1
|
Abstract
Metabolomics based on direct mass spectrometry (MS) analysis, either by direct infusion or flow injection of crude sample extracts, shows a great potential for metabolic fingerprinting because of its high-throughput screening capability, wide metabolite coverage and reduced time of analysis. Considering that numerous metabolic pathways are significantly perturbed during the initiation and progression of diseases, these metabolomic tools can be used to get a deeper understanding about disease pathogenesis and discover potential biomarkers for early diagnosis. In this work, we describe the most common metabolomic platforms used in biomedical research, with special focus on strategies based on direct MS analysis. Then, a comprehensive review on the application of direct MS fingerprinting in clinical issues is provided.
Collapse
|
Review |
8 |
65 |
2
|
Su B, Bettcher LF, Hsieh WY, Hornburg D, Pearson MJ, Blomberg N, Giera M, Snyder MP, Raftery D, Bensinger SJ, Williams KJ. A DMS Shotgun Lipidomics Workflow Application to Facilitate High-Throughput, Comprehensive Lipidomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2655-2663. [PMID: 34637296 PMCID: PMC8985811 DOI: 10.1021/jasms.1c00203] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Differential mobility spectrometry (DMS) is highly useful for shotgun lipidomic analysis because it overcomes difficulties in measuring isobaric species within a complex lipid sample and allows for acyl tail characterization of phospholipid species. Despite these advantages, the resulting workflow presents technical challenges, including the need to tune the DMS before every batch to update compensative voltages settings within the method. The Sciex Lipidyzer platform uses a Sciex 5500 QTRAP with a DMS (SelexION), an LC system configured for direction infusion experiments, an extensive set of standards designed for quantitative lipidomics, and a software package (Lipidyzer Workflow Manager) that facilitates the workflow and rapidly analyzes the data. Although the Lipidyzer platform remains very useful for DMS-based shotgun lipidomics, the software is no longer updated for current versions of Analyst and Windows. Furthermore, the software is fixed to a single workflow and cannot take advantage of new lipidomics standards or analyze additional lipid species. To address this multitude of issues, we developed Shotgun Lipidomics Assistant (SLA), a Python-based application that facilitates DMS-based lipidomics workflows. SLA provides the user with flexibility in adding and subtracting lipid and standard MRMs. It can report quantitative lipidomics results from raw data in minutes, comparable to the Lipidyzer software. We show that SLA facilitates an expanded lipidomics analysis that measures over 1450 lipid species across 17 (sub)classes. Lastly, we demonstrate that the SLA performs isotope correction, a feature that was absent from the original software.
Collapse
|
research-article |
4 |
61 |
3
|
Zhang Y, Xu M, Wang Y, Toledo F, Zhou F. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer. SENSORS AND ACTUATORS. B, CHEMICAL 2007; 123:784-792. [PMID: 18493298 PMCID: PMC2083571 DOI: 10.1016/j.snb.2006.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of a flow-injection surface plasmon resonance (FI-SPR) spectrometer equipped with a bicell detector or a position-sensitive device for determining coordination of heavy metal ions (Cd(2+) and Hg(2+)) by surface-confined apo-metallothionein (apo-MT) molecules is described. To facilitate the formation of a compact MT adsorbate layer with a uniform surface orientation, MT molecules were attached onto a preformed alkanethiol self-assembled monolayer. The method resorts to the generation of apo-MT at the surface by treating the MT-covered sensor chip with glycine-HCl and the measurement of the apo-MT conformation changes upon metal ion incorporation. Domain-specific metal ion binding processes by the apo-MT molecules were observed. Competitive replacement of one metal ion by another can be monitored in real time by FI-SPR. The tandem use of an immobilization scheme for forming a sub-monolayer of MT molecules at the sensor surface and the highly sensitive FI-SPR instrument affords a low concentration detection level. The detection level for Cd(2+) (0.1 μM or 15 ppb) compares favorably with similar studies and the methodology complements to other well-established sensitive analytical techniques. The extent of metal incorporation by apo-MT molecules was also determined.
Collapse
|
research-article |
18 |
29 |
4
|
Gao B, Lu Y, Sheng Y, Chen P, Yu L(L. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow injection fingerprints combined with principal component analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2957-63. [PMID: 23464755 PMCID: PMC3636576 DOI: 10.1021/jf304994z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
High-performance liquid chromatography (HPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The individual components in the sage samples were also characterized with an ultraperformance liquid chromatograph with a quadrupole-time-of-flight mass spectrometer (UPLC Q-TOF MS). The results suggested that both HPLC and FIMS fingerprints combined with PCA could differentiate organic and conventional sage samples effectively. FIMS may serve as a quick test capable of distinguishing organic and conventional sages in 1 min and could potentially be developed for high-throughput applications, whereas HPLC fingerprints could provide more chemical composition information with a longer analytical time.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
20 |
5
|
Zhu Z, Zheng A. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment. Molecules 2018; 23:molecules23020489. [PMID: 29473856 PMCID: PMC6017308 DOI: 10.3390/molecules23020489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 11/23/2022] Open
Abstract
A method for daily monitoring of yttrium and rare earth elements (YREEs) in seawater using a cheap flow injection system online coupled to inductively coupled plasma-mass spectrometry is reported. Toyopearl AF Chelate 650M® resin permits separation and concentration of YREEs using a simple external calibration. A running cycle consumed 6 mL sample and took 5.3 min, providing a throughput of 11 samples per hour. Linear ranges were up to 200 ng kg−1 except Tm (100 ng kg−1). The precision of the method was <6% (RSDs, n = 5), and recoveries ranged from 93% to 106%. Limits of detection (LODs) were in the range 0.002 ng kg−1 (Tm) to 0.078 ng kg−1 (Ce). Good agreement between YREEs concentrations in CASS-4 and SLEW-3 obtained in this work and results from other studies was observed. The proposed method was applied to the determination of YREEs in seawater from the Jiulong River Estuary and the Taiwan Strait.
Collapse
|
Journal Article |
7 |
18 |
6
|
Gao B, Lu Y, Qin F, Chen P, Shi H, Charles D, Yu L(L. Differentiating organic from conventional peppermints using chromatographic and flow injection mass spectrometric (FIMS) fingerprints. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11987-11994. [PMID: 23150895 PMCID: PMC3534744 DOI: 10.1021/jf303415d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-performance liquid chromatography (HPLC) and flow injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FIMS methods. Principal component analysis (PCA) showed that both HPLC and FIMS fingerprints could determine the difference in the commercial organic and conventional peppermints. FIMS fingerprinting provided a rapid test to differentiate organic and conventional peppermints in 1 min of analysis and has potential for high-throughput applications. On the other hand, HPLC fingerprints provide more information about the chemical composition of the samples, but take a longer time to differentiate organic and conventional peppermint samples.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
15 |
7
|
Li B, Guo L, Xu C, Ma L. Flow-injection chemiluminescence determination of chrysin and baicalein assisted by theoretical prediction of chemiluminescence behavior of chrysin and baicalein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 71:892-7. [PMID: 18343187 PMCID: PMC7185676 DOI: 10.1016/j.saa.2008.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 01/31/2008] [Accepted: 02/04/2008] [Indexed: 05/26/2023]
Abstract
In this paper, the molecular connectivity indices were applied to theoretically predict the direct chemiluminescence (CL) behavior of chrysin and baicalein with our recently proposed discriminant function. Then, combined with flow-injection analysis, a new CL system for determination of chrysin and baicalein was proposed. The method was based on the oxidation of chrysin and baicalein by acidic KMnO(4) in the presence of formaldehyde to produce strong CL emission. The present paper suggested a new model to discover new CL analytical system: first, to theoretical predict the CL behavior, and the second, to suggest analytical system.
Collapse
|
Evaluation Study |
17 |
11 |
8
|
Yamashita T, Yasukawa K, Yunoki E. Fabrication of a Polydimethylsiloxane Fluidic Chip Using a Sacrificial Template Made by Fused Deposition Modeling 3D Printing and Application for Flow-injection Analysis. ANAL SCI 2019; 35:769-775. [PMID: 30905901 DOI: 10.2116/analsci.18p554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluidic chip fabrication technologies using three-dimensional (3D) printing have received broad attention recently. Herein, we describe a new method for fabricating polydimethylsiloxane (PDMS) fluidic chips using a 3D-printed polyvinyl alcohol (PVA) or acrylonitrile butadiene styrene (ABS) template and polymer coating. In this method, polyethylene glycol (PEG) was coated on the 3D-printed template. This coated template was immersed in liquid PDMS, and subsequently the PDMS was cured. Space can be created between the template and PDMS by removing this liquid PEG from the channel. This space renders template removal easier. A flow path is formed by dissolving the template with a solvent. These PDMS chips are used for flow injection measurement.
Collapse
|
Journal Article |
6 |
9 |
9
|
Yang XA, Zhang WB. A novel green analytical procedure for monitoring of azoxystrobin in water samples by a flow injection chemiluminescence method with off-line ultrasonic treatment. LUMINESCENCE 2012; 28:641-7. [PMID: 23027659 DOI: 10.1002/bio.2409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/30/2012] [Accepted: 06/29/2012] [Indexed: 11/08/2022]
Abstract
A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
9 |
10
|
Komaitis E, Vasiliou E, Kremmydas G, Georgakopoulos DG, Georgiou C. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment. SENSORS 2010; 10:7089-98. [PMID: 22163592 PMCID: PMC3231189 DOI: 10.3390/s100807089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/02/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
Abstract
This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb2+, Hg2+ and Cu2+) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor’s response to carrier solutions of different pHs was tested. Vibrio fischeri’s bioluminescence is promoted in the pH 5–10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
8 |
11
|
Lazaridou E, Kabir A, Furton KG, Anthemidis A. A Novel Glass Fiber Coated with Sol-Gel Poly-Diphenylsiloxane Sorbent for the On-Line Determination of Toxic Metals Using Flow Injection Column Preconcentration Platform Coupled with Flame Atomic Absorption Spectrometry. Molecules 2020; 26:molecules26010009. [PMID: 33375078 PMCID: PMC7792807 DOI: 10.3390/molecules26010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
A novel simple and sensitive, time-based flow injection solid phase extraction system was developed for the automated determination of metals at low concentration. The potential of the proposed scheme, coupled with flame atomic absorption spectrometry (FAAS), was demonstrated for trace lead and chromium(VI) determination in environmental water samples. The method, which was based on a new sorptive extraction system, consisted of a microcolumn packed with glass fiber coated with sol-gel poly (diphenylsiloxane) (sol-gel PDPS), which is presented here for the first time. The analytical procedure involves the on-line chelate complex formation of target species with ammonium pyrrolidine dithiocarbamate (APDC), retention onto the hydrophobic sol-gel sorbent coated surface of glass fibers, and finally elution with methyl isobutyl ketone prior to atomization. All main chemical and hydrodynamic factors, which affect the complex formation, retention, and elution of the metal, were optimized thoroughly. Furthermore, the tolerance to potential interfering ions appearing in environmental samples was also explored. Enhancement factors of 215 and 70, detection limits (3 s) of 1.1 μg·L-1 and 1.2 μg·L-1, and relative standard deviations (RSD) of 3.0% (at 20.0 μg·L-1) and 3.2% (at 20.0 μg·L-1) were obtained for lead and chromium(VI), respec tively, for 120 s preconcentration time. The trueness of the developed method was estimated by analyzing certified reference materials and spiked environmental water samples.
Collapse
|
Journal Article |
5 |
6 |
12
|
Vicente Vilas V, Millet S, Sandow M, Iglesias Pérez L, Serrano-Purroy D, Van Winckel S, Aldave de las Heras L. An Automated SeaFAST ICP-DRC-MS Method for the Determination of 90Sr in Spent Nuclear Fuel Leachates. Molecules 2020; 25:molecules25061429. [PMID: 32245155 PMCID: PMC7144365 DOI: 10.3390/molecules25061429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/03/2022] Open
Abstract
To reduce uncertainties in determining the source term and evolving condition of spent nuclear fuel is fundamental to the safety assessment. ß-emitting nuclides pose a challenging task for reliable, quantitative determination because both radiometric and mass spectrometric methodologies require prior chemical purification for the removal of interfering activity and isobars, respectively. A method for the determination of 90Sr at trace levels in nuclear spent fuel leachate samples without sophisticated and time-consuming procedures has been established. The analytical approach uses a commercially available automated pre-concentration device (SeaFAST) coupled to an ICP-DRC-MS. The method shows good performances with regard to reproducibility, precision, and LOD reducing the total time of analysis for each sample to 12.5 min. The comparison between the developed method and the classical radiochemical method shows a good agreement when taking into account the associated uncertainties.
Collapse
|
Journal Article |
5 |
3 |
13
|
Manousi N, Kabir A, Furton KG, Zachariadis GA, Anthemidis A. Multi-Element Analysis Based on an Automated On-Line Microcolumn Separation/Preconcentration System Using a Novel Sol-Gel Thiocyanatopropyl-Functionalized Silica Sorbent Prior to ICP-AES for Environmental Water Samples. Molecules 2021; 26:molecules26154461. [PMID: 34361614 PMCID: PMC8347399 DOI: 10.3390/molecules26154461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES’s nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L−1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 μg L−1, while the limits of quantification ranged from 0.17 to 0.79 μg L−1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.
Collapse
|
Journal Article |
4 |
3 |
14
|
Zhang K. Comparison of Flow Injection-MS/MS and LC-MS/MS for the Determination of Ochratoxin A. Toxins (Basel) 2021; 13:toxins13080547. [PMID: 34437418 PMCID: PMC8402343 DOI: 10.3390/toxins13080547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Two methods for measuring ochratoxin A in corn, oat, and grape juice were developed and compared. Flow injection (FI) and on-line liquid chromatography (LC) performances were evaluated separately, with both methods using a triple quadrupole tandem mass spectrometer (MS/MS) for quantitation. Samples were fortified with 13C uniformly labeled ochratoxin A as the internal standard (13C-IS) and prepared by dilution and filtration, followed by FI- and LC-MS/MS analysis. For the LC-MS/MS method, which had a 10 min run time/sample, recoveries of ochratoxin A fortified at 1, 5, 20, and 100 ppb in corn, oat, red grape juice, and white grape juice ranged from 100% to 117% with RSDs < 9%. The analysis time of the FI-MS/MS method was <60 s/sample, however, the method could not detect ochratoxin A at the lowest fortification concentration, 1 ppb, in all tested matrix sources. At 5, 20, and 100 ppb, recoveries by FI-MS/MS ranged from 79 to 117% with RSDs < 15%. The FI-MS/MS method also had ~5× higher solvent and matrix-dependent instrument detection limits (0.12–0.35 ppb) compared to the LC-MS/MS method (0.02–0.06 ppb). In the analysis of incurred corn and oat samples, both methods generated comparable results within ±20% of reference values, however, the FI-MS/MS method failed to determine ochratoxin A in two incurred wheat flour samples due to co-eluted interferences due to the lack of chromatographic separation.
Collapse
|
|
4 |
2 |
15
|
Auray-Blais C, Boutin M, Lavoie P, Maranda B. Neonatal Urine Screening Program in the Province of Quebec: Technological Upgrade from Thin Layer Chromatography to Tandem Mass Spectrometry. Int J Neonatal Screen 2021; 7:ijns7010018. [PMID: 33804641 PMCID: PMC8006232 DOI: 10.3390/ijns7010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Quebec Neonatal Urine Screening Program was initiated in 1971 with overall screening inception of newborns in 1973. Forty-seven years later, over 3.5 million babies have been screened for up to 25 inborn errors of metabolism divided into two groups: (1) urea cycle disorders and organic acidurias; and (2) disorders of amino acid metabolism and transport. The main goal of this preventive genetic medicine program is the detection of treatable diseases before the onset of clinical symptoms. Urine specimens from 21-day-old babies are collected and dried on filter paper by parents at home. The participation is voluntary with a high compliance rate over the years (~90%). Specimens are analyzed by thin layer chromatography (TLC). The main objective of this evaluative research project was to assess the feasibility of a technological upgrade towards mass spectrometry. A 2.85-min flow injection method was devised, normal values established, and abnormal profiles confirmed using second-tier tests. The validated assays are sensitive, specific, and suitable for populational screening, as well as for high-risk screening laboratories. Triple H syndrome, which would not be detected in newborns by blood screening at two days of age was found to be positive in the urine of an affected patient.
Collapse
|
research-article |
4 |
2 |
16
|
Yao H, Huang X, Shi P, Lin Z, Zhu M, Liu A, Lin X, Tang Y. DPPH·-luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis. LUMINESCENCE 2016; 32:588-595. [PMID: 27860193 DOI: 10.1002/bio.3225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
In this article, a DPPH·-luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·-luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·-luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10-6 mol/L DPPH· and 1.0 × 10-4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5-2000 and 40-3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples.
Collapse
|
Journal Article |
9 |
2 |
17
|
Tang XS, Shi XY, Tang YH, Yue ZJ, He QQ. Chemiluminescence determination of melamine with Luminol-K 3Fe(CN) 6 system. J Pharm Anal 2011; 1:104-107. [PMID: 29403687 PMCID: PMC5760759 DOI: 10.1016/s2095-1779(11)70018-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/30/2010] [Indexed: 11/18/2022] Open
Abstract
A sensitive chemiluminescence (CL) method was developed for determining melamine in urine and plasma samples based on the fact that melamine can remarkably enhance the chemiluminescence of Luminol-K3 Fe(CN)6 system in alkaline medium. The determination conditions were optimized. Under optimum conditions, the chemiluminescence intensity had a good linear relationship with melamine in the range of 9.0 × 10−9 – 7.0 × 10−6 g/mL with a correlation coefficient of 0.9992. The detection limits (3σ) were 3.54 ng/mL for urine sample and 6.58 ng/mL for plasma sample. The average recoveries of melamine were 102.6% for urine sample and 95.1% for plasma sample. Melamine in samples was extracted with liquid-liquid extraction procedures and the assay results coincided very well with that determined with flow injection chemiluminescence method. The method provides a reproducible and stable approach for sensitive detection and quantification of melamine in urine and plasma samples.
Collapse
|
|
14 |
2 |
18
|
Determination of Lead Employing Simple Flow Injection AAS with Monolithic Alginate-Polyurethane Composite Packed In-Valve Column. Molecules 2021; 26:molecules26154397. [PMID: 34361553 PMCID: PMC8347769 DOI: 10.3390/molecules26154397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
A simple flow injection FlameAAS for lead determination with an alginate-polyurethane composite (ALG-PUC) monolithic in-valve column has been developed. The ALG-PUC monolithic rod was prepared by mixing methylene diphenyl diisocyanate with polyol and sodium alginate with the ratio of 2:1:1 by weight for a 5 min polymerization reaction. It was then put into a column (0.8 cm i.d × 11 cm length) situated in a switching valve for the FI set up. A single standard calibration could be obtained by plotting the loaded µg Pb2+ vs. FI response (absorbances). The loaded µg Pb2+ is calculated: μg Pb2+ = FRload × LT × CPb2+, where the FR load is the flow rate of the loading analyte solution (mL min−1), LT is the loading time (min), and CPb2+ is the Pb2+ concentration (µg mL−1). A linear calibration equation was obtained: FI response (absorbances) = 0.0018 [µg Pb2+] + 0.0032, R2 = 0.9927 for 1–150 µg Pb2+, and RSD of less than 20% was also obtained. Application of the developed procedure has been demonstrated in real samples.
Collapse
|
Journal Article |
4 |
2 |
19
|
Wang G, Zhao F, Gao Y. Flow injection chemiluminescence determination of lercanidipine based on N-chlorosuccinimide-eosin Y post-chemiluminescence reaction. LUMINESCENCE 2014; 29:1008-13. [PMID: 24615899 DOI: 10.1002/bio.2651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/19/2013] [Accepted: 01/20/2014] [Indexed: 11/06/2022]
Abstract
A novel post-chemiluminescence (PCL) reaction was discovered when lercanidipine was injected into the CL reaction mixture of N-chlorosuccinimide with alkaline eosin Y in the presence of cetyltrimethylammonium bromide (CTAB), where eosin Y was used as the CL reagent and CTAB as the surfactant. Based on this observation, a simple and highly sensitive PCL method combined with a flow injection (FI) technique was developed for the assay of lercanidipine. Under optimum conditions, the CL signal was linearly related to the concentration of lercanidipine in the range 7.0 × 10(-10) to 3.0 × 10(-6) g/mL with a detection limit of 2.3 × 10(-10) g/mL (3σ). The relative standard deviation (RSD) was 2.1% for 1.0 × 10(-8) g/mL lercanidipine (n = 13). The proposed method had been applied to the estimation of lercanidipine in tablets and human serum samples with satisfactory results. The possible CL mechanism is also discussed briefly.
Collapse
|
|
11 |
1 |
20
|
Jasim AN, Kamel A, Al-Awadi NS, Abd-Alrazack HF. Online column preconcentration for speciation and selective determination of Cr(III) in natural water samples using flow injection with chemiluminescence detection. LUMINESCENCE 2023; 38:360-368. [PMID: 36776140 DOI: 10.1002/bio.4464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid-phase extraction of 8-hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI-CL) and a 4-diethylamino phenyl hydrazine (DEAPH)-hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbed Cr(III) and Cr(VI) species were eluted from columns using 3.0 ml of 0.1 N of HCl and 3.0 ml of 0.1 N of NaOH, respectively. The flow injection-chemiluminescence (FI-CL) method is based on light emitted due to the oxidation of DEAPH by the H2 O2 in the presence of Cr(III), which catalyzes the reaction. The flow cell is a transparent coiled tube made from glass (2.0 × 4.0, inner and outer diameter) and located close to the photodetector. The flow parameters: flow rate, sample volume, flow cell length, and distance to the CL detector were studied and optimized. Under optimum flow conditions, the Cr(III) concentration can be determined over the range 5-350 μg L-1 with a limit of detection of 1.2 μg L-1 , as the Cr(III) concentration is proportional to the intensity of the CL signal. The relative standard deviations (%) for 10 and 50 μg L-1 Cr(III) were 1.2% and 3.2%, respectively. The effects of Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Co(II), Cu(II), Ni(II), Mn(II), Ca(II), and Fe(III) were investigated. The proposed method is highly selective and sensitive, enabling a rapid determination of the Cr(III) amount in the presence of other interfering metals. Finally, the FI-CL method was examined in five river water samples with excellent recoveries.
Collapse
|
|
2 |
|
21
|
Asghar M, Yaqoob M, Ali S, Waseem A. Flow injection assays for NADH and ethanol using photosensitized rose bengal and luminol-copper (II) chemiluminescence system. LUMINESCENCE 2023. [PMID: 36995153 DOI: 10.1002/bio.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The on-line photoreaction of rose bengal photosensitized luminol-copper (II) chemiluminescence (CL) system was used for the determination of β-nicotinamide adenine dinucleotide (NADH) and ethanol (EtOH) in pharmaceutical formulations combined with flow injection (FI) technique. NADH can significantly enhance the CL emission of the reaction. For EtOH, alcohol dehydrogenase (ADH) in soluble form was utilized in the presence of nicotinamide adenine dinucleotide (NAD+ ) resulting in NADH production. The limit of detection (3σ blank, 𝑛 = 3) of 4.0 × 10-8 and 2.17 × 10-5 M, and linear range of 1.3 × 10-7 -2.5 × 10-5 M (R2 = 0.9998, n = 6) and 0.11-2.17 × 10-3 M (R2 = 0.9996, n = 6) were obtained for NADH and EtOH respectively. The injection rate was 100 h-1 with relative standard deviation (RSD; n = 3) of 1.5%-4.8% in the range studied for both analytes. The procedure was satisfactorily applied to pharmaceutical formulations with recoveries in the range of 91.6 ± 3.0%-110 ± 2.0% for NADH and 88 ± 3.0%-95.4 ± 4.0% for EtOH. The results obtained were very consistent and did not differ considerably from the reported approaches at 95% confidence limit. The possible mechanism of CL reaction is also explained briefly.
Collapse
|
|
2 |
|
22
|
Monkrathok J, Janphuang P, Suphachiaraphan S, Kampaengsri S, Kamkaew A, Chansaenpak K, Lisnund S, Blay V, Pinyou P. Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine). BIOSENSORS 2024; 14:161. [PMID: 38667154 PMCID: PMC11048651 DOI: 10.3390/bios14040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.
Collapse
|
research-article |
1 |
|
23
|
Distinguishing Smilax glabra and Smilax china rhizomes by flow-injection mass spectrometry combined with principal component analysis. ACTA PHARMACEUTICA 2018; 68:87-96. [PMID: 29453916 DOI: 10.2478/acph-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 11/20/2022]
Abstract
Flow-injection mass spectrometry (FIMS) coupled with a chemometric method is proposed in this study to profile and distinguish between rhizomes of Smilax glabra (S. glabra) and Smilax china (S. china). The proposed method employed an electrospray-time-of-flight MS. The MS fingerprints were analyzed using principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) with the aid of SIMCA software. Findings showed that the two kinds of samples perfectly fell into their own classes. Further predictive study showed desirable predictability and the tested samples were successfully and reliably identified. The study demonstrated that the proposed method could serve as a powerful tool for distinguishing between S. glabra and S. china.
Collapse
|
|
7 |
|
24
|
Arfaj NA, Abdine HH, Sultan MA. Sensitive assay for carvedilol in tablets and spiked human plasma using a flow-injection chemiluminometric method. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2007; 3:131-6. [PMID: 23675035 PMCID: PMC3614627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and sensitive chemiluminometric method using flow injection (FI) is developed for the determination of carvedilol, based on the reaction of carvedilol with tris (2, 2'-bipyridyl) ruthenium (II), and KMnO4 in sulfuric acid medium. Under the optimum conditions; the chemiluminescence (CL) intensity is a linear function of carvedilol concentration over the range of 0.04-1.0 µg ml(-1) (9.8 × 10(-8) - 2.5 × 10(-6) mol L(-1)) with a detection limit (S/N=3) of 0.025 µgml(-1) (6.2 × 10(-8) mol L(-1)). The relative standard deviation of the proposed method calculated from 10 replicate injections of 0.4 µg ml(-1) carvedilol is 0.95%. The sample throughput is 90 samples h(-1). The method is applied successfully to the determination of carvedilol in tablets dosage form and spiked human plasma.
Collapse
|
research-article |
18 |
|
25
|
Elkabets O, Neumark B, Amirav A. Sample Injection for Real-Time Analysis (SIRTA) Using GC-MS with Cold EI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:378-385. [PMID: 38234102 PMCID: PMC10853959 DOI: 10.1021/jasms.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
There is a continual demand for advanced methods and instruments for real-time analysis (RTA). Most of the current RTA techniques based on MS involve ambient desorption ionization technology. However, flow injection of liquid extracted samples is another option without added modifications or cost to existing LC-MS instruments. In this work, we introduce a new RTA approach named sample injection for real-time analysis (SIRTA) using GC-MS with Cold EI. In SIRTA, the standard GC column is replaced with a 1 m long 0.1 mm I.D. fused silica capillary that connects the GC injector to the MS transfer-line of Cold EI. Thus, SIRTA with Cold EI imposes no need for any additional instrumentation; hence, it is characterized by zero added cost. Like in flow injection in MS of LC-MS, the sample is dissolved in ∼1 mL methanol or another solvent. Subsequently, the vial is placed in the GC-MS autosampler while using a standard syringe for injection without any GC separation. The analysis takes merely 0.2-0.7 min, ensuring rapid and consecutive analyses. Unlike standard EI, Cold EI enables SIRTA by taking advantage of its fly through open ion source to avoid overwhelming the ion source during the elution of solvents while still providing enhanced molecular ions for nearly all analytes. In this study, we demonstrated SIRTA Cold EI analysis of 12 compounds and 7 mixtures, including various prescription and illicit drugs, cannabis and petroleum samples, and other synthetic organic compounds including those with molecular weight up to 800 g/mol.
Collapse
|
research-article |
1 |
|