1
|
Hettler S, Furqan M, Arenal R. Support-Based Transfer and Contacting of Individual Nanomaterials for In Situ Nanoscale Investigations. SMALL METHODS 2024; 8:e2400034. [PMID: 38470226 PMCID: PMC11672169 DOI: 10.1002/smtd.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Indexed: 03/13/2024]
Abstract
Although in situ transmission electron microscopy (TEM) of nanomaterials has been gaining importance in recent years, difficulties in sample preparation have limited the number of studies on electrical properties. Here, a support-based preparation method of individual 1D and 2D materials is presented, which yields a reproducible sample transfer for electrical investigation by in situ TEM. A mechanically rigid support grid facilitates the transfer and contacting to in situ chips by focused ion beam with minimum damage and contamination. The transfer quality is assessed by exemplary specimens of different nanomaterials, including a monolayer of WS2. Possible studies concern the interplay between structural properties and electrical characteristics on the individual nanomaterial level as well as failure analysis under electrical current or studies of electromigration, Joule heating, and related effects. The TEM measurements can be enriched by additional correlative microscopy and spectroscopy carried out on the identical object with techniques that allow a characterization with a spatial resolution in the range of a few microns. Although developed for in situ TEM, the present transfer method is also applicable to transferring nanomaterials to similar chips for performing further studies or even for using them in potential electrical/optoelectronic/sensing devices.
Collapse
|
2
|
Ignatane L, Ignatans R, Prikulis J, Trausa A, Tipaldi CF, Vanags E, Zubkins M, Smits K, Sarakovskis A. Fabrication of Large-Area High-Resolution Templates by Focused Ion Beam Combined with Colloidal Nanoparticle Dimer Deposition for SERS Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1784. [PMID: 39591026 PMCID: PMC11597278 DOI: 10.3390/nano14221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
This article presents an examination of well-controlled patterns created using a Ga+-based focused ion beam (FIB) on glass, while silicon substrates were used to evaluate the FIB performance by its achievable feature size versus time constraints. The pattern creation on glass was developed with the aim of studying potential surface-enhanced Raman spectroscopy (SERS) applications. Furthermore, the FIB was used to create dimer systems of periodically and randomly positioned dumbbell-shaped pits on the glass (each dimer occupies an area of 203 × 87 nm2). By following the bitmap pattern files, the FIB ensured there was 3000 dimer fabrication over a 20 × 20 μm2 large area, with a pit size and position variation below 10 nm. The article highlights that FIB can be used for precise large-area nano-fabrication. The gold nanoparticle dimers were formed on the prepatterned surface via capillary force-assisted deposition. The fabricated nanostructures were tested in SERS measurements. The enhancement factor for Rhodamine B molecule reached ~105, demonstrating the potential application of the method to create nanostructures in the sensor domain.
Collapse
|
3
|
Li Y, Xu S, Loeber TH, Vredenbregt EJD. Rubidium and Cesium Ion-Induced Electron and Ion Signals for Scanning Ion Microscopy Applications. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:817-824. [PMID: 39255067 DOI: 10.1093/mam/ozae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Scanning ion microscopy applications of novel focused ion beam (FIB) systems based on ultracold rubidium (Rb) and cesium (Cs) atoms were investigated via ion-induced electron and ion yields. Results measured on the Rb+ and Cs+ FIB systems were compared with results from commercially available gallium (Ga+) FIB systems to verify the merits of applying Rb+ and Cs+ for imaging. The comparison shows that Rb+ and Cs+ have higher secondary electron (SE) yields on a variety of pure element targets than Ga+, which implies a higher signal-to-noise ratio can be achieved for the same dose in SE imaging using Rb+/Cs+ than Ga+. In addition, analysis of the ion-induced ion signals reveals that secondary ions dominate Cs+ induced ion signals while the Rb+/Ga+ induced signals contain more backscattered ions.
Collapse
|
4
|
Karimi K, Fardoost A, Mhatre N, Rajan J, Boisvert D, Javanmard M. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. MICROMACHINES 2024; 15:1274. [PMID: 39459148 PMCID: PMC11509582 DOI: 10.3390/mi15101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
In recent years, the field of micro- and nanochannel fabrication has seen significant advancements driven by the need for precision in biomedical, environmental, and industrial applications. This review provides a comprehensive analysis of emerging fabrication technologies, including photolithography, soft lithography, 3D printing, electron-beam lithography (EBL), wet/dry etching, injection molding, focused ion beam (FIB) milling, laser micromachining, and micro-milling. Each of these methods offers unique advantages in terms of scalability, precision, and cost-effectiveness, enabling the creation of highly customized micro- and nanochannel structures. Challenges related to scalability, resolution, and the high cost of traditional techniques are addressed through innovations such as deep reactive ion etching (DRIE) and multipass micro-milling. This paper also explores the application potential of these technologies in areas such as lab-on-a-chip devices, biomedical diagnostics, and energy-efficient cooling systems. With continued research and technological refinement, these methods are poised to significantly impact the future of microfluidic and nanofluidic systems.
Collapse
|
5
|
Shimakawa G, Demulder M, Flori S, Kawamoto A, Tsuji Y, Nawaly H, Tanaka A, Tohda R, Ota T, Matsui H, Morishima N, Okubo R, Wietrzynski W, Lamm L, Righetto RD, Uwizeye C, Gallet B, Jouneau PH, Gerle C, Kurisu G, Finazzi G, Engel BD, Matsuda Y. Diatom pyrenoids are encased in a protein shell that enables efficient CO 2 fixation. Cell 2024; 187:5919-5934.e19. [PMID: 39357521 DOI: 10.1016/j.cell.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/13/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Pyrenoids are subcompartments of algal chloroplasts that increase the efficiency of Rubisco-driven CO2 fixation. Diatoms fix up to 20% of global CO2, but their pyrenoids remain poorly characterized. Here, we used in vivo photo-crosslinking to identify pyrenoid shell (PyShell) proteins, which we localized to the pyrenoid periphery of model pennate and centric diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. In situ cryo-electron tomography revealed that pyrenoids of both diatom species are encased in a lattice-like protein sheath. Single-particle cryo-EM yielded a 2.4-Å-resolution structure of an in vitro TpPyShell1 lattice, which showed how protein subunits interlock. T. pseudonana TpPyShell1/2 knockout mutants had no PyShell sheath, altered pyrenoid morphology, and a high-CO2 requiring phenotype, with reduced photosynthetic efficiency and impaired growth under standard atmospheric conditions. The structure and function of the diatom PyShell provide a molecular view of how CO2 is assimilated in the ocean, a critical ecosystem undergoing rapid change.
Collapse
|
6
|
Scott JA, Bishop J, Budnik G, Toth M. Hydrogen Plasma Inhibits Ion Beam Restructuring of GaP. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53116-53122. [PMID: 39315410 DOI: 10.1021/acsami.4c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Focused ion beam (FIB) techniques are employed widely for nanofabrication and processing of materials and devices. However, ion irradiation often gives rise to severe damage due to atomic displacements that cause defect formation, migration, and clustering within the ion-solid interaction volume. The resulting restructuring degrades the functionality of materials and limits the utility of FIB ablation and nanofabrication techniques. Here we show that such restructuring can be inhibited by performing FIB irradiation in a hydrogen plasma environment via chemical pathways that modify defect binding energies and transport kinetics, as well as material ablation rates. The method is minimally invasive and has the potential to greatly expand the utility of FIB nanofabrication techniques in processing functional materials and devices.
Collapse
|
7
|
Wolff A, Klingner N, Thompson W, Zhou Y, Lin J, Xiao Y. A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1197-1207. [PMID: 39355300 PMCID: PMC11443649 DOI: 10.3762/bjnano.15.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.
Collapse
|
8
|
Ma C, Zheng F, Xu W, Liu W, Xu C, Chen Y, Sha J. Surface Roughness Effects on Confined Nanoscale Transport of Ions and Biomolecules. SMALL METHODS 2024; 8:e2301485. [PMID: 38150654 DOI: 10.1002/smtd.202301485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Biological channels, especially membrane proteins, play a crucial role in metabolism, facilitating the transport of nutrients and other materials across cell membranes in a bio-electrolyte environment. Artificial nanopores are employed to study ion and biomolecule transport behavior inside. While the non-specific interaction between the nanopore surface and transport targets has garnered significant attention, the impact of surface roughness is overlooked. In this study, Nanopores with different levels of inner surface roughness is created by adjusting the FIB (Focus Ion Beam) fabrication parameters. Experiments and molecular dynamics (MD) simulations are employed to demonstrate that greater roughness results from larger FIB beam currents and shorter processing times. Lower roughness increases the capture rate of biomolecules, while greater roughness enhances the normalized blockade current (ΔI/I0). The phenomenon of rougher nanopores are attributed to a barrier-dominated capture mechanism and more likely to induce DNA folding. This transport barrier exists in rough nanopores by utilizing steer molecular dynamics (SMD) simulations to investigate the force profile of a dA10 DNA molecule during translocation is demonstrated. This work illustrates how surface roughness influences the ionic current features and the translocation of biomolecules, paving a new way for tunning the molecule transport in nanopores.
Collapse
|
9
|
Radhakrishnan H, Rangarajan R, Pandian R, Dhara SK. Template-assisted growth of Ga-based nanoparticle clusters on Si: effect of post-annealing process on the Ga ion beam exposed 2D arrays fabricated by focused ion beam nanolithography. NANOTECHNOLOGY 2024; 35:375302. [PMID: 38865970 DOI: 10.1088/1361-6528/ad5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
We demonstrate template-assisted growth of gallium-based nanoparticle clusters on silicon substrate using a focused ion beam (FIB) nanolithography technique. The nanolithography counterpart of the technique steers a focussed 30 kV accelerated gallium ion beam on the surface of Si to create template patterns of two-dimensional dot arrays. Growth of the nanoparticles is governed by two vital steps namely implantation of gallium into the substrate via gallium beam exposure and formation of the stable nanoparticles on the surface of the substrate by subsequent annealing at elevated temperature in ammonia atmosphere. The growth primarily depends on the dose of implanted gallium which is in the order of 107atoms per spot and it is also critically influenced by the temperature and duration of the post-annealing treatment. By controlling the growth parameters, it is possible to obtain one particle per spot and particle densities as high as 109particles per square centimetre could be achieved in this case. The demonstrated growth process, utilizing the advantages of FIB nanolithography, is categorized under the guided organization approach as it combines both the classical top-down and bottom-up approaches. Patterned growth of the particles could be utilized as templates or nucleation sites for the growth of an organized array of nanostructures or quantum dot structures.
Collapse
|
10
|
Rumyantsev AV, Borgardt NI, Volkov RL, Chaplygin YA. Level set simulation of focused ion beam sputtering of a multilayer substrate. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:733-742. [PMID: 38952415 PMCID: PMC11216083 DOI: 10.3762/bjnano.15.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
The evolution of a multilayer sample surface during focused ion beam processing was simulated using the level set method and experimentally studied by milling a silicon dioxide layer covering a crystalline silicon substrate. The simulation took into account the redeposition of atoms simultaneously sputtered from both layers of the sample as well as the influence of backscattered ions on the milling process. Monte Carlo simulations were applied to produce tabulated data on the angular distributions of sputtered atoms and backscattered ions. Two sets of test structures including narrow trenches and rectangular boxes with different aspect ratios were experimentally prepared, and their cross sections were visualized in scanning transmission electron microscopy images. The superimposition of the calculated structure profiles onto the images showed a satisfactory agreement between simulation and experimental results. In the case of boxes that were prepared with an asymmetric cross section, the simulation can accurately predict the depth and shape of the structures, but there is some inaccuracy in reproducing the form of the left sidewall of the structure with a large amount of the redeposited material. To further validate the developed simulation approach and gain a better understanding of the sputtering process, the distribution of oxygen atoms in the redeposited layer derived from the numerical data was compared with the corresponding elemental map acquired by energy-dispersive X-ray microanalysis.
Collapse
|
11
|
Xiao M, Wu Z, Liu G, Liao X, Yuan J, Zhou Y. Spatially Controlled Phase Transition in MoTe 2 Driven by Focused Ion Beam Irradiations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31747-31755. [PMID: 38839057 DOI: 10.1021/acsami.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Phase transitions play an important role in tuning the physical properties of two-dimensional (2D) materials as well as developing their high-performance device applications. Here, we reported the observation of a phase transition in few-layered MoTe2 flakes by the irradiation of gallium (Ga+) ions using a focused ion beam (FIB) system. The semiconducting 2H phase of MoTe2 can be controllably converted to the metallic 1T'-like phase via Te defect engineering during irradiations. By taking advantage of the nanometer-sized Ga+ ion probe proved by FIB, in-plane 1T'-2H homojunctions of MoTe2 at submicrometer scale can be fabricated. Furthermore, we demonstrate the improvement of device performance (on-state current over 2 orders of magnitude higher) in MoTe2 transistors using the patterned 1T'-like phase regions as contact electrodes. Our study provides a new strategy to drive the phase transitions in MoTe2, tune their properties, and develop high-performance devices, which also extends the applications of FIB technology in 2D materials and their devices.
Collapse
|
12
|
Prochukhan N, Rafferty A, Canavan M, Daly D, Selkirk A, Rameshkumar S, Morris MA. Development and application of a 3D image analysis strategy for focused ion beam - Scanning electron microscopy tomography of porous soft materials. Microsc Res Tech 2024; 87:1335-1347. [PMID: 38362795 DOI: 10.1002/jemt.24514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
In recent years, the potential of porous soft materials in various device technologies has increased in importance due to applications in fields, such as wearable electronics, medicine, and transient devices. However, understanding the 3-dimensional architecture of porous soft materials at the microscale remains a challenge. Herein, we present a method to structurally analyze soft materials using Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography. Two materials, polymethyl methacrylate (PMMA) membrane and pine wood veneer were chosen as test-cases. FIB-SEM was successfully used to reconstruct the true topography of these materials in 3D. Structural and physical properties were subsequently deduced from the rendered 3D models. The methodology used segmentation, coupled with optimized thresholding, image processing, and reconstruction protocols. The 3D models generated pore size distribution, pore inter-connectivity, tortuosity, thickness, and curvature data. It was shown that FIB-SEM tomography provides both an informative and visual depiction of structure. To evaluate and validate the FIB-SEM reconstructions, porous properties were generated from the physical property analysis techniques, gas adsorption analysis using Brunauer-Emmett-Teller (BET) surface area analysis and mercury intrusion porosimetry (MIP) analysis. In general, the data obtained from the FIB-SEM reconstructions was well-matched with the physical data. RESEARCH HIGHLIGHTS: Porous specimens of both synthetic and biological nature, a poly(methyl methacrylate) membrane and a pine veneer respectively, are reconstructed via FIB-SEM tomography without resin-embedding. Different thresholding and reconstruction methods are explored whereby shadowing artifacts are present with the aid of free open-source software. Reconstruction data is compared to physical data: MIP, gas adsorption isotherms which are analyzed via BET and Barrett-Joyner-Halenda (BJH) analysis to yield a full picture of the materials.
Collapse
|
13
|
Olaniyan II, Schmitt SW, Albert J, Garcia Fernandez J, Marcelot C, Cours R, Deshpande V, Cherkashin N, Schamm-Chardon S, Kim DJ, Dubourdieu C. Shaping single crystalline BaTiO 3nanostructures by focused neon or helium ion milling. NANOTECHNOLOGY 2024; 35:335301. [PMID: 38701774 DOI: 10.1088/1361-6528/ad4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The realization of perovskite oxide nanostructures with controlled shape and dimensions remains a challenge. Here, we investigate the use of helium and neon focused ion beam (FIB) milling in an ion microscope to fabricate BaTiO3nanopillars of sub-500 nm in diameter starting from BaTiO3(001) single crystals. Irradiation of BaTiO3with He ions induces the formation of nanobubbles inside the material, eventually leading to surface swelling and blistering. Ne-FIB is shown to be suitable for milling without inducing surface swelling. The resulting structures are defect-free single crystal nanopillars, which are enveloped, on the top and lateral sidewalls, by a point defect-rich crystalline region and an outer Ne-rich amorphous layer. The amorphous layer can be selectively etched by dipping in diluted HF. The geometry and beam-induced damage of the milled nanopillars depend strongly on the patterning parameters and can be well controlled. Ne ion milling is shown to be an effective method to rapidly prototype BaTiO3crystalline nanostructures.
Collapse
|
14
|
Krämer M, Favelukis B, Sokol M, Rosen BA, Eliaz N, Kim SH, Gault B. Facilitating Atom Probe Tomography of 2D MXene Films by In Situ Sputtering. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024:ozae035. [PMID: 38767284 DOI: 10.1093/mam/ozae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 03/31/2024] [Indexed: 05/22/2024]
Abstract
2D materials are emerging as promising nanomaterials for applications in energy storage and catalysis. In the wet chemical synthesis of MXenes, these 2D transition metal carbides and nitrides are terminated with a variety of functional groups, and cations such as Li+ are often used to intercalate into the structure to obtain exfoliated nanosheets. Given the various elements involved in their synthesis, it is crucial to determine the detailed chemical composition of the final product, in order to better assess and understand the relationships between composition and properties of these materials. To facilitate atom probe tomography analysis of these materials, a revised specimen preparation method is presented in this study. A colloidal Ti3C2Tz MXene solution was processed into an additive-free free-standing film and specimens were prepared using a dual beam scanning electron microscope/focused ion beam. To mechanically stabilize the fragile specimens, they were coated using an in situ sputtering technique. As various 2D material inks can be processed into such free-standing films, the presented approach is pivotal for enabling atom probe analysis of other 2D materials.
Collapse
|
15
|
Lee A, Lee J, Leung V, Nurmikko A. Versatile On-Chip Programming of Circuit Hardware for Wearable and Implantable Biomedical Microdevices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306111. [PMID: 37904645 PMCID: PMC10754128 DOI: 10.1002/advs.202306111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 11/01/2023]
Abstract
Wearable and implantable microscale electronic sensors have been developed for a range of biomedical applications. The sensors, typically millimeter size silicon microchips, are sought for multiple sensing functions but are severely constrained by size and power. To address these challenges, a hardware programmable application-specific integrated circuit design is proposed and post-process methodology is exemplified by the design of battery-less wireless microchips. Specifically, both mixed-signal and radio frequency circuits are designed by incorporating metal fuses and anti-fuses on the top metal layer to enable programmability of any number of features in hardware of the system-on-chip (SoC) designs. This is accomplished in post-foundry editing by combining laser ablation and focused ion beam processing. The programmability provided by the technique can significantly accelerate the SoC chip development process by enabling the exploration of multiple internal circuit parameters without the requirement of additional programming pads or extra power consumption. As examples, experimental results are described for sub-millimeter size complementary metal-oxide-semiconductor microchips being developed for wireless electroencephalogram sensors and as implantable microstimulators for neural interfaces. The editing technique can be broadly applicable for miniaturized biomedical wearables and implants, opening up new possibilities for their expedited development and adoption in the field of smart healthcare.
Collapse
|
16
|
Grandfield K, Binkley DM, Ay B, Liu ZM, Wang X, Davies JE. Nanoscale implant anchorage aided by cement line deposition into titanium dioxide nanotubes. J Biomed Mater Res A 2023; 111:1866-1874. [PMID: 37358344 DOI: 10.1002/jbm.a.37585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
The success of titanium dental implants relies on osseointegration, the load-bearing connection between bone tissue and the device that, in contact osteogenesis, comprises the deposition of bony cement line matrix onto the implant surface. Titanium dioxide nanotubes (NTs) are considered a promising surface for improved osseointegration, yet the mechanisms of cement line integration with such features remains elusive. Herein, we illustrate cement line deposition into NTs on the surface of titanium implants with two underlaying microstructures: a machined surface or a blasted/acid etched surface placed in the tibiae of Wistar rats. After retrieval, scanning electron microscopy of tissue reflected from the implant surface indicated minimal incursion of the cement line matrix into the NTs. To investigate this further, focused ion beam was utilized to prepare cross-sectional samples that could be characterized using scanning transmission electron microscopy. The cement line matrix covered NTs regardless of underlying microstructure, which was further confirmed by elemental analysis. In some instances, cement line infiltration into the NTs was noted, which reveals a mechanism of nanoscale anchorage. This study is the first to demonstrate cement line deposition into titanium NTs, suggesting nano-anchorage as a mechanism for the success of the NT modified surfaces in vivo.
Collapse
|
17
|
Feng Z, Giubertoni D, Cian A, Valt M, Barozzi M, Gaiardo A, Guidi V. Nano Hotplate Fabrication for Metal Oxide-Based Gas Sensors by Combining Electron Beam and Focused Ion Beam Lithography. MICROMACHINES 2023; 14:2060. [PMID: 38004917 PMCID: PMC10673319 DOI: 10.3390/mi14112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au++ ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C.
Collapse
|
18
|
Jiang S, Ortalan V. A Comparative Study of Gallium-, Xenon-, and Helium- Focused Ion Beams for the Milling of GaN. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2898. [PMID: 37947742 PMCID: PMC10647709 DOI: 10.3390/nano13212898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The milling profiles of single-crystal gallium nitride (GaN) when subjected to focused ion beams (FIBs) using gallium (Ga), xenon (Xe), and helium (He) ion sources were investigated. An experimental analysis via annular dark-field scanning transmission electron microscopy (ADF-STEM) and high-resolution transmission electron microscopy (HRTEM) revealed that Ga-FIB milling yields trenches with higher aspect ratios compared to Xe-FIB milling for the selected ion beam parameters (30 kV, 42 pA), while He-FIB induces local lattice disorder. Molecular dynamics (MD) simulations were employed to investigate the milling process, confirming that probe size critically influences trench aspect ratios. Interestingly, the MD simulations also showed that Xe-FIB generates higher aspect ratios than Ga-FIB with the same probe size, indicating that Xe-FIB could also be an effective option for nanoscale patterning. Atomic defects such as vacancies and interstitials in GaN from He-FIB milling were suggested by the MD simulations, supporting the lattice disorder observed via HRTEM. This combined experimental and simulation approach has enhanced our understanding of FIB milling dynamics and will benefit the fabrication of nanostructures via the FIB technique.
Collapse
|
19
|
Yang Q, Wu C, Zhu D, Li J, Cheng J, Zhang X. The reduction of FIB damage on cryo-lamella by lowering energy of ion beam revealed by a quantitative analysis. Structure 2023; 31:1275-1281.e4. [PMID: 37527655 DOI: 10.1016/j.str.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
Focused ion beam (FIB) is widely used for thinning frozen cells to produce lamellae for cryo-electron microscopy imaging and for protein structures study in vivo. However, FIB damages the lamellae and a quantitative experimental analysis of the damage is lacking. We used a 30-keV gallium FIB to prepare lamellae of a highly concentrated icosahedral virus sample. The viruses were grouped according to their distance from the surface of lamellae and reconstructed. Damage to the approximately 20-nm-thick outermost lamella surface was similar to that from exposure to 16 e-/Å2 in a 300-kV cryo-electron microscope at high-resolution range. The damage was negligible at a depth beyond 50 nm, which was reduced to 30 nm if 8-keV Ga+ was used during polishing. We designed extra steps in the reconstruction refinement to maximize undamaged signals and increase the resolution. The results demonstrated that low-energy beam polishing was essential for high-quality thinner lamellae.
Collapse
|
20
|
Titze M, Poplawsky JD, Kretschmer S, Krasheninnikov AV, Doyle BL, Bielejec ES, Hobler G, Belianinov A. Measurement and Simulation of Ultra-Low-Energy Ion-Solid Interaction Dynamics. MICROMACHINES 2023; 14:1884. [PMID: 37893321 PMCID: PMC10609604 DOI: 10.3390/mi14101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Ion implantation is a key capability for the semiconductor industry. As devices shrink, novel materials enter the manufacturing line, and quantum technologies transition to being more mainstream. Traditional implantation methods fall short in terms of energy, ion species, and positional precision. Here, we demonstrate 1 keV focused ion beam Au implantation into Si and validate the results via atom probe tomography. We show the Au implant depth at 1 keV is 0.8 nm and that identical results for low-energy ion implants can be achieved by either lowering the column voltage or decelerating ions using bias while maintaining a sub-micron beam focus. We compare our experimental results to static calculations using SRIM and dynamic calculations using binary collision approximation codes TRIDYN and IMSIL. A large discrepancy between the static and dynamic simulation is found, which is due to lattice enrichment with high-stopping-power Au and surface sputtering. Additionally, we demonstrate how model details are particularly important to the simulation of these low-energy heavy-ion implantations. Finally, we discuss how our results pave a way towards much lower implantation energies while maintaining high spatial resolution.
Collapse
|
21
|
Allen FI, Blanchard PT, Lake R, Pappas D, Xia D, Notte JA, Zhang R, Minor AM, Sanford NA. Fabrication of Specimens for Atom Probe Tomography Using a Combined Gallium and Neon Focused Ion Beam Milling Approach. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1628-1638. [PMID: 37584510 DOI: 10.1093/micmic/ozad078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision milling capability of the noble gas neon ion beam. Using a titanium-aluminum alloy and a layered aluminum/aluminum-oxide tunnel junction sample as test cases, we show that atom probe tips prepared using the combined gallium and neon ion approach are free from the gallium contamination that typically frustrates composition analysis of these materials due to implantation, diffusion, and embrittlement effects. We propose that by using a focused ion beam from a noble gas species, such as the neon ions demonstrated here, atom probe tomography can be more reliably performed on a larger range of materials than is currently possible using conventional techniques.
Collapse
|
22
|
Yimam DT, Liang M, Ye J, Kooi BJ. 3D Nanostructuring of Phase-Change Materials Using Focused Ion Beam toward Versatile Optoelectronics Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303502. [PMID: 37657490 DOI: 10.1002/adma.202303502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/23/2023] [Indexed: 09/03/2023]
Abstract
In recent years, phase-change materials have gained importance in nanophotonics and optoelectronics. Sizable optical contrast and added degree of freedom from phase switching drive the use of phase-change materials in various optical devices with outstanding results and potential for real-world applications. The local crystallization/amorphization of phase-change materials and the corresponding reflectance tuning by the crystallized/amorphized region size have potential applications, for example, for future dynamic display devices. Although the resolution is much higher than in current display devices, the pixel sizes in those devices are limited by the locally switchable structure size. Here, the spot sizes are further reduced by using ion beams instead of laser beams, dramatically increasing pixel density, demonstrating superior resolution. In addition, the power to sputter away materials can be utilized in creating nanostructures with relative height differences and local contrast. The experiment focuses on one archetypal phase-change material, Sb2 Se3 , prepared by pulsed-laser deposition on a reflective gold substrate. This study demonstrates that structural colors can be produced and reflectance tuning can be achieved by focused ion beam milling/sputtering of phase-change materials at the nanoscale. Furthermore, the local structuring of phase-change materials by focused ion beam can produce high-pixel-density display devices with superior resolutions.
Collapse
|
23
|
Zhang J, Yang X, Li Z, Cai J, Zhang J, Han X. Novel Method for Image-Based Quantified In Situ Transmission Electron Microscope Nanoindentation with High Spatial and Temporal Resolutions. MICROMACHINES 2023; 14:1708. [PMID: 37763871 PMCID: PMC10537563 DOI: 10.3390/mi14091708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
In situ TEM mechanical stages based on micro-electromechanical systems (MEMS) have developed rapidly over recent decades. However, image-based quantification of MEMS mechanical stages suffers from the trade-off between spatial and temporal resolutions. Here, by taking in situ TEM nanoindentation as an example, we developed a novel method for image-based quantified in situ TEM mechanical tests with both high spatial and temporal resolutions. A reference beam was introduced to the close vicinity of the indenter-sample region. By arranging the indenter, the sample, and the reference beam in a micron-sized area, the indentation depth and load can be directly and dynamically acquired from the relative motion of markers on the three components, while observing the indentation process at a relatively high magnification. No alteration of viewing area is involved throughout the process. Therefore, no deformation events will be missed, and the collection rate of quantification data can be raised significantly.
Collapse
|
24
|
Shandyba N, Kirichenko D, Sharov V, Chernenko N, Balakirev S, Solodovnik M. Modulation of GaAs nanowire growth by pre-treatment of Si substrate using a Ga focused ion beam. NANOTECHNOLOGY 2023; 34:465603. [PMID: 37557087 DOI: 10.1088/1361-6528/acee84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
We reveal a novel phenomenon observed after self-catalytic growth of GaAs nanowires (NWs) on Si(111) substrates treated with a Ga focused ion beam (FIB). Depending on the ion dose, NW arrays with various geometrical parameters can be obtained. A minor treatment of the substrate enables a slight increase in the surface density of NWs relative to an unmodified substrate area. As the ion dose is increased up to ∼0.1 pCμm-2, the growth of GaAs NWs and nanocrystals is suppressed. However, a further increase in the ion dose stimulates the crystal growth leading to the formation of extremely thin NWs (39 ± 5 nm) with a remarkably high surface density of up to 15μm-2. Resting upon an analysis of the surface structure before and after stages of ion-beam treatment, ultra-high vacuum annealing and NW growth, we propose a mechanism underlying the phenomenon observed. We assume that the chemical interaction between embedded Ga ions and a native Si oxide layer leads either to the enhancement of the passivation properties of the oxide layer within FIB-modified areas (at low and middle ion doses), or to the etching of the passivating oxide layer by excess Ga atoms, resulting in the formation of pores (at high ion doses). Due to this behavior, local fabrication of GaAs NW arrays with a diverse range of characteristics can be implemented on the same substrate. This approach opens a new way for self-catalytic growth of GaAs NWs.
Collapse
|
25
|
Ding Z, Tang Y, Chakravadhanula VSK, Ma Q, Tietz F, Dai Y, Scherer T, Kübel C. Exploring the influence of focused ion beam processing and scanning electron microscopy imaging on solid-state electrolytes. Microscopy (Oxf) 2023; 72:326-335. [PMID: 36408996 PMCID: PMC10402911 DOI: 10.1093/jmicro/dfac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 08/05/2023] Open
Abstract
Performing reliable preparation of transmission electron microscopy (TEM) samples is the necessary basis for a meaningful investigation by ex situ and even more so by in situ TEM techniques, but it is challenging using materials that are sensitive to electron beam irradiation. Focused ion beam is currently the most commonly employed technique for a targeted preparation, but the structural modifications induced during focused ion beam preparation are not fully understood for a number of materials. Here, we have investigated the impact of both the electron and the Ga+ ion beam on insulating solid-state electrolytes (lithium phosphorus oxynitride, Na-β"-alumina solid electrolyte and Na3.4Si2.4Zr2P0.6O12 (NaSICON)) and observed significant lithium/sodium whisker growth induced by both the electron and ion beam already at fairly low dose, leading to a significant change in the chemical composition. The metal whisker growth is presumably mainly due to surface charging, which can be reduced by coating with a gold layer or preparation under cryogenic conditions as efficient approaches to stabilize the solid electrolyte for scanning electron microscopy imaging and TEM sample preparation. Details on the different preparation approaches, the acceleration voltage dependence and the induced chemical and morphological changes are reported.
Collapse
|