mM (R2=0.9993). The detection limit of sulfamethoxazole was found as 3.59.10-4 mM (S/N=3). The same method was also applied to determination of sulfamethoxazole in commercial pharmaceutical samples. Method precision (RSD<1%) and recoveries (>87%) were satisfactory. The proposed method is simple and quick. The polypyrrole (PPy) electrodes have low response time, good mechanical stability and are disposable simple to construct.
Collapse
|
Journal Article |
17 |
94 |
6
|
Wei S, Choudhury S, Xu J, Nath P, Tu Z, Archer LA. Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605512. [PMID: 28112842 DOI: 10.1002/adma.201605512] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/21/2016] [Indexed: 06/06/2023]
Abstract
A sodium metal anode protected by an ion-rich polymeric membrane exhibits enhanced stability and high-Columbic efficiency cycling. Formed in situ via electropolymerization of functional imidazolium-type ionic liquid monomers, the polymer membrane protects the metal against parasitic reactions with electrolyte and, for fundamental reasons, inhibits dendrite formation and growth. The effectiveness of the membrane is demonstrated using direct visualization of sodium electrodeposition.
Collapse
|
|
8 |
87 |
7
|
Friebe C, Hager MD, Winter A, Schubert US. Metal-containing polymers via electropolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:332-345. [PMID: 22184013 DOI: 10.1002/adma.201103420] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 05/31/2023]
Abstract
Electropolymerization represents a suitable and well-established approach for the assembly of polymer structures, in particular with regard to the formation of thin, insoluble films. Utilization of monomers that are functionalized with metal complex units allows the combination of structural and functional benefits of polymers and metal moieties. Since a broad range of both electropolymerizable monomers and metal complexes are available, various structures and, thus, applications are possible. Recent developments in the field of synthesis and potential applications of metal-functionalized polymers obtained via electropolymerization are presented, highlighting the significant advances in this field of research.
Collapse
|
Review |
13 |
85 |
8
|
Wang TC, Hod I, Audu CO, Vermeulen NA, Nguyen ST, Farha OK, Hupp JT. Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12584-12591. [PMID: 28319365 DOI: 10.1021/acsami.6b16834] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the design and synthesis of a metal-organic framework (MOF)-polythiophene composite that has comparable electronic conductivity to reported conductive 3-D MOFs, but with display and retention of high porosity, including mesoporosity. A robust zirconium MOF, NU-1000, was rendered electronically conductive by first incorporating, via solvent-assisted ligand incorporation (SALI), a carefully designed pentathiophene derivative at a density of one pentamer per hexa-zirconium node. Using a cast film of the intermediate composite (termed pentaSALI) on conductive glass, the incorporated oligothiophene was electrochemically polymerized to yield the conductive composite, Epoly. Depending on the doping level of the polythiophene in the composite, it can be tuned from an insulating state to a semiconduting state with conductivity of 1.3 × 10-7 (S cm-1), which is comparable to values reported for 3-D conductive MOFs. The porosity of the thin-film MOF-polythiophene composite was assessed using decane vapor uptake as determined by quartz crystal microgravimetry (QCM). The results indicate a porosity (pore volume) for Epoly essentially identical to that of bulk pentaSALI, and ∼74% of that of unmodified NU-1000. PentaSALI, and by inference Epoly, displays both micro- and mesoporosity, and features a BET surface area of nearly 1,600 m2·g-1, i.e., substantially larger than yet reported for any other electronically conductive MOF.
Collapse
|
|
8 |
70 |
9
|
Ashford DL, Sherman BD, Binstead RA, Templeton JL, Meyer TJ. Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting. Angew Chem Int Ed Engl 2015; 54:4778-81. [PMID: 25707676 DOI: 10.1002/anie.201410944] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/15/2014] [Indexed: 11/10/2022]
Abstract
The use of electropolymerization to prepare electrocatalytically and photocatalytically active electrodes for water oxidation is described. Electropolymerization of the catalyst Ru(II)(bda)(4-vinylpyridine)2 (bda=2,2'-bipyridine-6,6'-dicarboxylate) on planar electrodes results in films containing semirigid polymer networks. In these films there is a change in the water oxidation mechanism compared to the solution analogue from bimolecular to single-site. Electro-assembly construction of a chromophore-catalyst structure on mesoporous, nanoparticle TiO2 films provides the basis for a dye-sensitized photoelectrosynthesis cell (DSPEC) for sustained water splitting in a pH 7 phosphate buffer solution. Photogenerated oxygen was measured in real-time by use of a two-electrode cell design.
Collapse
|
Journal Article |
10 |
70 |
10
|
Cai J, Huang J, Ge M, Iocozzia J, Lin Z, Zhang KQ, Lai Y. Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO 2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28296083 DOI: 10.1002/smll.201604240] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/27/2017] [Indexed: 05/05/2023]
Abstract
Inspired by mussel-adhesion phenomena in nature, polydopamine (PDA) coatings are a promising route to multifunctional platforms for decorating various materials. The typical self-polymerization process of dopamine is time-consuming and the coatings of PDA are not reusable. Herein, a reusable and time-saving strategy for the electrochemical polymerization of dopamine (EPD) is reported. The PDA layer is deposited on vertically aligned TiO2 nanotube arrays (NTAs). Owing to the abundant catechol and amine groups in the PDA layer, uniform Pt nanoparticles (NPs) are deposited onto the TiO2 NTAs and can effectively prevent the recombination of electron-hole pairs generated from photo-electrocatalysis and transfer the captured electrons to participate in the photo-electrocatalytic reaction process. Compared with pristine TiO2 NTAs, the as-prepared Pt@TiO2 NTA composites exhibit surface-enhanced Raman scattering sensitivity for detecting rhodamine 6G and display excellent UV-assisted self-cleaning ability, and also show promise as a nonenzymatic glucose biosensor. Furthermore, the mussel-inspired electropolymerization strategy and the fast EPD-reduced nanoparticle decorating process presented herein can be readily extended to various functional substrates, such as conductive glass, metallic oxides, and semiconductors. It is the adaptation of the established PDA system for a selective, robust, and generalizable sensing system that is the emphasis of this work.
Collapse
|
|
8 |
67 |
11
|
Dağcı K, Alanyalıoğlu M. Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2713-2722. [PMID: 26757200 DOI: 10.1021/acsami.5b10973] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A flexible and free-standing graphene-based hybrid paper was successfully fabricated by successive applications of vacuum filtration and electropolymerization. First, a suspension including graphene oxide (GO) and silver nanoparticles (AgNPs) was prepared, and GO/AgNPs paper was obtained by vacuum-filtration of this suspension through a membrane. This GO/AgNPs paper was transformed to rGO/AgNPs paper by using both chemical reduction with HI and thermal annealing procedures. rGO/AgNPs/poly(PyY) hybrid paper electrode was formed by electropolymerization of Pyronin Y (PyY) on rGO/AgNPs paper electrode from a PyY monomer-containing (pH 1.0) solution. Structural, chemical, and morphological characterization of this hybrid paper was carried out by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, infrared spectroscopy, UV-vis absorption spectroscopy, four-point probe conductivity measurement, and cyclic voltammetry techniques. Electrooxidation of nitrite on rGO/AgNPs/poly(PyY) hybrid paper electrode has been achieved at 860 mV with a linear range of 0.1-1000 μM, sensitivity of 13.5 μAμM(-1)cm(-2), and a detection limit of 0.012 μM. Amperometry studies have shown that the hybrid paper electrode is suitable for amperometric determination of nitrite in both standard laboratory samples and real samples. Moreover, this paper electrode selectively detects nitrite even in the presence of 100-fold common ions and exhibits an excellent operational stability and good flexibility.
Collapse
|
|
9 |
58 |
12
|
Palma-Cando A, Scherf U. Electrogenerated thin films of microporous polymer networks with remarkably increased electrochemical response to nitroaromatic analytes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11127-11133. [PMID: 25946727 DOI: 10.1021/acsami.5b02233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thin films of microporous polymer networks (MPNs) have been generated by electrochemical polymerization of a series of multifunctional carbazole-based monomers. The microporous films show high Brunauer-Emmett-Teller (BET) surface areas up to 1300 m2 g(-1) as directly measured by krypton sorption experiments. A correlation between the number of polymerizable carbazole units of the monomer and the resulting surface area is observed. Electrochemical sensing experiments with 1,3,5-trinitrobenzene as prototypical nitroaromatic analyte demonstrate an up to 180 times increased current response of MPN-modified glassy carbon electrodes in relation to the nonmodified electrode. The phenomenon probably involves intermolecular interactions between the electron-poor nitroaromatic analytes and the electron-rich, high surface area microporous deposits, with the electrochemical reduction at the MPN-modified electrodes being an adsorption-controlled process for low scan rates. We expect a high application potential of such MPN-modified electrodes for boosting the sensitivity of electrochemical sensor devices.
Collapse
|
|
10 |
58 |
13
|
Bai S, Hu Q, Zeng Q, Wang M, Wang L. Variations in Surface Morphologies, Properties, and Electrochemical Responses to Nitro-Analyte by Controlled Electropolymerization of Thiophene Derivatives. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11319-11327. [PMID: 29551063 DOI: 10.1021/acsami.8b00554] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we reported the fabrication of conjugated microporous polymer (CMP) films based on three thiophene derivatives using a one-step templateless electropolymerization in dichloromethane without any surfactants. The formation of hydrophilic or hydrophobic films with specific morphology is a comprehensive result of the polymerization sites in each monomer, the polymerization rate, and the gas bubble produced in situ during the polymerization process, which can be easily controlled by the experimental conditions, such as electropolymerization method, electrolyte, and "trace water" existed in the organic solvent. Moreover, the electrochemical reduction of metronidazole as a prototypical nitro-analyte at CMP-modified glassy carbon (GC) electrode shows remarkably increased current response compared to nonmodified GC electrode. The process is demonstrated to be typical adsorption-controlled, and the hydrophobic surface of the electrode coating film is more favorable to the absorption and thus reduction of metronidazole. This work provides a new perspective and a breakthrough point for the application of CMPs in the electrochemical sensors.
Collapse
|
|
7 |
48 |
14
|
Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21028-21038. [PMID: 27463123 DOI: 10.1021/acsami.6b05440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results.
Collapse
|
|
9 |
39 |
15
|
Elfadil D, Lamaoui A, Della Pelle F, Amine A, Compagnone D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021; 26:4607. [PMID: 34361757 PMCID: PMC8347609 DOI: 10.3390/molecules26154607] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.
Collapse
|
Review |
4 |
38 |
16
|
Devasurendra AM, Zhang C, Young JA, Tillekeratne LMV, Anderson JL, Kirchhoff JR. Electropolymerized Pyrrole-Based Conductive Polymeric Ionic Liquids and Their Application for Solid-Phase Microextraction. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24955-24963. [PMID: 28675034 DOI: 10.1021/acsami.7b05793] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pyrrole was covalently bonded to 1-methyl and 1-benzylimidazolium ionic liquids (ILs) via an N-substituted alkyl linkage to prepare electropolymerizable IL monomers with excellent thermal stability. The methylimidazolium IL, [pyrrole-C6MIm]+, was then electropolymerized on macro- and microelectrode materials to form conductive polymeric IL (CPIL)-modified surfaces. Electrochemical characterization of a 1.6 mm diameter Pt disk electrode modified with poly[pyrrole-C6MIm]+ demonstrated a selective uptake for an anionic redox probe while rejecting a cationic redox probe. Furthermore, electropolymerization of [pyrrole-C6MIm]+ doped with single-walled carbon nanotubes (SWNT) on 125 μm platinum wires produced 42 μm thick poly[pyrrole-C6MIm]+/SWNT films compared to 17 μm in the absence of SWNT and 5 μm for the previously reported poly[thiophene-C6MIm]+ coatings. The poly[pyrrole-C6MIm]+/SWNT films were prepared with reproducible thicknesses as well as thermal properties sufficient for high-temperature applications, such as solid-phase microextraction (SPME) with gas chromatographic analysis. The utilization of the CPIL sorbent materials in SPME experiments provided excellent extraction efficiencies and selectivity toward organic aromatic analytes. The CPIL sorbent coatings also yielded outstanding fiber-to-fiber reproducibility on the basis of extraction efficiencies and improved response for a range of analytes relative to commercial 100 μm poly(dimethylsiloxane) fibers when normalized for differences in film thickness. Poly[pyrrole-C6MIm]+ CPIL coatings doped with SWNT are therefore promising new sorbent materials for SPME analyses.
Collapse
|
|
8 |
36 |
17
|
Electrocatalytic Detection of Amitrole on the Multi-Walled Carbon Nanotube - Iron (II) tetra-aminophthalocyanine Platform. SENSORS 2008; 8:5096-5105. [PMID: 27873803 PMCID: PMC3705490 DOI: 10.3390/s8085096] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022]
Abstract
It is shown that iron(II) tetra-aminophthalocyanine complex electropolymerized onto a multi-walled carbon nanotube-modified basal plane pyrolytic graphite electrode greatly enhanced the electrocatalytic detetion of amitrole (a toxic herbicide), resulting in a very low detection limit (0.5 nM) and excellent sensitivity of 8.80±0.44 μA/nM, compared to any known work reported so far. The electrocatalytic detection of amitrole at this electrode occurred at less positive potential (∼0.3 V vs Ag|ACl) and also revealed a typical coupled chemical reaction. The mechanism for this response is proposed. The electrode gave satisfactory selectivity to amitrole in the presence of other potential interfering pesticides in aqueous solutions.
Collapse
|
Journal Article |
17 |
34 |
18
|
Huang Y, Zhu M, Pei Z, Huang Y, Geng H, Zhi C. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2435-40. [PMID: 26741145 DOI: 10.1021/acsami.5b11815] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
Collapse
|
|
9 |
32 |
19
|
Zhou Z, Guo D, Shinde DB, Cao L, Li Z, Li X, Lu D, Lai Z. Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. ACS NANO 2021; 15:11970-11980. [PMID: 34185517 DOI: 10.1021/acsnano.1c03194] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.
Collapse
|
|
4 |
32 |
20
|
Wang PH, Wang TL, Lin WC, Lin HY, Lee MH, Yang CH. Enhanced Supercapacitor Performance Using Electropolymerization of Self-Doped Polyaniline on Carbon Film. NANOMATERIALS 2018; 8:nano8040214. [PMID: 29614748 PMCID: PMC5923544 DOI: 10.3390/nano8040214] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
In this work, we electrochemically deposited self-doped polyanilines (SPANI) on the surface of carbon-nanoparticle (CNP) film, enhancing the superficial faradic reactions in supercapacitors and thus improving their performance. SPANI was electrodeposited on the CNP-film employing electropolymerization of aniline (AN) and o-aminobenzene sulfonic acid (SAN) comonomers in solution. Here, SAN acts in dual roles of a self-doped monomer while it also provides an acidic environment which is suitable for electropolymerization. The performance of SPANI-CNP-based supercapacitors significantly depends upon the mole ratio of AN/SAN. Supercapacitor performance was investigated by using cyclic voltammetry (CV), galvanostatic charge and discharge (GCD), and electrochemical impedance spectroscopy (EIS). The optimal performance of SPANI-CNP-based supercapacitor exists at AN/SAN ratio of 1.0, having the specific capacitance of 273.3 Fg-1 at the charging current density of 0.5 Ag-1.
Collapse
|
Journal Article |
7 |
31 |
21
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
|
Review |
5 |
30 |
22
|
Bekkar F, Bettahar F, Moreno I, Meghabar R, Hamadouche M, Hernáez E, Vilas-Vilela JL, Ruiz-Rubio L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers (Basel) 2020; 12:E2227. [PMID: 32998386 PMCID: PMC7601494 DOI: 10.3390/polym12102227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/09/2023] Open
Abstract
Polycarbazole and its derivatives have been extensively used for the last three decades, although the interest in these materials briefly decreased. However, the increasing demand for conductive polymers for several applications such as light emitting diodes (OLEDs), capacitators or memory devices, among others, has renewed the interest in carbazole-based materials. In this review, the synthetic routes used for the development of carbazole-based polymers have been summarized, reviewing the main synthetic methodologies, namely chemical and electrochemical polymerization. In addition, the applications reported in the last decade for carbazole derivatives are analysed. The emergence of flexible and wearable electronic devices as a part of the internet of the things could be an important driving force to renew the interest on carbazole-based materials, being conductive polymers capable to respond adequately to requirement of these devices.
Collapse
|
Review |
5 |
29 |
23
|
Guo D, Li X, Wahyudi W, Li C, Emwas AH, Hedhili MN, Li Y, Lai Z. Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li-S Batteries. ACS NANO 2020; 14:17163-17173. [PMID: 33166116 DOI: 10.1021/acsnano.0c06944] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A popular practice in Li-S battery research is to utilize highly nanostructured hosts and excessive electrolytes to enhance sulfur-specific capacities. However, from the perspective of commercialization, this is a less meaningful approach in the pursuit of high-energy Li-S batteries. Herein, we report the fabrication of a nanoskin composed of a conjugated microporous polymer by electropolymerization to create a closed system for a sulfur cathode. The nanoskin is ultrathin, conductive, continuous, and contains uniform micropores of approximately 0.8 nm. The nanoskin sealing prevents the shuttling of polysulfide species without using the absorption effect, enhances the utilization of electrolytes, and allows a fast transport of lithium ions. As a result, the Li-S batteries comprising the cathode with nanoskin exhibit superior stability (∼86% capacity retention) under lean electrolyte conditions and a prolonged lifetime (1000 cycles). At a low electrolyte/sulfur ratio of 4 μL mg-1, the designed cathode delivered a practical energy density of over 300 Wh kg-1 without using any sophisticated hosts.
Collapse
|
|
5 |
29 |
24
|
Memon MA, Bai W, Sun J, Imran M, Phulpoto SN, Yan S, Huang Y, Geng J. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11711-11719. [PMID: 27110720 DOI: 10.1021/acsami.6b01879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.
Collapse
|
|
9 |
27 |
25
|
Cho KH, Shin DH, Oh J, An JH, Lee JS, Jang J. Multidimensional Conductive Nanofilm-Based Flexible Aptasensor for Ultrasensitive and Selective HBsAg Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28412-28419. [PMID: 30080381 DOI: 10.1021/acsami.8b09918] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatitis B virus (HBV) infection is a major worldwide health issue causing serious liver diseases, including liver cirrhosis and hepatocellular carcinoma. Monitoring the serum hepatitis B surface antigen (HBsAg) level is pivotal to the diagnosis of HBV infection. In this study, we describe multidimensional conductive nanofilm (MCNF)-based field-effect transistor (FET) aptasensor for HBsAg detection. The MCNF, composed of vertically oriented carboxylic polypyrrole nanowires (CPPyNW) and graphene layer, is formed using electropolymerization of pyrrole on the graphene surface and following acid treatment. The amine-functionalized HBsAg-binding aptamers are then immobilized on the CPPyNW surface through covalent bonding formation (i.e., amide group). The prepared aptasensor presents highly sensitive to HBsAg as low as 10 aM among interfering biomolecules with various deformations. Moreover, the MCNF-based aptasensor has great potential for practical application in the noninvasive real-time diagnosis because of its improved sensing ability to the human serum and artificial saliva.
Collapse
|
|
7 |
26 |