1
|
Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J. The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine. Nutrients 2019; 11:E1912. [PMID: 31443220 PMCID: PMC6722777 DOI: 10.3390/nu11081912] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The main goal of this study was to assess the acute effects of the intake of 9 and 11 mg/kg/ body mass (b.m.) of caffeine (CAF) on maximal strength and muscle endurance in athletes habituated to caffeine. METHODS The study included 16 healthy strength-trained male athletes (age = 24.2 ± 4.2 years, body mass = 79.5 ± 8.5 kg, body mass index (BMI) = 24.5 ± 1.9, bench press 1RM = 118.3 ± 14.5 kg). All participants were habitual caffeine consumers (4.9 ± 1.1 mg/kg/b.m., 411 ± 136 mg of caffeine per day). This study had a randomized, crossover, double-blind design, where each participant performed three experimental sessions after ingesting either a placebo (PLAC) or 9 mg/kg/b.m. (CAF-9) and 11 mg/kg/b.m. (CAF-11) of caffeine. In each experimental session, participants underwent a 1RM strength test and a muscle endurance test in the bench press exercise at 50% 1RM while power output and bar velocity were measured in each test. RESULTS A one-way repeated measures ANOVA revealed a significant difference between PLAC, CAF-9, and CAF-11 groups in peak velocity (PV) (p = 0.04). Post-hoc tests showed a significant decrease for PV (p = 0.04) in the CAF-11 compared to the PLAC group. No other changes were found in the 1RM or muscle endurance tests with the ingestion of caffeine. CONCLUSION The results of the present study indicate that high acute doses of CAF (9 and 11 mg/kg/b.m.) did not improve muscle strength nor muscle endurance in athletes habituated to this substance.
Collapse
|
Randomized Controlled Trial |
6 |
43 |
2
|
Martins GL, Guilherme JPLF, Ferreira LHB, de Souza-Junior TP, Lancha AH. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front Sports Act Living 2020; 2:574854. [PMID: 33345139 PMCID: PMC7739593 DOI: 10.3389/fspor.2020.574854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Caffeine is one of the most studied supplements in the world. Studies correlate its use to increased exercise performance in endurance activities, as well as its possible ergogenic effects for both intermittent and strength activities. Recent findings show that caffeine may increase or decrease exercise performance. These antagonist responses may occur even when using the same dosage and for individuals with the same characteristics, making it challenging to explain caffeine's impact and applicability. This review article provides an analytic look at studies involving the use of caffeine for human physical performance, and addresses factors that could influence the ergogenic effects of caffeine on different proposed activities. These factors subdivide into caffeine effects, daily habits, physiological factors, and genetic factors. Each variable has been focused on by discussions to research related to caffeine. A better understanding and control of these variables should be considered in future research into personalized nutritional strategies.
Collapse
|
Review |
5 |
32 |
3
|
Wilk M, Filip A, Krzysztofik M, Gepfert M, Zajac A, Del Coso J. Acute Caffeine Intake Enhances Mean Power Output and Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine. Nutrients 2020; 12:E406. [PMID: 32033103 PMCID: PMC7071256 DOI: 10.3390/nu12020406] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The main objective of the current investigation was to evaluate the effects of caffeine on power output and bar velocity during an explosive bench press throw in athletes habituated to caffeine. METHODS Twelve resistance trained individuals habituated to caffeine ingestion participated in a randomized double-blind experimental design. Each participant performed three identical experimental sessions 60 min after the intake of a placebo, 3, and 6 mg/kg/b.m. of caffeine. In each experimental session, the participants performed 5 sets of 2 repetitions of the bench press throw (with a load equivalent to 30% repetition maximum (RM), measured in a familiarization trial) on a Smith machine, while bar velocity and power output were registered with a rotatory encoder. RESULTS In comparison to the placebo, the intake of caffeine increased mean bar velocity during 5 sets of the bench press throw (1.37 ± 0.05 vs. 1.41 ± 0.05 and 1.41 ± 0.06 m/s for placebo, 3, and 6 mg/kg/b.m., respectively; p < 0.01), as well as mean power output (545 ± 117 vs. 562 ± 118 and 560 ± 107 W; p < 0.01). However, caffeine was not effective at increasing peak velocity (p = 0.09) nor peak power output (p = 0.07) during the explosive exercise. CONCLUSION The acute doses of caffeine before resistance exercise may increase mean power output and mean bar velocity during the bench press throw training session in a group of habitual caffeine users. Thus, caffeine prior to ballistic exercises enhances performance during a power-specific resistance training session.
Collapse
|
Randomized Controlled Trial |
5 |
25 |
4
|
Burke BI, Travis SK, Gentles JA, Sato K, Lang HM, Bazyler CD. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients 2021; 13:nu13082496. [PMID: 34444656 PMCID: PMC8401934 DOI: 10.3390/nu13082496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeine's effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0-200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p < 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes.
Collapse
|
Randomized Controlled Trial |
4 |
14 |
5
|
Acute Effects of High Doses of Caffeine on Bar Velocity during the Bench Press Throw in Athletes Habituated to Caffeine: A Randomized, Double-Blind and Crossover Study. J Clin Med 2021; 10:jcm10194380. [PMID: 34640398 PMCID: PMC8509759 DOI: 10.3390/jcm10194380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic intake of caffeine may produce a reduction in the potential performance benefits obtained with the acute intake of this substance. For this reason, athletes habituated to caffeine often use high doses of caffeine (≥9 mg/kg) to overcome tolerance to caffeine ergogenicity due to chronic intake. The main objective of the current investigation was to evaluate the effects of high caffeine doses on bar velocity during an explosive bench press throw in athletes habituated to caffeine. Twelve resistance-trained athletes, with a moderate-to-high chronic intake of caffeine (~5.3 mg/kg/day) participated in a randomized double-blind and randomized experimental design. Each participant performed three identical experimental sessions 60 min after the intake of a placebo (PLAC) or after the intake of 9 (CAF-9) or 12 mg/kg (CAF-12) of caffeine. In each experimental session, the athletes performed five sets of two repetitions of the bench press throw exercise with a load equivalent to 30% of their one-repetition maximum. In comparison to PLAC, the intake of caffeine increased peak and mean velocity (p < 0.01) during the five sets of the bench press throw exercise. There were no significant differences in peak and mean bar velocity between the two doses of caffeine (CAF-9 vs. CAF-12; p = 0.91, = 0.96, respectively). The ingestion of high doses of caffeine was effective in producing an increase in mean and peak bar velocity during the bench press throw in a group of habitual caffeine users. However, using CAF-12 did not offer additional benefits for performance with respect to CAF-9.
Collapse
|
|
4 |
9 |
6
|
β-Alanine Supplementation's Improvement of High-Intensity Game Activities in Water Polo. Int J Sports Physiol Perform 2018; 13:1208-1214. [PMID: 29651862 DOI: 10.1123/ijspp.2017-0636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To investigate whether 4 wk of β-alanine supplementation improves total distance covered, distance covered and time spent in different speed zones, and sprint numbers during a simulated water polo game. DESIGN Double-blind, parallel, and placebo controlled. A total of 11 male water polo players participated in the study, divided randomly into 2 homogeneous groups (placebo and β-alanine). METHODS The participants performed a simulated water polo game before and after the supplementation period (4 wk). They received 4.8 g·d-1 of dextrose or β-alanine on the first 10 d and 6.4 g·d-1 on the final 18 d. RESULTS Only the β-alanine group presented a significant improvement in total sprint numbers compared with the presupplementation moment (PRE = 7.8 [5.2] arbitrary units [a.u.]; POST = 20.2 [7.8] a.u.; P = .002). Furthermore, β-alanine supplementation presented a likely beneficial effect in improving total distance covered (83%) and total time spent (81%) in speed zone 4 (ie, speed ≥ 1.8 m·s-1). There was no significant interaction effect (group × time) for any variable. CONCLUSIONS Four weeks of β-alanine supplementation slightly improved sprint numbers and had a likely beneficial effect on improving distance covered and time spent in speed zone 4 in a simulated water polo game.
Collapse
|
Randomized Controlled Trial |
7 |
6 |
7
|
Ferragut C, Gonzalo-Encabo P, López-Samanes Á, Valadés D, Pérez-López A. Effect of Acute Sodium Bicarbonate and Caffeine Coingestion on Repeated-Sprint Performance in Recreationally Trained Individuals: A Randomized Controlled Trial. Int J Sports Physiol Perform 2024; 19:427-434. [PMID: 38335952 DOI: 10.1123/ijspp.2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION The acute and isolated ingestion of sodium bicarbonate (NaHCO3) and caffeine (CAF) improves performance and delays fatigue in high-intensity tasks. However, it remains to be elucidated if the coingestion of both dietary supplements stimulates a summative ergogenic effect. This study aimed to examine the effect of the acute coingestion of NaHCO3 and CAF on repeated-sprint performance. METHODS Twenty-five trained participants (age: 23.3 [4.0] y; sex [female/male]: 12/13; body mass: 69.6 [12.5] kg) participated in a randomized, double-blind, placebo (PLA) -controlled, crossover study. Participants were assigned to 4 conditions: (1) NaHCO3 + CAF, (2) NaHCO3, (3) CAF, or (4) PLA. Thus, they ingested 0.3 g/kg of NaHCO3, 3 mg/kg of CAF, or PLA. Then, participants performed 4 Wingate tests (Wt), consisting of a 30-second all-out sprint against an individualized resisted load, interspersed by a 1.5-minute rest period between sprints. RESULTS Peak (Wpeak) and mean (Wmean) power output revealed a supplement and sprint interaction effect (P = .009 and P = .049, respectively). Compared with PLA, NaHCO3 + CAF and NaHCO3 increased Wpeak performance in Wt 3 (3%, P = .021) and Wt 4 (4.5%, P = .047), while NaHCO3 supplementation increased mean power performance in Wt 3 (4.2%, P = .001). In Wt 1, CAF increased Wpeak (3.2%, P = .054) and reduced time to Wpeak (-8.5%; P = .008). Plasma lactate showed a supplement plus sprint interaction (P < .001) when NaHCO3 was compared with CAF (13%, P = .031) and PLA (23%, P = .021). CONCLUSION To summarize, although the isolated ingestion of CAF and NaHCO3 improved repeated-sprint performance, the coingestion of both supplements did not stimulate a synergic ergogenic effect.
Collapse
|
Randomized Controlled Trial |
1 |
|
8
|
Montalvo-Alonso JJ, Ferragut C, del Val-Manzano M, Valadés D, Roberts J, Pérez-López A. Sex Differences in the Ergogenic Response of Acute Caffeine Intake on Muscular Strength, Power and Endurance Performance in Resistance-Trained Individuals: A Randomized Controlled Trial. Nutrients 2024; 16:1760. [PMID: 38892692 PMCID: PMC11174740 DOI: 10.3390/nu16111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND This study assessed the impact of acute caffeine intake on muscular strength, power, and endurance performance between resistance-trained male and female individuals according to load in upper- and lower-body exercises. METHODS Here, 76 resistance-trained individuals (38 females, 38 males) participated in a study comparing caffeine and a placebo. Each received either 3 mg/kg of caffeine or a placebo 60 min before tests measuring muscular strength and power through bench press and back squat exercises at different intensities (25%, 50%, 75%, 90% 1RM). Muscular endurance at 65% 1RM was also assessed by performing reps until reaching task failure. RESULTS Compared to placebo, caffeine increased mean, peak and time to reach peak velocity and power output (p < 0.01, ηp2 = 0.242-0.293) in the muscular strength/power test in males and females. This effect was particularly observed in the back squat exercise at 50%, 75% and 90% 1RM (2.5-8.5%, p < 0.05, g = 1.0-2.4). For muscular endurance, caffeine increased the number of repetitions, mean velocity and power output (p < 0.001, ηp2 = 0.177-0.255) in both sexes and exercises (3.0-8.9%, p < 0.05, g = 0.15-0.33). CONCLUSIONS Acute caffeine intake resulted in a similar ergogenic effect on muscular strength, power, and endurance performance in upper- and lower-body exercises for male and female resistance-trained participants.
Collapse
|
Randomized Controlled Trial |
1 |
|
9
|
Gruska N, Sarmento H, Martinho D, Field A, Massart A. Enhancing Performance in Young Athletes: A Systematic Review of Acute Supplementation Effects. Nutrients 2024; 16:4304. [PMID: 39770925 PMCID: PMC11679880 DOI: 10.3390/nu16244304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The increasing popularity of acute supplementation among young athletes is concerning, given the limited scientific evidence to guide recommendations specific to this group. Therefore, the aim of this systematic review was to synthesize the available scientific evidence on the acute effects of supplementation in young athletes to understand the impact on physical and cognitive performance. METHODS Following pre-registration on INPLASY (INPLASY202310017) and according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, systematic searches of three electronic databases (Web of Science, PubMed, and Scopus) were conducted by independent researchers from inception until July 2024. Only original studies in English that examined the acute effects of supplementation on young athletes' physical and/or cognitive performance, specifically when taken on the same day as exercise (before or during), were included. The risk of bias was individually assessed for each study using the revised Cochrane risk of bias tool for randomized trials (RoB 2.0). RESULTS A total of 16 studies were included in the review. A range of ages, participants, sports, and methodological approaches were involved in the studies included in the current review. The studies mainly used carbohydrates, beetroot juice, and sodium citrate, with carbohydrates being the most used acute supplementation. Carbohydrate supplementation enhanced endurance capacity and increased blood glucose, but mixed results were found for anaerobic performance. Mixed results were found for beetroot juice, with one study finding increases in power production. One study used sodium citrate supplementation, with improvements in technical performance observed. CONCLUSIONS Since this review identified only three substances meeting our eligibility criteria, further research is needed to confirm the acute effects of supplements in young athletes and to better understand their benefits and limitations. Carbohydrate supplementation shows strong evidence for enhancing endurance performance, particularly during prolonged activities, while sodium citrate appears to support the preservation of skill performance. In contrast, the effects of beetroot juice are less consistent. Additional research is required to confirm the acute effects of supplements like beetroot juice in young athletes.
Collapse
|
Systematic Review |
1 |
|
10
|
Pérez-López A, Garriga-Alonso L, Montalvo-Alonso JJ, Val-Manzano MD, Valades D, Vila H, Ferragut C. Sex differences in the acute effect of caffeine on repeated sprint performance: A randomized controlled trial. Eur J Sport Sci 2025; 25:e12233. [PMID: 39662990 DOI: 10.1002/ejsc.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to examine sex differences in acute caffeine intake on repeated sprint performance. Fifty-two resistance-trained individuals (age: 24.6 ± 4.5 years and sex (female/male): 26/26) participated in a randomized, triple-blind, cross-over, and placebo-controlled study. Participants ingested 3 mg/kg caffeine or placebo and, after 60 min, performed 4 Wingate tests (Wt), consisting of a 30 s all-out lower-body sprint against an individualized resisted load, with 90 s rest periods between sprints. Mean (Wmean) and peak (Wpeak) power showed an interaction between sprint and supplement (P = 0.038, ηp 2 = 0.095 and P < 0.001, ηp 2 = 0.157, respectively), but only Wpeak reported a supplement and sex interaction (P = 0.049 and ηp 2 = 0.166). Caffeine increased Wmean in Wt3 (3.5%, P = 0.004, and g = 1.059) and Wt4 (3.9%, P = 0.012, and g = 1.091) compared to placebo. Whereas, for Wpeak, caffeine increased Wpeak in the Wt1 (2.9%, P = 0.050 and g = 1.01) and Wt2 (3.2%, P = 0.050, and g = 1.01) in males and in Wt3 (5.2%, P = 0.008, and g = 1.79) and Wt4 (8.1%, P = 0.004, and g = 2.27) in female participants compared to placebo. No statistically significant sex differences were found in time to reach Wpeak, fatigue index. Acute caffeine intake stimulated a similar ergogenic effect on repeated sprint performance in men and women, except in peak power output, where caffeine increased performance during the first sprints in males and the last sprints in female participants.
Collapse
|
Randomized Controlled Trial |
1 |
|