1
|
Harrison SJ, Raubenheimer D, Simpson SJ, Godin JGJ, Bertram SM. Towards a synthesis of frameworks in nutritional ecology: interacting effects of protein, carbohydrate and phosphorus on field cricket fitness. Proc Biol Sci 2015; 281:rspb.2014.0539. [PMID: 25143029 DOI: 10.1098/rspb.2014.0539] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorus has been identified as an important determinant of nutrition-related biological variation. The macronutrients protein (P) and carbohydrates (C), both alone and interactively, are known to affect animal performance. No study, however, has investigated the importance of phosphorus relative to dietary protein or carbohydrates, or the interactive effects of phosphorus with these macronutrients, on fitness-related traits in animals. We used a nutritional geometry framework to address this question in adult field crickets (Gryllus veletis). Our results showed that lifespan, weight gain, acoustic mate signalling and egg production were maximized on diets with different P : C ratios, that phosphorus did not positively affect any of these fitness traits, and that males and females had different optimal macronutrient intake ratios for reproductive performance. When given a choice, crickets selected diets that maximized both lifespan and reproductive performance by preferentially eating diets with low P : C ratios, and females selected diets with a higher P : C ratio than males. Conversely, phosphorus intake was not regulated. Overall, our findings highlight the importance of disentangling the influences of different nutrients, and of quantifying both their individual and interactive effects, on animal fitness traits, so as to gain a more integrative understanding of their nutritional ecology.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
76 |
2
|
Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus. G3-GENES GENOMES GENETICS 2013; 3:225-30. [PMID: 23390599 PMCID: PMC3564983 DOI: 10.1534/g3.112.004341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
25 |
3
|
Pitchers WR, Brooks R, Jennions MD, Tregenza T, Dworkin I, Hunt J. Limited plasticity in the phenotypic variance-covariance matrix for male advertisement calls in the black field cricket, Teleogryllus commodus. J Evol Biol 2013; 26:1060-78. [PMID: 23530814 PMCID: PMC3641675 DOI: 10.1111/jeb.12120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders' equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent study, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance-covariance matrix (P) stability are sparse, and largely focused on morphological traits. Here, we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild-caught crickets from each of the populations and then a second subset after rearing crickets under common-garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high- and low-nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit.
Collapse
|
Comparative Study |
12 |
23 |
4
|
Rayner JG, Aldridge S, Montealegre-Z F, Bailey NW. A silent orchestra: convergent song loss in Hawaiian crickets is repeated, morphologically varied, and widespread. Ecology 2019; 100:e02694. [PMID: 30945280 DOI: 10.1002/ecy.2694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022]
|
Research Support, Non-U.S. Gov't |
6 |
22 |
5
|
Hirtenlehner S, Römer H. Selective phonotaxis of female crickets under natural outdoor conditions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:239-50. [PMID: 24488017 PMCID: PMC3929774 DOI: 10.1007/s00359-014-0881-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 10/27/2022]
Abstract
Acoustic mate choice in insects has been extensively studied under laboratory conditions, using different behavioural paradigms. Ideally, however, mate choice designs should reflect natural conditions, including the physical properties of the transmission channel for the signal. Since little is known about the discrimination ability of females between male song variants under natural conditions, we performed phonotaxis experiments with female field crickets (Gryllus bimaculatus) outdoors, using two-choice decisions based on differences in carrier frequency, sound pressure level, and chirp rate. For all three song parameters, minimum differences necessary for a significant preference between two song models were considerably larger outdoors compared to laboratory conditions. A minimum amplitude difference of 5 dB was required for a significant choice in the field, compared to only 1-2 dB reported for lab-based experiments. Due to the tuned receiver system, differences in carrier frequency equal differences in perceived loudness, and the results on choice for differences in carrier frequency corroborate those in amplitude. Similarly, chirp rate differences of 50 chirps/min were required outdoors compared to only 20 chirps/min in the lab. For predictions about patterns of sexual selection, future studies need to consider the different outcomes of mate choice decisions in lab and field trials.
Collapse
|
research-article |
11 |
21 |
6
|
Adult bacterial exposure increases behavioral variation and drives higher repeatability in field crickets. Behav Ecol Sociobiol 2016; 70:1941-1947. [PMID: 28584393 DOI: 10.1007/s00265-016-2200-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Among-individual differences in behavior are now a widely studied research-focus within the field of behavioral ecology. Furthermore, elements of an animal's internal state, such as energy or fat reserves, and infection status can have large impacts on behaviors. Despite this, we still know little regarding how state may affect behavioral variation. Recent exposure to pathogens may have a particularly large impact on behavioral expression given that it likely activates costly immune pathways, potentially forcing organism to make behavioral tradeoffs. In this study we investigate how recent exposure to a common bacterial pathogen, Serratia marcescens, affects both the mean behavioral expression and the among-individual differences (i.e. variation) in boldness behavior in the field cricket, Gryllus integer. We find that recent pathogen exposure does not affect mean behavioral expression of the treatment groups, but instead affects behavioral variation and repeatability. Specifically, bacterial exposure drove large among-individual variation, resulting in high levels of repeatability in some aspects of boldness (willingness to emerge into a novel environment), but not others (latency to become active in novel environment), compared to non-infected crickets. Interestingly, sham injection resulted in a universal lack of among-individual differences. Our results highlight the sensitivity of among-individual variance and repeatability estimates to ecological and environmental factors that individuals face throughout their lives.
Collapse
|
Journal Article |
9 |
19 |
7
|
Gershman SN. Large Numbers of Matings Give Female Field Crickets a Direct Benefit but not a Genetic Benefit. JOURNAL OF INSECT BEHAVIOR 2010; 23:59-68. [PMID: 20046833 PMCID: PMC2797419 DOI: 10.1007/s10905-009-9195-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/24/2009] [Accepted: 09/24/2009] [Indexed: 05/28/2023]
Abstract
Female crickets can potentially gain both direct and indirect benefits from mating multiple times with different males. Most studies have only examined the effects of small numbers of matings, although female crickets are capable of mating many times. The goal of this paper is to examine the direct and indirect benefits of mating large numbers of times for female reproductive success. In a previous experiment, female Gryllus vocalis were found to gain diminishing direct benefits from mating large numbers of times. In this study I attempt to determine whether mating large numbers of times yields similar diminishing returns on female indirect benefits. Virgin female Gryllus vocalis crickets were assigned to mate five, ten or 15 times with either the same or different males. Females that mated more times gained direct benefits in terms of laying more eggs and more fertilized eggs. Females that mated with different males rather than mating repeatedly with the same male did not have higher offspring hatching success, a result that is contrary to other published results comparing female reproductive success with repeated versus different partners. These results suggest that females that mate large numbers of times fail to gain additional genetic benefits from doing so.
Collapse
|
research-article |
15 |
13 |
8
|
Eavesdropping parasitoids do not cause the evolution of less conspicuous signalling behaviour in a field cricket. Anim Behav 2012; 84:1457-1462. [PMID: 23888083 DOI: 10.1016/j.anbehav.2012.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Males of many species produce conspicuous mating signals to attract females, but these signals can also attract eavesdropping predators and parasites. Males are thus expected to evolve signalling behaviours that balance the sexual selection benefits and the natural selection costs. In the variable field cricket, Gryllus lineaticeps, males sing to attract females, but these songs also attract the lethal parasitoid fly Ormia ochracea. The flies use male crickets as hosts for their larvae, primarily search for hosts during a 2 h period following sunset and prefer the same song types as female crickets. We tested whether males from high-risk populations reduce the risk of parasitism by singing less frequently or by shifting their singing activity to a time of the night when the risk of parasitism is low. We compared male singing activity and its temporal pattern between six high-risk and six low-risk populations that were reared in a common environment. There was no effect of parasitism risk on either total male singing activity or the temporal pattern of male singing activity. Males from high-risk populations thus sang as frequently as males from low-risk populations. These results suggest that sexual selection on male singing behaviour may be substantially stronger in high-risk populations than in low-risk populations. It is possible that other traits may have evolved to reduce parasitism risk without compromising mate attraction.
Collapse
|
|
13 |
11 |
9
|
Boonekamp J, Rodríguez-Muñoz R, Hopwood P, Zuidersma E, Mulder E, Wilson A, Verhulst S, Tregenza T. Telomere length is highly heritable and independent of growth rate manipulated by temperature in field crickets. Mol Ecol 2022; 31:6128-6140. [PMID: 33728719 DOI: 10.1111/mec.15888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/31/2023]
Abstract
Many organisms are capable of growing faster than they do. Restrained growth rate has functionally been explained by negative effects on lifespan of accelerated growth. However, the underlying mechanisms remain elusive. Telomere attrition has been proposed as a causal agent and has been mostly studied in endothermic vertebrates. We established that telomeres exist as chromosomal-ends in a model insect, the field cricket Gryllus campestris, using terminal restriction fragment and Bal 31 methods. Telomeres comprised TTAGGn repeats of 38 kb on average, more than four times longer than the telomeres of human infants. Bal 31 assays confirmed that telomeric repeats were located at the chromosome-ends. We tested whether rapid growth between day 1, day 65, day 85, and day 125 is achieved at the expense of telomere length by comparing nymphs reared at 23°C with their siblings reared at 28°C, which grew three times faster in the initial 65 days. Surprisingly, neither temperature treatment nor age affected average telomere length. Concomitantly, the broad sense heritability of telomere length was remarkably high at ~100%. Despite high heritability, the evolvability (a mean-standardized measure of genetic variance) was low relative to that of body mass. We discuss our findings in the context of telomere evolution. Some important features of vertebrate telomere biology are evident in an insect species dating back to the Triassic. The apparent lack of an effect of growth rate on telomere length is puzzling, suggesting strong telomere length maintenance during the growth phase. Whether such maintenance of telomere length is adaptive remains elusive and requires further study investigating the links with fitness in the wild.
Collapse
|
|
3 |
10 |
10
|
Pitchers WR, Klingenberg CP, Tregenza T, Hunt J, Dworkin I. The potential influence of morphology on the evolutionary divergence of an acoustic signal. J Evol Biol 2014; 27:2163-76. [PMID: 25223712 DOI: 10.1111/jeb.12471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/20/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
Abstract
The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterize the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden-reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
6 |
11
|
Gershman SN, Miller OG, Hamilton IM. Causes and consequences of variation in development time in a field cricket. J Evol Biol 2021; 35:299-310. [PMID: 34882888 DOI: 10.1111/jeb.13971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Variation in development time can affect life-history traits that contribute to fitness. In Gryllus vocalis, a non-diapausing cricket with variable development time, we used a path analysis approach to determine the causative relationships between parental age, offspring development time and offspring life-history traits. Our best-supported path model included both the effects of parental age and offspring development time on offspring morphological traits. This result suggests that offspring traits are influenced by both variation in acquisition of resources and trade-offs between traits. We found that crickets with longer development times became larger adults with better phenoloxidase-based immunity. This is consistent with the hypothesis that crickets must make a trade-off between developing quickly to avoid predation before reproduction and attaining better immunity and a larger adult body size that provides advantages in male-male competition, mate choice and female fecundity. Slower-developing crickets were also more likely to be short-winged (unable to disperse by flight). Parental age has opposing direct and indirect effects on the body size of daughters, but when both the direct and indirect effects of parental age are taken into account, younger parents had smaller sons and daughters. This pattern may be attributable to a parental trade-off between the number and size of eggs produced with younger parents producing more eggs with fewer resources per egg. The relationships between variables in the life-history traits of sons and daughters were similar, suggesting that parental age and development time had similar causative effects on male and female life-history traits.
Collapse
|
|
4 |
1 |
12
|
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J. Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. J Evol Biol 2023; 36:1266-1281. [PMID: 37534753 DOI: 10.1111/jeb.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2023]
Abstract
Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.
Collapse
|
|
2 |
|
13
|
Han CS, Lee B, Moon J. Activity-aggression behavioural syndromes exist in males but not in females of the field cricket Teleogryllus emma. Ecol Evol 2023; 13:e10642. [PMID: 37859828 PMCID: PMC10582681 DOI: 10.1002/ece3.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Previous studies on sex differences in behaviour have largely focused on differences in average behaviours between sexes. However, males and females can diverge not only in average behaviours but also in the direction of behavioural correlations at the individual level (i.e. behavioural syndromes). Behavioural syndromes, with their potential to constrain the independent evolution of behaviours, may play a role in shaping sex-specific responses to selection and contributing to the development of sex differences in behaviour. Despite the pivotal role of behavioural syndromes in the evolution of sexual dimorphism in behaviour, robust empirical evidence of sex differences in behavioural syndromes based on repeated measurements of behaviours is scarce. In this study, we conducted repeated measurements of activity and aggression in male and female field crickets Teleogryllus emma, providing evidence of sex differences in the existence of behavioural syndromes. Males exhibited a significantly positive behavioural syndrome between activity and aggression, whereas females, in contrast, did not show any aggressive behaviour, resulting in the absence of such a syndrome. The sex differences in the existence of the activity-aggression behavioural syndromes in this species could be attributed to differences in selection. Selection favouring more active and aggressive males may have shaped a positive activity-aggression behavioural syndrome in males, whereas the absence of selection favouring female aggression may have resulted in the absence of aggression and the related behavioural syndrome in females. However, given the plasticity of behaviour with changes in age or the environment, further research is needed to explore how sex differences in the existence of activity-aggression behavioural syndromes change across contexts. Furthermore, understanding the genetic underpinning of sex differences in a behavioural syndrome would be pivotal to assess the role of behavioural syndromes in the evolution of sexual dimorphism in behaviours.
Collapse
|
research-article |
2 |
|