1
|
Gagliardi PA, Dobrzyński M, Jacques MA, Dessauges C, Ender P, Blum Y, Hughes RM, Cohen AR, Pertz O. Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Dev Cell 2021; 56:1712-1726.e6. [PMID: 34081908 DOI: 10.1016/j.devcel.2021.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/16/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults.
Collapse
|
Journal Article |
4 |
86 |
2
|
Pandey PC, Shukla S, Skoog SA, Boehm RD, Narayan RJ. Current Advancements in Transdermal Biosensing and Targeted Drug Delivery. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1028. [PMID: 30823435 PMCID: PMC6427209 DOI: 10.3390/s19051028] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.
Collapse
|
Review |
6 |
47 |
3
|
Mukhtarov M, Liguori L, Waseem T, Rocca F, Buldakova S, Arosio D, Bregestovski P. Calibration and functional analysis of three genetically encoded Cl(-)/pH sensors. Front Mol Neurosci 2013; 6:9. [PMID: 23616745 PMCID: PMC3629305 DOI: 10.3389/fnmol.2013.00009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/02/2013] [Indexed: 11/29/2022] Open
Abstract
Monitoring of the intracellular concentrations of Cl− and H+ requires sensitive probes that allow reliable quantitative measurements without perturbation of cell functioning. For these purposes the most promising are genetically encoded fluorescent biosensors, which have become powerful tools for non-invasive intracellular monitoring of ions, molecules, and enzymatic activity. A ratiometric CFP/YFP-based construct with a relatively good sensitivity to Cl− has been developed (Markova et al., 2008; Waseem et al., 2010). Recently, a combined Cl−/pH sensor (ClopHensor) opened the way for simultaneous ratiometric measurement of these two ions (Arosio et al., 2010). ClopHensor was obtained by fusion of a red-fluorescent protein (DsRed-monomer) to the E2GFP variant that contains a specific Cl−-binding site. This construct possesses pKa = 6.8 for H+ and Kd in the 40–50 mM range for Cl− at physiological pH (~7.3). As in the majority of cell types the intracellular Cl− concentration ([Cl−]i) is about 10 mM, the development of sensors with higher sensitivity is highly desirable. Here, we report the intracellular calibration and functional characterization of ClopHensor and its two derivatives: the membrane targeting PalmPalm-ClopHensor and the H148G/V224L mutant with improved Cl− affinity, reduced pH dependence, and pKa shifted to more alkaline values. For functional analysis, constructs were expressed in CHO cells and [Cl−]i was changed by using pipettes with different Cl− concentrations during whole-cell recordings. Kd values for Cl− measured at 33°C and pH ~7.3 were, respectively, 39, 47, and 21 mM for ClopHensor, PalmPalm-ClopHensor, and the H148G/V224L mutant. PalmPalm-ClopHensor resolved responses to activation of Cl−-selective glycine receptor (GlyR) channels better than did ClopHensor. Our observations indicate that these different ClopHensor constructs are promising tools for non-invasive measurement of [Cl−]i in various living cells.
Collapse
|
Journal Article |
12 |
39 |
4
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
|
Review |
11 |
27 |
5
|
Friedel P, Bregestovski P, Medina I. Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup. Front Mol Neurosci 2013; 6:7. [PMID: 23596389 PMCID: PMC3622059 DOI: 10.3389/fnmol.2013.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/23/2013] [Indexed: 01/19/2023] Open
Abstract
Chloride (Cl−) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl− concentration ([Cl−]i) and changes in the efficacy of Cl− extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl−]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl−]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl−-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl−-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl−]i from the resting level of 5–10 mM. We demonstrate also a usefulness of the developed [Cl−]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl− extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.
Collapse
|
Journal Article |
12 |
25 |
6
|
Handly LN, Yao J, Wollman R. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks. J Mol Biol 2016; 428:3669-82. [PMID: 27430597 PMCID: PMC5023475 DOI: 10.1016/j.jmb.2016.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Abstract
Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.
Collapse
|
Review |
9 |
24 |
7
|
Roh J, Lee SY, Park S, Ahn DJ. Polydiacetylene/Anti-HBs Complexes for Visible and Fluorescent Detection of Hepatitis B Surface Antigen on a Nitrocellulose Membrane. Chem Asian J 2017; 12:2033-2037. [PMID: 28603850 DOI: 10.1002/asia.201700769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/12/2017] [Indexed: 12/24/2022]
Abstract
The immunochromatographic assay (ICA) using a nitrocellulose (NC) membrane offers several advantages. This technique is a rapid and straightforward method in contrast to other immunoassays. Polydiacetylene (PDA) vesicles have unique optical properties, displaying red color and red fluorescence at the same time. In this system, red-phase PDA vesicles are used as a fluorescent dye as well as a surface for immobilized hepatitis B surface antibody (HBsAb). PDA has a remarkable stability compared with other fluorescent dyes. In this study, the most suitable PDA/HBsAb complexes are introduced for detecting hepatitis B surface antigen (HBsAg). Then, the PDA/HBsAb complexes affixed antibody is attached to NC membrane, which has two lines to confirm detection of HBsAg. The main advantage of this system is that the detection of HBsAg can be observed in both visible and fluorescent images due to the optical properties of polydiacetylene. Detection of HBsAg is observed up to 0.1 ng mL-1 by fluorescent analysis and confirmed by red line on the NC membrane up to 1 ng mL-1 (HBsAg) using the naked eye. Consequently, these results show that PDA/HBsAb complexes were successfully applied to ICA for the diagnosis of hepatitis B.
Collapse
|
Journal Article |
8 |
20 |
8
|
A Graphene Oxide-Based Fluorescent Method for the Detection of Human Chorionic Gonadotropin. SENSORS 2016; 16:s16101699. [PMID: 27754379 PMCID: PMC5087487 DOI: 10.3390/s16101699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies, simple and cost-effective methods for the sensitive and selective detection of hCG have always been desired. In this work, we have developed a graphene oxide (GO)-based fluorescent platform for the detection of hCG using a fluorescein isothiocyanate (FITC)-labeled hCG-specific binding peptide aptamer (denoted as FITC-PPLRINRHILTR) as the probe, which can be manufactured cheaply and consistently. Specifically, FITC-PPLRINRHILTR adsorbed onto the surface of GO via electrostatic interaction showed a poor fluorescence signal. The specific binding of hCG to FITC-PPLRINRHILTR resulted in the release of the peptide from the GO surface. As a result, an enhanced fluorescence signal was observed. The fluorescence intensity was directly proportional to the hCG concentration in the range of 0.05–20 IU/mL. The detection limit was found to be 20 mIU/mL. The amenability of the strategy to hCG analysis in biological fluids was demonstrated by assaying hCG in the urine samples.
Collapse
|
Journal Article |
9 |
17 |
9
|
Batti L, Mukhtarov M, Audero E, Ivanov A, Paolicelli RC, Zurborg S, Gross C, Bregestovski P, Heppenstall PA. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride. Front Mol Neurosci 2013; 6:11. [PMID: 23734096 PMCID: PMC3659292 DOI: 10.3389/fnmol.2013.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC 50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC 50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo.
Collapse
|
Journal Article |
12 |
15 |
10
|
Lanin AA, Chebotarev AS, Pochechuev MS, Kelmanson IV, Kotova DA, Bilan DS, Ermakova YG, Fedotov AB, Ivanov AA, Belousov VV, Zheltikov AM. Two- and three-photon absorption cross-section characterization for high-brightness, cell-specific multiphoton fluorescence brain imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e201900243. [PMID: 31568649 DOI: 10.1002/jbio.201900243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate an accurate quantitative characterization of absolute two- and three-photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high-brightness, cell-specific two- and three-photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two-photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep-tissue experiments.
Collapse
|
|
5 |
12 |
11
|
Sun T, Xia N, Liu L. A Graphene Oxide-Based Fluorescent Platform for Probing of Phosphatase Activity. NANOMATERIALS 2016; 6:nano6010020. [PMID: 28344277 PMCID: PMC5302530 DOI: 10.3390/nano6010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 01/19/2023]
Abstract
We presented a strategy for fabricating graphene oxide (GO)-based fluorescent biosensors to monitor the change of phosphorylation state and detect phosphatase activity. By regulating the interaction between the negatively charged phosphate group and the positively charged amino residue, we found that GO showed different quenching efficiency toward the phosphorylated and dephosphorylated dye-labeled peptides. To demonstrate the application of our method, alkaline phosphatase (ALP) was tested as a model enzyme with phosphorylated fluorescein isothiocyanate (FITC)-labeled short peptide FITC-Gly-Gly-Gly-Tyr(PO₃2-)-Arg as the probe. When the negatively charged phosphate group in the Tyr residue was removed from the peptide substrate by enzymatic hydrolysis, the resulting FITC-Gly-Gly-Gly-Tyr-Arg was readily adsorbed onto the GO surface through electrostatic interaction. As a result, fluorescence quenching was observed. Furthermore, the method was applied for the screening of phosphatase inhibitors.
Collapse
|
Journal Article |
9 |
11 |
12
|
Soamalala J, Diot S, Pellerano M, Blanquart C, Galibert M, Jullian M, Puget K, Morris MC. Fluorescent Peptide Biosensor for Probing CDK6 Kinase Activity in Lung Cancer Cell Extracts. Chembiochem 2020; 22:1065-1071. [PMID: 33112024 DOI: 10.1002/cbic.202000677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Indexed: 11/05/2022]
Abstract
CDK6 kinase regulates cell-cycle progression in G1, together with CDK4, but has cell-, tissue- and developmentally distinct functions associated with transcription, angiogenesis and metabolism. Although CDK6 makes an attractive cancer biomarker and target, there are no means of assessing its activity in a complex environment. In this study, we describe the design, engineering and characterisation of a fluorescent peptide biosensor derived from 6-phosphofructokinase that reports on CDK6 kinase activity through sensitive changes in fluorescence intensity. This biosensor can report on CDK6 activity in a dose-dependent fashion, thereby enabling quantification of differences in kinase activity in complex and physiologically relevant environments. Further implementation of this biosensor in different lung and melanoma cell lines, as well as in mesothelioma cell lines derived from patients together with a CDK4 biosensor highlighted differences in kinase activity between CDK6 and CDK4 kinase. This work demonstrates the utility of these selective tools for monitoring two closely related kinases comparatively and simultaneously in the same samples, thereby offering attractive perspectives for diagnostic and therapeutic purposes.
Collapse
|
Journal Article |
5 |
11 |
13
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
|
Review |
3 |
8 |
14
|
Vu TH, Nguyen PT, Kim MI. Polydopamine-Coated Co 3O 4 Nanoparticles as an Efficient Catalase Mimic for Fluorescent Detection of Sulfide Ion. BIOSENSORS 2022; 12:1047. [PMID: 36421165 PMCID: PMC9688345 DOI: 10.3390/bios12111047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Surface engineering of nanozymes has been recognized as a potent strategy to improve their catalytic activity and specificity. We synthesized polydopamine-coated Co3O4 nanoparticles (PDA@Co3O4 NPs) through simple dopamine-induced self-assembly and demonstrated that these NPs exhibit catalase-like activity by decomposing H2O2 into oxygen and water. The activity of PDA@Co3O4 NPs was approximately fourfold higher than that of Co3O4 NPs without PDA, possibly due to the additional radical scavenging activity of the PDA shell. In addition, PDA@Co3O4 NPs were more stable than natural catalase under a wide range of pH, temperature, and storage time conditions. Upon the addition of a sample containing sulfide ion, the activity of PDA@Co3O4 NPs was significantly inhibited, possibly because of increased mass transfer limitations via the absorption of the sulfide ion on the PDA@Co3O4 NP surface, along with NP aggregation which reduced their surface area. The reduced catalase-like activity was used to determine the levels of sulfide ion by measuring the increased fluorescence of the oxidized terephthalic acid, generated from the added H2O2. Using this strategy, the target sulfide ion was sensitively determined to a lower limit of 4.3 µM and dynamic linear range of up to 200 µM. The fluorescence-based sulfide ion assay based on PDA@Co3O4 NPs was highly precise when applied to real tap water samples, validating its potential for conveniently monitoring toxic elements in the environment.
Collapse
|
research-article |
3 |
7 |
15
|
Pandey PC, Pandey G, Narayan RJ. Minimally Invasive Platforms in Biosensing. Front Bioeng Biotechnol 2020; 8:894. [PMID: 32984266 PMCID: PMC7487318 DOI: 10.3389/fbioe.2020.00894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
The interaction of sensing components with body fluids is a basic requirement for clinical diagnostics; a variety of novel platforms have recently been developed for invasive and non-invasive sensing. In this manuscript, recent advancements related to minimally invasive platform for biosensing are reviewed. Many approaches have been utilized for generating minimally invasive platforms that require a small volume of body fluid; for example, the use of small-scale needles known as microneedles for minimally invasive detection has been demonstrated. The use of capillary action in microneedle-assisted biosensing may facilitate the detection of analytes in body fluids. This review considers recent innovations in the structure and performance of minimally invasive sensos.
Collapse
|
Review |
5 |
5 |
16
|
Wang P, Liu L, Meng F, Khan MA, Li H. "Turn-On" Fluorescent Biosensors for High Selective and Sensitive Detection of Al 3+ Ion. Front Chem 2020; 8:607614. [PMID: 33330402 PMCID: PMC7711066 DOI: 10.3389/fchem.2020.607614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
A series of new compounds (1-4) based on pyrrole hydrazone Schiff bases were designed and synthesized. The interactions of these new compounds with metal ions and their fluorescent recognition were investigated. All compounds showed "turn-on" fluorescence in the presence of Al3+ in aqueous solution. Their sensing behaviors with Al3+ were studied using photophysical experiments, ESI-MS spectrometry analysis, 1H NMR titration, and DFT calculation. The detection limits of 1-4 for the analysis of Al3+ were found to reach a 10-8 M level in aqueous solution, which are far lower than the WHO guidelines for drinking water (7.41 mM for Al3+). A high selectivity test paper has been fabricated for Al3+ detection based on sensor 3. Theoretical calculations (DFT) have been carried out to elucidate the configuration of 1-4 and their Al complexes and rationalize experimental absorption data.
Collapse
|
research-article |
5 |
4 |
17
|
Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols. Int J Mol Sci 2021; 23:ijms23010366. [PMID: 35008792 PMCID: PMC8745091 DOI: 10.3390/ijms23010366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
An effective strategy to detect biological thiols (biothiols), including glutathione (GSH), cysteine (Cys), and homocysteine (Hcy), holds significant incentive since they play vital roles in many cellular processes and are closely related to many diseases. Here, we demonstrated that hybrid nanoflowers composed of crystalline copper phosphate and horseradish peroxidase (HRP) served as a functional unit exhibiting dual catalytic activities of biothiol oxidase and HRP, yielding a cascade reaction system for a sensitive one-pot fluorescent detection of biothiols. The nanoflowers were synthesized through the anisotropic growth of copper phosphate petals coordinated with the amine/amide moieties of HRP, by simply incubating HRP and copper(II) sulfate for three days at room temperature. Copper phosphates within the nanoflowers oxidized target biothiols to generate H2O2, which activated the entrapped HRP to oxidize the employed Amplex UltraRed substrate to produce intense fluorescence. Using this strategy, biothiols were selectively and sensitively detected by monitoring the respective fluorescence intensity. This nanoflower-based strategy was also successfully employed for reliable quantification of biothiols present in human serum, demonstrating its great potential for clinical diagnostics.
Collapse
|
|
4 |
2 |
18
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
|
Letter |
3 |
2 |
19
|
Chebotarev AS, Pochechuev MS, Lanin AA, Kelmanson IV, Kotova DA, Fetisova ES, Panova AS, Bilan DS, Fedotov AB, Belousov VV, Zheltikov AM. Enhanced-contrast two-photon optogenetic pH sensing and pH-resolved brain imaging. JOURNAL OF BIOPHOTONICS 2021; 14:e202000301. [PMID: 33205577 DOI: 10.1002/jbio.202000301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways-via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.
Collapse
|
|
4 |
1 |
20
|
Lyons AC, Mehta S, Zhang J. Fluorescent biosensors illuminate the spatial regulation of cell signaling across scales. Biochem J 2023; 480:1693-1717. [PMID: 37903110 PMCID: PMC10657186 DOI: 10.1042/bcj20220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As cell signaling research has advanced, it has become clearer that signal transduction has complex spatiotemporal regulation that goes beyond foundational linear transduction models. Several technologies have enabled these discoveries, including fluorescent biosensors designed to report live biochemical signaling events. As genetically encoded and live-cell compatible tools, fluorescent biosensors are well suited to address diverse cell signaling questions across different spatial scales of regulation. In this review, methods of examining spatial signaling regulation and the design of fluorescent biosensors are introduced. Then, recent biosensor developments that illuminate the importance of spatial regulation in cell signaling are highlighted at several scales, including membranes and organelles, molecular assemblies, and cell/tissue heterogeneity. In closing, perspectives on how fluorescent biosensors will continue enhancing cell signaling research are discussed.
Collapse
|
Review |
2 |
1 |
21
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
|
Review |
1 |
|
22
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
|
Review |
1 |
|
23
|
Mostafa AM, Barton SJ, Wren SP, Barker J. Development of Highly Sensitive Fluorescent Sensors for Separation-Free Detection and Quantitation Systems of Pepsin Enzyme Applying a Structure-Guided Approach. BIOSENSORS 2024; 14:151. [PMID: 38534258 DOI: 10.3390/bios14030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Two fluorescent molecularly imprinted polymers (MIPs) were developed for pepsin enzyme utilising fluorescein and rhodamine b. The main difference between both dyes is the presence of two (diethylamino) groups in the structure of rhodamine b. Consequently, we wanted to investigate the effect of these functional groups on the selectivity and sensitivity of the resulting MIPs. Therefore, two silica-based MIPs for pepsin enzyme were developed using 3-aminopropyltriethoxysilane as a functional monomer and tetraethyl orthosilicate as a crosslinker to achieve a one-pot synthesis. Results of our study revealed that rhodamine b dyed MIPs (RMIPs) showed stronger binding, indicated by a higher binding capacity value of 256 mg g-1 compared to 217 mg g-1 for fluorescein dyed MIPs (FMIPs). Moreover, RMIPs showed superior sensitivity in the detection and quantitation of pepsin with a linear range from 0.28 to 42.85 µmol L-1 and a limit of detection (LOD) as low as 0.11 µmol L-1. In contrast, FMIPs covered a narrower range from 0.71 to 35.71 µmol L-1, and the LOD value reached 0.34 µmol L-1, which is three times less sensitive than RMIPs. Finally, the developed FMIPs and RMIPs were applied to a separation-free quantification system for pepsin in saliva samples without interference from any cross-reactors.
Collapse
|
|
1 |
|