1
|
Ni W, Xue Y, Zang X, Li C, Wang H, Yang Z, Yan YM. Fluorine Doped Cagelike Carbon Electrocatalyst: An Insight into the Structure-Enhanced CO Selectivity for CO 2 Reduction at High Overpotential. ACS NANO 2020; 14:2014-2023. [PMID: 32049494 DOI: 10.1021/acsnano.9b08528] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The critical bottleneck of electrocatalytic CO2 reduction reaction (CO2RR) lies in its low efficiency at high overpotential caused by competitive hydrogen evolution. It is challenging to develop an efficient catalyst achieving both high current density and high Faradaic efficiency (FE) for CO2RR. Herein, we synthesized fluorine-doped cagelike porous carbon (F-CPC) by purposely tailoring its structural properties. The optimized F-CPC possesses large surface area with moderate mesopore and abundant micropores as well as high electrical conductivity. When used as catalyst for CO2RR, F-CPC exhibits FE of 88.3% for CO at -1.0 V vs RHE with a current density of 37.5 mA·cm -2. Experimental results and finite element simulations demonstrate that the excellent CO2RR performance of F-CPC at high overpotential should be attributed to its structure-enhanced electrocatalytic process stemming from its cagelike morphology.
Collapse
|
|
5 |
75 |
2
|
Abolhasani MM, Naebe M, Hassanpour Amiri M, Shirvanimoghaddam K, Anwar S, Michels JJ, Asadi K. Hierarchically Structured Porous Piezoelectric Polymer Nanofibers for Energy Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000517. [PMID: 32670767 PMCID: PMC7341085 DOI: 10.1002/advs.202000517] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Hierarchically porous piezoelectric polymer nanofibers are prepared through precise control over the thermodynamics and kinetics of liquid-liquid phase separation of nonsolvent (water) in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) solution. Hierarchy is achieved by fabricating fibers with pores only on the surface of the fiber, or pores only inside the fiber with a closed surface, or pores that are homogeneously distributed in both the volume and surface of the nanofiber. For the fabrication of hierarchically porous nanofibers, guidelines are formulated. A detailed experimental and simulation study of the influence of different porosities on the electrical output of piezoelectric nanogenerators is presented. It is shown that bulk porosity significantly increases the power output of the comprising nanogenerator, whereas surface porosity deteriorates electrical performance. Finite element method simulations attribute the better performance to increased volumetric strain in bulk porous nanofibers.
Collapse
|
research-article |
5 |
27 |
3
|
Kim Y, Kim T, Lee J, Choi YS, Moon J, Park SY, Lee TH, Park HK, Lee SA, Kwon MS, Byun HG, Lee JH, Lee MG, Hong BH, Jang HW. Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004827. [PMID: 33215741 DOI: 10.1002/adma.202004827] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Indexed: 05/22/2023]
Abstract
2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.
Collapse
|
|
4 |
19 |
4
|
Laurence DW, Johnson EL, Hsu MC, Baumwart R, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3346. [PMID: 32362054 PMCID: PMC8039906 DOI: 10.1002/cnm.3346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 05/12/2023]
Abstract
Current clinical assessment of functional tricuspid valve regurgitation relies on metrics quantified from medical imaging modalities. Although these clinical methodologies are generally successful, the lack of detailed information about the mechanical environment of the valve presents inherent challenges for assessing tricuspid valve regurgitation. In the present study, we have developed a finite element-based in silico model of one porcine tricuspid valve (TV) geometry to investigate how various pathological conditions affect the overall biomechanical function of the TV. There were three primary observations from our results. Firstly, the results of the papillary muscle (PM) displacement study scenario indicated more pronounced changes in the TV biomechanical function. Secondly, compared to uniform annulus dilation, nonuniform dilation scenario induced more evident changes in the von Mises stresses (83.8-125.3 kPa vs 65.1-84.0 kPa) and the Green-Lagrange strains (0.52-0.58 vs 0.47-0.53) for the three TV leaflets. Finally, results from the pulmonary hypertension study scenario showed opposite trends compared to the PM displacement and annulus dilation scenarios. Furthermore, various chordae rupture scenarios were simulated, and the results showed that the chordae tendineae attached to the TV anterior and septal leaflets may be more critical to proper TV function. This in silico modeling-based study has provided a deeper insight into the tricuspid valve pathologies that may be useful, with moderate extensions, for guiding clinical decisions. NOVELTY STATEMENT: The novelties of the research are summarized below: A comprehensive in silico pilot study of how isolated functional tricuspid regurgitation pathologies and ruptured chordae tendineae would alter the tricuspid valve function; An extensive analysis of the tricuspid valve function, including mechanical quantities (eg, the von Mises stress and the Green-Lagrange strain) and clinically-relevant geometry metrics (eg, the tenting area and the coaptation height); and A developed computational modeling pipeline that can be extended to evaluate patient-specific tricuspid valve geometries and enhance the current clinical diagnosis and treatment of tricuspid regurgitation.
Collapse
|
research-article |
5 |
15 |
5
|
Prakash A, Bitzek E. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ ' Microstructures. MATERIALS 2017; 10:ma10010088. [PMID: 28772453 PMCID: PMC5344587 DOI: 10.3390/ma10010088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/03/2022]
Abstract
Single-crystal Ni-base superalloys, consisting of a two-phase γ/γ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/γ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ′ particles with planar γ/γ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.
Collapse
|
|
8 |
14 |
6
|
Hrauda N, Zhang J, Wintersberger E, Etzelstorfer T, Mandl B, Stangl J, Carbone D, Holý V, Jovanović V, Biasotto C, Nanver LK, Moers J, Grützmacher D, Bauer G. X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor. NANO LETTERS 2011; 11:2875-2880. [PMID: 21627099 PMCID: PMC3136111 DOI: 10.1021/nl2013289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/20/2011] [Indexed: 05/29/2023]
Abstract
For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.
Collapse
|
rapid-communication |
14 |
13 |
7
|
Pandolfi A, Boschetti F. The influence of the geometry of the porcine cornea on the biomechanical response of inflation tests. Comput Methods Biomech Biomed Engin 2013; 18:64-77. [PMID: 23521091 DOI: 10.1080/10255842.2013.778983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To withstand the high probability of success, the growing diffusion of laser surgery for the correction of visual defects, corneal surgeons are regarding with interest numerical tools able to provide reliable predictions of the intervention outcomes. The main obstacle to the definition of a predictive numerical instrument is the objective difficulty in evaluating the in vivo mechanical properties of the human cornea. In this study, we assess the ability of a parametrised numerical model of the cornea (Pandolfi and Manganiello 2006) to describe individual pressurisation tests on whole porcine corneas once the mechanical parameters of the model have been calibrated over average data. We also aim at estimating the sensitivity of the mechanical response with the variation of basic geometrical parameters, such as the central corneal thickness, the curvature and the in-plane diameter. We conclude that the actual geometry of a cornea has a minor role in the overall mechanical response, and therefore the material properties must be considered carefully and individually in any numerical application. This study makes use of the data obtained from a wide experimental program, where a set of 21 porcine corneas has been fully characterised in terms of mechanical and geometrical properties (Boschetti et al. 2012).
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
10 |
8
|
Chan HF, Collier GJ, Parra-Robles J, Wild JM. Finite element simulations of hyperpolarized gas DWI in micro-CT meshes of acinar airways: validating the cylinder and stretched exponential models of lung microstructural length scales. Magn Reson Med 2021; 86:514-525. [PMID: 33624325 DOI: 10.1002/mrm.28703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE This work assesses the accuracy of the stretched exponential (SEM) and cylinder models of lung microstructural length scales that can be derived from hyperpolarized gas DWI. This was achieved by simulating 3 He and 129 Xe DWI signals within two micro-CT-derived realistic acinar airspace meshes that represent healthy and idiopathic pulmonary fibrosis lungs. METHODS The healthy and idiopathic pulmonary fibrosis acinar airway meshes were derived from segmentations of 3D micro-CT images of excised human lungs and meshed for finite element simulations of the Bloch-Torrey equations. 3 He and 129 Xe multiple b value DWI experiments across a range of diffusion times (3 He Δ = 1.6 ms; 129 Xe Δ = 5 to 20 ms) were simulated in each mesh. Global SEM mean diffusive length scale and cylinder model mean chord length value was derived from each finite element simulation and compared against each mesh's mean linear intercept length, calculated from intercept length measurements within micro-CT segmentation masks. RESULTS The SEM-derived mean diffusive length scale was within ±10% of the mean linear intercept length for simulations with both 3 He (Δ = 1.6 ms) and 129 Xe (Δ = 7 to 13 ms) in the healthy mesh, and with 129 Xe (Δ = 13 to 20 ms) for the idiopathic pulmonary fibrosis mesh, whereas for the cylinder model-derived mean chord length the closest agreement with mean linear intercept length (11.7% and 22.6% difference) was at 129 Xe Δ = 20 ms for both healthy and IPF meshes, respectively. CONCLUSION This work validates the use of the SEM for accurate estimation of acinar dimensions and indicates that the SEM is relatively robust across a range of experimental conditions and acinar length scales.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
7 |
9
|
Gao C, Hasseldine BPJ, Li L, Weaver JC, Li Y. Amplifying Strength, Toughness, and Auxeticity via Wavy Sutural Tessellation in Plant Seedcoats. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800579. [PMID: 30019504 DOI: 10.1002/adma.201800579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Protective armors are widespread in nature and often consist of periodic arrays of tile-like building blocks that articulate with each other through undulating interfaces. To investigate the mechanical consequences of these wavy tessellations, especially in instances where the amplitude of the undulations is near the scale of the constituent tiles as is found in the seedcoats of many plant species, an approach that integrates parametric modeling and finite element simulations with direct mechanical testing on their 3D-printed multi-material structural analogues is presented. Results from these studies demonstrate that these tiled arrays of largely isotropic star-like unit cells exhibit an unusual combination of mechanical properties including auxeticity and mutually amplified strength and toughness which can be systematically tuned by varying the waviness of the sutural tessellation.
Collapse
|
|
7 |
6 |
10
|
Richert C, Huber N. A Review of Experimentally Informed Micromechanical Modeling of Nanoporous Metals: From Structural Descriptors to Predictive Structure-Property Relationships. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3307. [PMID: 32722289 PMCID: PMC7435653 DOI: 10.3390/ma13153307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Nanoporous metals made by dealloying take the form of macroscopic (mm- or cm-sized) porous bodies with a solid fraction of around 30%. The material exhibits a network structure of "ligaments" with an average ligament diameter that can be adjusted between 5 and 500 nm. Current research explores the use of nanoporous metals as functional materials with respect to electrochemical conversion and storage, bioanalytical and biomedical applications, and actuation and sensing. The mechanical behavior of the network structure provides the scope for fundamental research, particularly because of the high complexity originating from the randomness of the structure and the challenges arising from the nanosized ligaments, which can be accessed through an experiment only indirectly via the testing of the macroscopic properties. The strength of nanoscale ligaments increases systematically with decreasing size, and owing to the high surface-to-volume ratio their elastic and plastic properties can be additionally tuned by applying an electric potential. Therefore, nanoporous metals offer themselves as suitable model systems for exploring the structure-property relationships of complex interconnected microstructures as well as the basic mechanisms of the chemo-electro-mechanical coupling at interfaces. The micromechanical modeling of nanoporous metals is a rapidly growing field that strongly benefits from developments in computational methods, high-performance computing, and visualization techniques; it also benefits at the same time through advances in characterization techniques, including nanotomography, 3D image processing, and algorithms for geometrical and topological analysis. The review article collects articles on the structural characterization and micromechanical modeling of nanoporous metals and discusses the acquired understanding in the context of advancements in the experimental discipline. The concluding remarks are given in the form of a summary and an outline of future perspectives.
Collapse
|
Review |
5 |
5 |
11
|
Keleṣ Ö, Barcenas NP, Sprys DH, Bowman KJ. Effect of Porosity on Strength Distribution of Microcrystalline Cellulose. AAPS PharmSciTech 2015; 16:1455-64. [PMID: 26022545 DOI: 10.1208/s12249-015-0325-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022] Open
Abstract
Fracture strength of pharmaceutical compacts varies even for nominally identical samples, which directly affects compaction, comminution, and tablet dosage forms. However, the relationships between porosity and mechanical behavior of compacts are not clear. Here, the effects of porosity on fracture strength and fracture statistics of microcrystalline cellulose compacts were investigated through diametral compression tests. Weibull modulus, a key parameter in Weibull statistics, was observed to decrease with increasing porosity from 17 to 56 vol.%, based on eight sets of compacts at different porosity levels, each set containing ∼ 50 samples, a total of 407 tests. Normal distribution fits better to fracture data for porosity less than 20 vol.%, whereas Weibull distribution is a better fit in the limit of highest porosity. Weibull moduli from 840 unique finite element simulations of isotropic porous materials were compared to experimental Weibull moduli from this research and results on various pharmaceutical materials. Deviations from Weibull statistics are observed. The effect of porosity on fracture strength can be described by a recently proposed micromechanics-based formula.
Collapse
|
|
10 |
5 |
12
|
Zang X, Xue Y, Ni W, Li C, Hu L, Zhang A, Yang Z, Yan YM. Enhanced Electrosorption Ability of Carbon Nanocages as an Advanced Electrode Material for Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2180-2190. [PMID: 31868351 DOI: 10.1021/acsami.9b12744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The structure of an electrode material has an important impact on the performance of a capacitive deionization (CDI) device. However, it is still a challenge to design and synthesize electrode materials with a rational structure based on deep understanding of their structure-dependent CDI performance. Herein, we report the preparation of carbon nanocages (CNCs) with regulated shell thickness and a rich pore structure as an advanced material for high-performance CDI electrodes. The as-prepared CNC has a considerable specific capacitance of 149 F g-1 at a scan rate of 5 mV s-1. When used as CDI electrodes, the CNC shows an outstanding electrosorption ability of 17.5 mg g-1 at 1.4 V at an initial concentration of 250 mg L-1 NaCl solution. Furthermore, the CNC electrode displays high salt adsorption rate and good cyclic stability. Finite element simulations reveal that the superior structure of the CNC substantially promotes the ion transfer rate by shortening ion diffusion paths in the cavity of the electrode material. Also, both inner and outer walls of the CNC provide sufficient active sites for fast adsorption and desorption of salty ions. This work not only demonstrates that the CNC is a potential electrode material for CDI applications but also paves a way to design and prepare high-performance electrode materials based on a new perspective on their structure-performance relationship.
Collapse
|
|
5 |
5 |
13
|
Paci JT, Chapman CT, Lee WK, Odom TW, Schatz GC. Wrinkles in Polytetrafluoroethylene on Polystyrene: Persistence Lengths and the Effect of Nanoinclusions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9079-9088. [PMID: 28252927 DOI: 10.1021/acsami.6b14789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We characterize wrinkling on the surfaces of prestrained polystyrene sheets coated with thin polytetrafluoroethylene skins using a combination of mechanical strain measurements and 3D finite element simulations. The simulations show that wrinkle wavelength increases with skin thickness, in agreement with a well-known continuum model and recent experiments. The wrinkle amplitudes also increase with strain. Nanoinclusions, such as holes and patterned lines, influence wrinkle patterns over limited distances, and these distances are shown to scale with the wrinkle wavelengths. Good agreement between experimental and simulated influence distances is observed. The inclusions provide strain relief, and they behave as if they are attracting adjacent material when the sheets are under strain. The wrinkles have stiffnesses in much the same way as do polymers (but at different length scales), a property that is quantified for polymers using persistence lengths. We show that the concept of persistence length can be useful in characterizing the wrinkle properties that we have observed. However, the calculated persistence lengths do not vary systematically with thickness and strain, as interactions between neighboring wrinkles produce confinement that is analogous to the kinetic confinement of polymers.
Collapse
|
|
8 |
4 |
14
|
Zhou G, Zhang B, Wei L, Zhang H, Galluzzi M, Li J. Spatially Resolved Correlation between Stiffness Increase and Actin Aggregation around Nanofibers Internalized in Living Macrophages. MATERIALS 2020; 13:ma13143235. [PMID: 32708102 PMCID: PMC7412258 DOI: 10.3390/ma13143235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Abstract
Plasticity and functional diversity of macrophages play an important role in resisting pathogens invasion, tumor progression and tissue repair. At present, nanodrug formulations are becoming increasingly important to induce and control the functional diversity of macrophages. In this framework, the internalization process of nanodrugs is co-regulated by a complex interplay of biochemistry, cell physiology and cell mechanics. From a biophysical perspective, little is known about cellular mechanics’ modulation induced by the nanodrug carrier’s internalization. In this study, we used the polylactic-co-glycolic acid (PLGA)–polyethylene glycol (PEG) nanofibers as a model drug carrier, and we investigated their influence on macrophage mechanics. Interestingly, the nanofibers internalized in macrophages induced a local increase of stiffness detected by atomic force microscopy (AFM) nanomechanical investigation. Confocal laser scanning microscopy revealed a thickening of actin filaments around nanofibers during the internalization process. Following geometry and mechanical properties by AFM, indentation experiments are virtualized in a finite element model simulation. It turned out that it is necessary to include an additional actin wrapping layer around nanofiber in order to achieve similar reaction force of AFM experiments, consistent with confocal observation. The quantitative investigation of actin reconfiguration around internalized nanofibers can be exploited to develop novel strategies for drug delivery.
Collapse
|
Journal Article |
5 |
4 |
15
|
Chapman CT, Paci JT, Lee WK, Engel CJ, Odom TW, Schatz GC. Interfacial Effects on Nanoscale Wrinkling in Gold-Covered Polystyrene. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24339-24344. [PMID: 27588822 DOI: 10.1021/acsami.6b08554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoscale wrinkling on the surfaces of polymer-based materials can be precisely controlled by depositing thin metal films of varying thicknesses. The deposition of these films fundamentally alters the mechanical properties of the substrates in ways that are not simply described using traditional continuum mechanical frameworks. In particular, we find, by modeling within a finite element analysis approach, that the very act of depositing a metal film may alter the Young's modulus of the polymer substrate to depths of up to a few hundred nanometers, creating a modified interfacial skin layer. We find that simulated wrinkle patterns reproduce the experimentally observed features only when the modulus of this surface layer varies by more than ∼500 nm and is described using a sigmoidal gradient multiplier.
Collapse
|
|
9 |
4 |
16
|
Ofarim A, Kopp B, Möller T, Martin L, Boneberg J, Leiderer P, Scheer E. Thermo-voltage measurements of atomic contacts at low temperature. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:767-75. [PMID: 27335765 PMCID: PMC4902067 DOI: 10.3762/bjnano.7.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 05/28/2023]
Abstract
We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.
Collapse
|
research-article |
9 |
3 |
17
|
Verch A, Côté AS, Darkins R, Kim YY, van de Locht R, Meldrum FC, Duffy DM, Kröger R. Correlation between anisotropy and lattice distortions in single crystal calcite nanowires grown in confinement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2697-2702. [PMID: 24644031 DOI: 10.1002/smll.201303839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Indexed: 06/03/2023]
Abstract
Growing nanostructures in confinement allows for the control of their shape, size and structure, as required in many technological applications. We investigated the crystal structure and morphology of calcite nanowires, precipitated in the pores of track-etch membranes, by employing transmission electron microscopy and selected area electron diffraction (SAED). The data showed that the nanowires show no preferred growth orientation and that the crystallographic orientation rotated along the length of the nanowire, with lattice rotation angles of several degrees per micrometer. Finite element calculations indicated that the rotation is caused by the anisotropic crystallographic nature of the calcite mineral, the nanoscale diameter of the wires and the confined space provided by the membrane pore. This phenomenon should also be observed in other single crystal nanowires made from anisotropic materials, which could offer the potential of generating nanostructures with tailored optical, electronic and mechanical properties.
Collapse
|
|
11 |
3 |
18
|
Ye H, Gui S, Wang Z, Chen J, Liu Q, Zhang X, Jia P, Tang Y, Yang T, Du C, Geng L, Li H, Dai Q, Tang Y, Zhang L, Yang H, Huang J. In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li 2CO 3 and Li 2O Nanorods. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44479-44487. [PMID: 34516093 DOI: 10.1021/acsami.1c13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solid-electrolyte interface (SEI) is "the most important but least understood (component) in rechargeable Li-ion batteries". The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2CO3 and Li2O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2CO3 and Li2O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2CO3 and Li2O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2CO3 ranges from 192 to 330 MPa, while that of Li2O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries.
Collapse
|
|
4 |
1 |
19
|
Fantaci B, Calvo B, Barraquer R, Picó A, Ariza-Gracia MÁ. Establishing Standardization Guidelines For Finite-Element Optomechanical Simulations of Refractive Laser Surgeries: An Application to Photorefractive Keratectomy. Transl Vis Sci Technol 2024; 13:11. [PMID: 38748408 PMCID: PMC11103740 DOI: 10.1167/tvst.13.5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Computational models can help clinicians plan surgeries by accounting for factors such as mechanical imbalances or testing different surgical techniques beforehand. Different levels of modeling complexity are found in the literature, and it is still not clear what aspects should be included to obtain accurate results in finite-element (FE) corneal models. This work presents a methodology to narrow down minimal requirements of modeling features to report clinical data for a refractive intervention such as PRK. Methods A pipeline to create FE models of a refractive surgery is presented: It tests different geometries, boundary conditions, loading, and mesh size on the optomechanical simulation output. The mechanical model for the corneal tissue accounts for the collagen fiber distribution in human corneas. Both mechanical and optical outcome are analyzed for the different models. Finally, the methodology is applied to five patient-specific models to ensure accuracy. Results To simulate the postsurgical corneal optomechanics, our results suggest that the most precise outcome is obtained with patient-specific models with a 100 µm mesh size, sliding boundary condition at the limbus, and intraocular pressure enforced as a distributed load. Conclusions A methodology for laser surgery simulation has been developed that is able to reproduce the optical target of the laser intervention while also analyzing the mechanical outcome. Translational Relevance The lack of standardization in modeling refractive interventions leads to different simulation strategies, making difficult to compare them against other publications. This work establishes the standardization guidelines to be followed when performing optomechanical simulations of refractive interventions.
Collapse
|
research-article |
1 |
|
20
|
Li X, Feng Z, Zou J, Wu Z, Xu Z, Yang F, Zhu Y, Dai Y. Resistive switching modulation by incorporating thermally enhanced layer in HfO 2-based memristor. NANOTECHNOLOGY 2023; 35:035703. [PMID: 37852218 DOI: 10.1088/1361-6528/ad0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Oxide-based memristors by incorporating thermally enhanced layer (TEL) have showed great potential in electronic devices for high-efficient and high-density neuromorphic computing owing to the improvement of multilevel resistive switching. However, research on the mechanism of resistive switching regulation is still lacking. In this work, based on the method of finite element numerical simulation analysis, a bilayer oxide-based memristor Pt/HfO2(5 nm)/Ta2O5(5 nm)/Pt with the Ta2O5TEL was proposed. The oxygen vacancy concentrates distribution shows that the fracture of conductive filaments (CF) is at the interface where the local temperature is the highest during the reset process. The multilevel resistive switching properties were also obtained by applying different stop voltages. The fracture gap of CF can be enlarged with the increase of the stopping voltage, which is attributed to the heat-gathering ability of the TEL. Moreover, it was found that the fracture position of oxygen CF is dependent on the thickness of TEL, which exhibits a modulation of device RS performance. These results provide a theoretical guidance on the suitability of memristor devices for use in high-density memory and brain-actuated computer systems.
Collapse
|
|
2 |
|
21
|
Qian Z, Zhuang Z, Liu X, Bai H, Ren L, Ren L. Effects of extreme cyclic loading on the cushioning performance of human heel pads under engineering test condition. Front Bioeng Biotechnol 2023; 11:1229976. [PMID: 37929195 PMCID: PMC10623005 DOI: 10.3389/fbioe.2023.1229976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Human heel pads commonly undergo cyclic loading during daily activities. Low cyclic loadings such as daily human walking tend to have less effect on the mechanical properties of heel pads. However, the impact of cyclic loading on cushion performance, a vital biomechanical property of heel pads, under engineering test condition remains unexplored. Herein, dynamic mechanical measurements and finite element (FE) simulations were employed to explore this phenomenon. It was found that the wavy collagen fibers in the heel pad will be straightened under cycle compression loading, which resulted in increased stiffness of the heel pad. The stiffness of the heel pads demonstrated an inclination to escalate over a span of 50,000 loading cycles, consequently resulting in a corresponding increase in peak impact force over the same loading cycles. Sustained cyclic loading has the potential to result in the fracturing of the straightened collagen fibers, this collagen breakage may diminish the stiffness of the heel pad, leading to a reduction in peak impact force. This work enhances understanding of the biomechanical functions of human heel pad and may provide potential inspirations for the innovative development of healthcare devices for foot complex.
Collapse
|
research-article |
2 |
|
22
|
Mukherjee T, Usman M, Mehdi RR, Mendiola E, Ohayon J, Lindquist D, Shah D, Sadayappan S, Pettigrew R, Avazmohammadi R. In-silico heart model phantom to validate cardiac strain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606672. [PMID: 39149320 PMCID: PMC11326205 DOI: 10.1101/2024.08.05.606672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.
Collapse
|
Preprint |
1 |
|
23
|
Gong S, Yang S, Wang W, Lu R, Wang H, Han X, Wang G, Xie J, Rao D, Wu C, Liu J, Shao S, Lv X. Promoting CO 2 Dynamic Activation via Micro-Engineering Technology for Enhancing Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207808. [PMID: 36942684 DOI: 10.1002/smll.202207808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Optimizing the coordination structure and microscopic reaction environment of isolated metal sites is promising for boosting catalytic activity for electrocatalytic CO2 reduction reaction (CO2 RR) but is still challenging to achieve. Herein, a newly electrostatic induced self-assembly strategy for encapsulating isolated Ni-C3 N1 moiety into hollow nano-reactor as I-Ni SA/NHCRs is developed, which achieves FECO of 94.91% at -0.80 V, the CO partial current density of ≈-15.35 mA cm-2 , superior to that with outer Ni-C2 N2 moiety (94.47%, ≈-12.06 mA cm-2 ), or without hollow structure (92.30%, ≈-5.39 mA cm-2 ), and high FECO of ≈98.41% at 100 mA cm-2 in flow cell. COMSOL multiphysics finite-element method and density functional theory (DFT) calculation illustrate that the excellent activity for I-Ni SA/NHCRs should be attributed to the structure-enhanced kinetics process caused by its hollow nano-reactor structure and unique Ni-C3 N1 moiety, which can enrich electron on Ni sites and positively shift d-band center to the Fermi level to accelerate the adsorption and activation of CO2 molecule and *COOH formation. Meanwhile, this strategy also successfully steers the design of encapsulating isolated iron and cobalt sites into nano-reactor, while I-Ni SA/NHCRs-based zinc-CO2 battery assembled with a peak power density of 2.54 mW cm--2 is achieved.
Collapse
|
|
2 |
|
24
|
Xue F, Zhang C, Peng H, Liu F, Yan X, Yao Q, Hu Z, Chan TS, Liu M, Zhang J, Xu Y, Huang X. Nanotip-Induced Electric Field for Hydrogen Catalysis. NANO LETTERS 2023; 23:11827-11834. [PMID: 38079388 DOI: 10.1021/acs.nanolett.3c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Local electric field induced by the lightning-rod effect attracts great attention for regulating the local microenvironment and electronic properties of active sites. Nevertheless, local electric-field-assisted applications are mainly limited to metals with strong surface plasmonic resonance properties (e.g., Au, Ag, and Cu). Herein, we fabricate RuCu snow-like nanosheets (SNSs) with high-curvature nanotips for enhancing the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). Theoretical simulations show that RuCu SNSs can induce a strong local electric field around the sharp nanotips, which favors the accumulation of OH- for HOR and H+ for HER. Cu incorporation can modulate the binding strength of OH* and H*, leading to significantly enhanced HOR and HER performance. Impressively, the mass activity of RuCu SNSs for alkaline HOR is 31.3 times higher than that of RuCu nanocrystals without sharp tips. Besides, the required overpotential for reaching 10 mA cm-2 during HER over RuCu SNSs is 14.0 mV.
Collapse
|
|
2 |
|
25
|
Siddiqui R, Mriza EH, Javed R, Al-Qahtani M. Investigation of the Tissue Degenerative Impact of Increased BMI in Achilles Tendon via Strain Elastography and Finite Element Analysis. Curr Med Imaging 2023; 19:587-595. [PMID: 36125819 DOI: 10.2174/1573405618666220805101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study is focused on establishing a relationship between poor muscle activity faced by obese individuals due to the change in stiffness of the intramuscular mass of the lower limb. This issue is also common among athletes and physically active teenagers. OBJECTIVE The study is aimed at a subject assessment diagnosis technique named as Strain Elastography (SE) to measure muscle strain. Further, Finite Element Modelling (FEM) technique is used to investigate the strain and/or deformations generated in the Achilles Tendon (AT) models, which were categorized according to their Body Mass Index (BMI) through computationally applied loadings. METHODS Total 54 volunteers with an average age of 21.85 ± 1.28 years were categorized into three groups according to their BMI (kg/m2); under BMI < 18.5 (n=14), normal BMI = 18.5-24.9 (n=20) and over BMI/obese > 25.0 (n=20). Additionally, multiple correlational analyses were performed between full range of BMI values and SE outcome. RESULTS The presence of significant difference (p<0.05) was measured between different categories for BMI, BFMI, FFMI, DLFC, tendon length, tendon thickness and SR. Moreover, multiple correlational analyses and scatter plot strengthen the results. For FEM simulations, the maximum deformation was observed at the proximal end of the tendon in all three groups. CONCLUSION It can be concluded that change in tendon stiffness and the resulting change in tendon structure was visualized with increased BMI. Moreover, obese individuals are more prone to tendon injury due to the increment in tendon thickness which causes bulging of the AT due to higher loads.
Collapse
|
|
2 |
|