1
|
Abstract
Natural products containing carbon-phosphorus bonds (phosphonic and phosphinic acids) have found widespread use in medicine and agriculture. Recent years have seen a renewed interest in the biochemistry and biology of these compounds with the cloning of the biosynthetic gene clusters for several family members. This review discusses the commonalities and differences in the molecular logic that lie behind the biosynthesis of these compounds. The current knowledge regarding the metabolic pathways and enzymes involved in the production of a number of natural products, including the approved antibiotic fosfomycin, the widely used herbicide phosphinothricin (PT), and the clinical candidate for treatment of malaria FR-900098, is presented. Many of the enzymes involved in the biosynthesis of these compounds catalyze chemically and biologically unprecedented transformations, and a wealth of new biochemistry has been revealed through their study. These investigations have also suggested new strategies for natural product discovery.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
250 |
2
|
Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 2014; 15:1351-70. [PMID: 24766095 PMCID: PMC4819585 DOI: 10.1517/14656566.2014.914172] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
INTRODUCTION In the era of multidrug-resistant, extensively drug-resistant (XDR) and even pandrug-resistant Gram-negative microorganisms, the medical community is facing the threat of untreatable infections particularly those caused by carbapenemase-producing bacteria, that is, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Therefore, all the presently available antibiotics, as well as for the near future compounds, are presented and discussed. AREAS COVERED Current knowledge concerning mechanisms of action, in vitro activity and interactions, pharmacokinetic/pharmacodynamics, clinical efficacy and toxicity issues for revived and novel antimicrobial agents overcoming current resistance mechanisms, including colistin, tigecycline, fosfomycin, temocillin, carbapenems, and antibiotics still under development for the near future such as plazomicin, eravacycline and carbapenemase inhibitors is discussed. EXPERT OPINION Colistin is active in vitro and effective in vivo against XDR carbapenemase-producing microorganisms in the critically ill host, whereas tigecycline, with the exception of P. aeruginosa, has a similar spectrum of activity. The efficacy of combination therapy in bacteremias and ventilator-associated pneumonia caused by K. pneumoniae carbapenemase producers seems to be obligatory, whereas in cases of P. aeruginosa and A. baumannii its efficacy is questionable. Fosfomycin, which is active against P. aeruginosa and K. pneumoniae, although promising, shares poor experience in XDR infections. The in vivo validity of the newer potent compounds still necessitates the evaluation of Phase III clinical trials particularly in XDR infections.
Collapse
|
Review |
11 |
217 |
3
|
Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol 2014; 5:551. [PMID: 25368610 PMCID: PMC4202707 DOI: 10.3389/fmicb.2014.00551] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023] Open
Abstract
The increasing prevalence of hospital and community-acquired infections caused by multidrug-resistant (MDR) bacterial pathogens is limiting the options for effective antibiotic therapy. Moreover, this alarming spread of antimicrobial resistance has not been paralleled by the development of novel antimicrobials. Resistance to the scarce new antibiotics is also emerging. In this context, the rational use of older antibiotics could represent an alternative to the treatment of MDR bacterial pathogens. It would help to optimize the armamentarium of antibiotics in the way to preserve new antibiotics and avoid the prescription of molecules known to favor the spread of resistance (i.e., quinolones). Furthermore, in a global economical perspective, this could represent a useful public health orientation knowing that several of these cheapest “forgotten” antibiotics are not available in many countries. We will review here the successful treatment of MDR bacterial infections with the use of old antibiotics and discuss their place in current practice.
Collapse
|
Review |
11 |
159 |
4
|
Dijkmans AC, Zacarías NVO, Burggraaf J, Mouton JW, Wilms EB, van Nieuwkoop C, Touw DJ, Stevens J, Kamerling IMC. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel) 2017; 6:E24. [PMID: 29088073 PMCID: PMC5745467 DOI: 10.3390/antibiotics6040024] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023] Open
Abstract
Fosfomycin is a bactericidal, low-molecular weight, broad-spectrum antibiotic, with putative activity against several bacteria, including multidrug-resistant Gram-negative bacteria, by irreversibly inhibiting an early stage in cell wall synthesis. Evidence suggests that fosfomycin has a synergistic effect when used in combination with other antimicrobial agents that act via a different mechanism of action, thereby allowing for reduced dosages and lower toxicity. Fosfomycin does not bind to plasma proteins and is cleared via the kidneys. Due to its extensive tissue penetration, fosfomycin may be indicated for infections of the CNS, soft tissues, bone, lungs, and abscesses. The oral bioavailability of fosfomycin tromethamine is <50%; therefore, oral administration of fosfomycin tromethamine is approved only as a 3-gram one-time dose for treating urinary tract infections. However, based on published PK parameters, PK/PD simulations have been performed for several multiple-dose regimens, which might lead to the future use of fosfomycin for treating complicated infections with multidrug-resistant bacteria. Because essential pharmacological information and knowledge regarding mechanisms of resistance are currently limited and/or controversial, further studies are urgently needed, and fosfomycin monotherapy should be avoided.
Collapse
|
Review |
8 |
133 |
5
|
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014; 23:243-59. [PMID: 24375653 DOI: 10.1002/pro.2414] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022]
Abstract
Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.
Collapse
|
Review |
11 |
99 |
6
|
Kaye KS, Rice LB, Dane AL, Stus V, Sagan O, Fedosiuk E, Das AF, Skarinsky D, Eckburg PB, Ellis-Grosse EJ. Fosfomycin for Injection (ZTI-01) Versus Piperacillin-tazobactam for the Treatment of Complicated Urinary Tract Infection Including Acute Pyelonephritis: ZEUS, A Phase 2/3 Randomized Trial. Clin Infect Dis 2019; 69:2045-2056. [PMID: 30861061 PMCID: PMC6880332 DOI: 10.1093/cid/ciz181] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND ZTI-01 (fosfomycin for injection) is an epoxide antibiotic with a differentiated mechanism of action (MOA) inhibiting an early step in bacterial cell wall synthesis. ZTI-01 has broad in vitro spectrum of activity, including multidrug-resistant Gram-negative pathogens, and is being developed for treatment of complicated urinary tract infection (cUTI) and acute pyelonephritis (AP) in the United States. METHODS Hospitalized adults with suspected or microbiologically confirmed cUTI/AP were randomized 1:1 to 6 g ZTI-01 q8h or 4.5 g intravenous (IV) piperacillin-tazobactam (PIP-TAZ) q8h for a fixed 7-day course (no oral switch); patients with concomitant bacteremia could receive up to 14 days. RESULTS Of 465 randomized patients, 233 and 231 were treated with ZTI-01 and PIP-TAZ, respectively. In the microbiologic modified intent-to-treat (m-MITT) population, ZTI-01 met the primary objective of noninferiority compared with PIP-TAZ with overall success rates of 64.7% (119/184 patients) vs 54.5% (97/178 patients), respectively; treatment difference was 10.2% (95% confidence interval [CI]: -0.4, 20.8). Clinical cure rates at test of cure (TOC, day 19-21) were high and similar between treatments (90.8% [167/184] vs 91.6% [163/178], respectively). In post hoc analysis using unique pathogens typed by pulsed-field gel electrophoresis, overall success rates at TOC in m-MITT were 69.0% (127/184) for ZTI-01 versus 57.3% (102/178) for PIP-TAZ (difference 11.7% 95% CI: 1.3, 22.1). ZTI-01 was well tolerated. Most treatment-emergent adverse events, including hypokalemia and elevated serum aminotransferases, were mild and transient. CONCLUSIONS ZTI-01 was effective for treatment of cUTI including AP and offers a new IV therapeutic option with a differentiated MOA for patients with serious Gram-negative infections. CLINICAL TRIAL REGISTRATION NCT02753946.
Collapse
|
Clinical Trial, Phase II |
6 |
99 |
7
|
Giske CG. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin Microbiol Infect 2015; 21:899-905. [PMID: 26027916 DOI: 10.1016/j.cmi.2015.05.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022]
Abstract
Recently there has been a renewed interest in reviving older antimicrobial agents, particularly those with activity against multidrug-resistant Gram-negative bacilli. Because many such antimicrobials are not licensed in all countries, there is a paucity of international surveillance data, and none of these agents is part of any antimicrobial resistance surveillance on the level of the EU. Some of the agents are used in lower urinary tract infection, whereas most available supranational surveillance data pertain to severe infections such as bloodstream infections. Among old antimicrobial agents, the most interesting compounds from a clinical perspective are the two intravenous agents colistin and temocillin, the two oral agents pivmecillinam and nitrofurantoin, and fosfomycin, which is available both for intravenous and oral use. The most interesting target microorganisms are Enterobacteriaceae, although colistin also has good activity against Pseudomonas aeruginosa and Acinetobacter species. Recent European surveillance data point to approximately 5% resistance to colistin in general among Klebsiella pneumoniae, whereas resistance in carbapenemase-producing Enterobacteriaceae may be up to 15% to 20% in some settings. Temocillin is stable against many extended-spectrum β-lactamase-producing Enterobacteriaceae and some carbapenemase producers, but low-level resistance is not uncommon in extended-spectrum β-lactamase producers, and high-level resistance is always seen with OXA-48 group carbapenemases. Fosfomycin resistance is rare in areas with limited use but increasing is in countries with higher usage. Resistance levels to mecillinam and nitrofurantoin are generally low in EU countries, but clinical data supporting treatment efficacy of multidrug-resistant strains are few. Systematic surveillance of the above-mentioned agents will be important, particularly for those agents used in severe infections.
Collapse
|
Review |
10 |
98 |
8
|
Karaiskos I, Giamarellou H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics (Basel) 2020; 9:E61. [PMID: 32033322 PMCID: PMC7167803 DOI: 10.3390/antibiotics9020061] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
Extended spectrum β-lactamase (ESBL)-producing bacteria are prevalent worldwide and correlated with hospital infections, but they have been evolving as an increasing cause of community acquired infections. The spread of ESBL constitutes a major threat for public health, and infections with ESBL-producing organisms have been associated with poor outcomes. Established therapeutic options for severe infections caused by ESBL-producing organisms are considered the carbapenems. However, under the pressure of carbapenem overuse and the emergence of resistance, carbapenem-sparing strategies have been implemented. The administration of carbapenem-sparing antibiotics for the treatment of ESBL infections has yielded conflicting results. Herein, the current available knowledge regarding carbapenem-sparing strategies for ESBL producers is reviewed, and the optimal conditions for the "when and how" of carbapenem-sparing agents is discussed. An important point of the review focuses on piperacillin-tazobactam as the agent arousing the most debate. The most available data regarding non-carbapenem β-lactams (i.e., ceftolozane-tazobactam, ceftazidime-avibactam, temocillin, cephamycins and cefepime) are also thoroughly presented as well as non β-lactams (i.e., aminoglycosides, quinolones, tigecycline, eravacycline and fosfomycin).
Collapse
|
Review |
5 |
90 |
9
|
In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 ( Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.00476-17. [PMID: 28396549 DOI: 10.1128/aac.00476-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/07/2017] [Indexed: 01/19/2023] Open
Abstract
Fosfomycin is a broad-spectrum agent with activity against Gram-positive and Gram-negative bacteria, including drug-resistant strains, such as extended-spectrum-beta-lactamase (ESBL)-producing and carbapenem-resistant (CR) Gram-negative rods. In the present study, the pharmacokinetic/pharmacodynamic (PK/PD) activity of ZTI-01 (fosfomycin for injection) was evaluated in the neutropenic murine thigh infection model against 5 Escherichia coli, 3 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa strains, including a subset with ESBL and CR phenotypes. The pharmacokinetics of ZTI-01 were examined in mice after subcutaneous administration of 3.125, 12.5, 50, 200, 400, and 800 mg/kg of body weight. The half-life ranged from 0.51 to 1.1 h, area under the concentration-time curve (AUC0-∞) ranged from 1.4 to 87 mg · h/liter, and maximum concentrations ranged from 0.6 to 42.4 mg/liter. Dose fractionation demonstrated the AUC/MIC ratio to be the PK/PD index most closely linked to efficacy (R2 = 0.70). Net stasis and bactericidal activity were observed against all strains. Net stasis was observed at 24-h AUC/MIC ratio values of 24, 21, and 15 for E. coli, K., pneumoniae and P. aeruginosa, respectively. For the Enterobacteriaceae group, stasis was noted at mean 24-h AUC/MIC ratio targets of 23 and 1-log kill at 83. Survival in mice infected with E. coli 145 was maximal at 24-h AUC/MIC ratio exposures of 9 to 43, which is comparable to the stasis exposures identified in the PK/PD studies. These results should prove useful for the design of clinical dosing regimens for ZTI-01 in the treatment of serious infections due to Enterobacteriaceae and Pseudomonas.
Collapse
|
Journal Article |
8 |
85 |
10
|
Pujol M, Miró JM, Shaw E, Aguado JM, San-Juan R, Puig-Asensio M, Pigrau C, Calbo E, Montejo M, Rodriguez-Álvarez R, Garcia-Pais MJ, Pintado V, Escudero-Sánchez R, Lopez-Contreras J, Morata L, Montero M, Andrés M, Pasquau J, Arenas MDM, Padilla B, Murillas J, Jover-Sáenz A, López-Cortes LE, García-Pardo G, Gasch O, Videla S, Hereu P, Tebé C, Pallarès N, Sanllorente M, Domínguez MÁ, Càmara J, Ferrer A, Padullés A, Cuervo G, Carratalà J. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin Infect Dis 2021; 72:1517-1525. [PMID: 32725216 PMCID: PMC8096235 DOI: 10.1093/cid/ciaa1081] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We aimed to determine whether daptomycin plus fosfomycin provides higher treatment success than daptomycin alone for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia and endocarditis. METHODS A randomized (1:1) phase 3 superiority, open-label, and parallel group clinical trial of adult inpatients with MRSA bacteremia was conducted at 18 Spanish hospitals. Patients were randomly assigned to receive either 10 mg/kg of daptomycin intravenously daily plus 2 g of fosfomycin intravenously every 6 hours, or 10 mg/kg of daptomycin intravenously daily. Primary endpoint was treatment success 6 weeks after the end of therapy. RESULTS Of 167 patients randomized, 155 completed the trial and were assessed for the primary endpoint. Treatment success at 6 weeks after the end of therapy was achieved in 40 of 74 patients who received daptomycin plus fosfomycin and in 34 of 81 patients who were given daptomycin alone (54.1% vs 42.0%; relative risk, 1.29 [95% confidence interval, .93-1.8]; P = .135). At 6 weeks, daptomycin plus fosfomycin was associated with lower microbiologic failure (0 vs 9 patients; P = .003) and lower complicated bacteremia (16.2% vs 32.1%; P = .022). Adverse events leading to treatment discontinuation occurred in 13 of 74 patients (17.6%) receiving daptomycin plus fosfomycin, and in 4 of 81 patients (4.9%) receiving daptomycin alone (P = .018). CONCLUSIONS Daptomycin plus fosfomycin provided 12% higher rate of treatment success than daptomycin alone, but this difference did not reach statistical significance. This antibiotic combination prevented microbiological failure and complicated bacteremia, but it was more often associated with adverse events. CLINICAL TRIALS REGISTRATION NCT01898338.
Collapse
|
Randomized Controlled Trial |
4 |
78 |
11
|
Yang X, Liu W, Liu Y, Wang J, Lv L, Chen X, He D, Yang T, Hou J, Tan Y, Xing L, Zeng Z, Liu JH. F33: A-: B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and bla CTX-M-55/-14/-65 in Escherichia coli from chickens in China. Front Microbiol 2014; 5:688. [PMID: 25566207 PMCID: PMC4267423 DOI: 10.3389/fmicb.2014.00688] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the occurrence of fosfomycin-resistant Escherichia coli from chickens and to characterize the plasmids carrying fosA3. A total of 661 E. coli isolates of chicken origin collected from 2009 to 2011 were screened for plasmid-mediated fosfomycin resistance determinants by PCR. Plasmids were characterized using PCR-based replicon typing, plasmid multilocus sequence typing, and restriction fragment length polymorphisms. Associated addiction systems and resistance genes were identified by PCR. PCR-mapping was used for analysis of the genetic context of fosA3. Fosfomycin resistance was detected in 58 isolates that also carried the fosA3 gene. Fifty-seven, 17, and 52 FosA3-producers also harbored bla CTX-M, rmtB, and floR genes, respectively. Most of the 58 fosA3-carrying isolates were clonally unrelated, and all fosA3 genes were located on plasmids belonged to F33:A-:B- (n = 18), IncN-F33:A-:B- (n = 7), IncHI2/ST3 (n = 10), IncI1/ST71 (n = 3), IncI1/ST108 (n = 3), and others. The genetic structures, IS26-ISEcp1-bla CTX-M-55-orf477-bla TEM-1-IS26-fosA3-1758bp-IS26 and ISEcp1-bla CTX-M-65-IS903-iroN-IS26-fosA3-536bp-IS26 were located on highly similar F33:A-:B- plasmids. In addition, bla CTX-M-14-fosA3-IS26 was frequently present on similar IncHI2/ST3 plasmids. IncFII plasmids had a significantly higher frequency of addiction systems (mean 3.5) than other plasmids. Our results showed a surprisingly high prevalence of fosA3 gene in E. coli isolates recovered from chicken in China. The spread of fosA3 can be attributed to horizontal dissemination of several epidemic plasmids, especially F33:A-:B- plasmids. Since coselection by other antimicrobials is the major driving force for the diffusion of the fosA3 gene, a strict antibiotic use policy is urgently needed in China.
Collapse
|
Journal Article |
11 |
77 |
12
|
Gardiner BJ, Stewardson AJ, Abbott IJ, Peleg AY. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust Prescr 2019; 42:14-19. [PMID: 30765904 DOI: 10.18773/austprescr.2019.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Uncomplicated urinary tract infection is one of the most common indications for antibiotic use in the community However the Gram-negative organisms that can cause the infection are becoming more resistant to antibiotics Many multidrug resistant organisms retain susceptibility to two old antibiotics nitrofurantoin and fosfomycin Advantages over newer drugs include their high urinary concentrations and minimal toxicity Fosfomycin is a potential treatment option for patients with uncomplicated urinary tract infection due to resistant organisms Nitrofurantoin may be more effective and can be used for urinary infections in pregnant women
Collapse
|
Review |
6 |
75 |
13
|
Gardiner BJ, Mahony AA, Ellis AG, Lawrentschuk N, Bolton DM, Zeglinski PT, Frauman AG, Grayson ML. Is fosfomycin a potential treatment alternative for multidrug-resistant gram-negative prostatitis? Clin Infect Dis 2013; 58:e101-5. [PMID: 24170195 DOI: 10.1093/cid/cit704] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multidrug-resistant gram-negative bacterial (MDR-GNB) infections of the prostate are an increasing problem worldwide, particularly complicating transrectal ultrasound (TRUS)-guided prostate biopsy. Fluoroquinolone-based regimens, once the mainstay of many protocols, are increasingly ineffective. Fosfomycin has reasonable in vitro and urinary activity (minimum inhibitory concentration breakpoint ≤64 µg/mL) against MDR-GNB, but its prostatic penetration has been uncertain, so it has not been widely recommended for the prophylaxis or treatment of MDR-GNB prostatitis. METHODS In a prospective study of healthy men undergoing a transurethral resection of the prostate for benign prostatic hyperplasia, we assessed serum, urine, and prostatic tissue (transition zone [TZ] and peripheral zone [PZ]) fosfomycin concentrations using liquid chromatography-tandem mass spectrometry, following a single 3-g oral fosfomycin dose within 17 hours of surgery. RESULTS Among the 26 participants, mean plasma and urinary fosfomycin levels were 11.4 ± 7.6 µg/mL and 571 ± 418 µg/mL, 565 ± 149 minutes and 581 ± 150 minutes postdose, respectively. Mean overall prostate fosfomycin levels were 6.5 ± 4.9 µg/g (range, 0.7-22.1 µg/g), with therapeutic concentrations detectable up to 17 hours following the dose. The mean prostate to plasma ratio was 0.67 ± 0.57. Mean concentrations within the TZ vs PZ prostate regions varied significantly (TZ, 8.3 ± 6.6 vs PZ, 4.4 ± 4.1 µg/g; P = .001). Only 1 patient had a mean prostatic fosfomycin concentration of <1 µg/g, whereas the majority (70%) had concentrations ≥4 µg/g. CONCLUSIONS Fosfomycin appears to achieve reasonable intraprostatic concentrations in uninflamed prostate following a single 3-g oral dose, such that it may be a potential option for prophylaxis pre-TRUS prostate biopsy and possibly for the treatment of MDR-GNB prostatitis. Formal clinical studies are now required.
Collapse
|
Journal Article |
12 |
72 |
14
|
Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 2016; 8:403-416. [PMID: 27384881 DOI: 10.1080/21505594.2016.1207834] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance has been identified by the World Health Organization as "one of the three greatest threats to human health." Gram negative bacteria in particular drive this alarming trend. Carbapenem-resistant Enterobacteriaceae (CRE) such as Escherichia coli, Klebsiella pneumoniae, and Enterobacter species are of particular importance as they are associated with poor clinical outcomes and are common causes for a variety of infections including bacteremia, urinary tract infection, intra-abdominal infections and pneumonia. CRE are difficult to treat as carbapenem resistance is often accompanied by resistance to additional drug classes. For example, CRE may be extensively drug resistant or even pandrug resistant. Unfortunately, CRE infections have increased over the past 15 y while new and effective antibiotics have not kept pace. Recently, however, new agents have become available to help treat CRE infection, and several more are under development. This article reviews the efficacy, safety, and pharmacokinetic issues around 4 emerging agents to treat CRE - ceftazidime-avibactam, fosfomycin, tigecycline, and minocycline. In addition, an overview of agents in the antibiotic pipeline - meropenem-vaborbactam, imipenem-relebactam, plazomicin, and eravacycline is provided. More established agents, such as those in the polymyxin class and aminoglycoside class (other than the pipeline agent plazomicin), are not addressed here.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
67 |
15
|
Reffert JL, Smith WJ. Fosfomycin for the treatment of resistant gram-negative bacterial infections. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2014; 34:845-57. [PMID: 24782335 DOI: 10.1002/phar.1434] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antimicrobial agent fosfomycin was discovered in 1969, at a time when bacteria had not yet developed extended-spectrum β-lactamases or carbapenemases. Decades later, it is not uncommon for gram-negative organisms to be multidrug-resistant and even pan-resistant to available antibiotic regimens, leaving clinicians with few therapeutic alternatives. Because fosfomycin has been shown to retain activity against these virulent pathogens, there is renewed interest in its use as a therapeutic agent. Fosfomycin formulations including fosfomycin disodium and the newer tromethamine salt are less toxic than other alternatives and are attractive options for resistant gram-negative and gram-positive infections. Oral fosfomycin tromethamine is approved for urinary tract infections in the United States, and an intravenous formulation is also available outside of the United States for systemic disease. The bactericidal action of fosfomycin occurs at an earlier step in cell wall synthesis than that of β-lactam antibiotics. From an in vitro standpoint, fosfomycin generally has high activity against ESBL- and carbapenemase-producing Enterobacteriaceae; multidrug-resistant Pseudomonas aeruginosa susceptibility appears to be more dependent on the local antibiogram. Fosfomycin formulations have a large volume of distribution, penetrate biofilms, and concentrate in the urine. Both oral and intravenous fosfomycin formulations are effective for a wide range of gram-negative infections and disease severities; however, clinical studies are limited. Fosfomycin formulations are well-tolerated, and mild gastrointestinal distress is the most common adverse effect. The primary limitations of fosfomycin are the lack of established regimens for complicated infections and the lack of availability of the intravenous formulation in the United States. Further study of this promising agent seems warranted in the current climate of antibiotic resistance.
Collapse
|
Review |
11 |
61 |
16
|
Gajdács M, Ábrók M, Lázár A, Burián K. Comparative Epidemiology and Resistance Trends of Common Urinary Pathogens in a Tertiary-Care Hospital: A 10-Year Surveillance Study. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:356. [PMID: 31324035 PMCID: PMC6681214 DOI: 10.3390/medicina55070356] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Background and Objective: Urinary tract infections (UTIs) are common in human medicine, affecting large patient populations worldwide. The principal cause of UTIs is uropathogenic Escherichia coli (UPEC) and Klebsiella, both in community and nosocomial settings. The assessment of local data on prevalence and resistance is essential to evaluate trends over time and to reflect on the national situation, compared to international data, using the methods of analytical epidemiology. Materials and Methods: The aim of this study was to assess resistance trends and epidemiology of UTIs caused by E. coli and Klebsiella species in inpatients and outpatients at a tertiary-care hospital in Hungary, using microbiological data. To evaluate resistance trends, several antibiotics were chosen as indicator drugs, based on local utilization data. Results: E. coli was the most prevalent isolate, representing 56.75 ± 4.86% for outpatients and 42.29 ± 2.94% for inpatients. For E. coli, the ratio of resistant strains for several antibiotics was significantly higher in the inpatient group, while in Klebsiella, similar trends were only observed for gentamicin. Extended-spectrum β-lactamase (ESBL)-producing isolates were detected in 4.33-9.15% and 23.22-34.22% from outpatient, 8.85-38.97% and 10.89-36.06% from inpatient samples for E. coli and Klebsiella, respectively. Conclusions: Resistance developments in common UTI pathogens (especially to fosfomycin, sulfamethoxazole-trimethoprim, fluoroquinolones, and 3rd generation cephalosporins), seriously curb therapeutic options, especially in outpatient settings.
Collapse
|
research-article |
6 |
59 |
17
|
Montgomery AB, Vallance S, Abuan T, Tservistas M, Davies A. A randomized double-blind placebo-controlled dose-escalation phase 1 study of aerosolized amikacin and fosfomycin delivered via the PARI investigational eFlow® inline nebulizer system in mechanically ventilated patients. J Aerosol Med Pulm Drug Deliv 2015; 27:441-8. [PMID: 24383962 DOI: 10.1089/jamp.2013.1100] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This clinical trial evaluated the pharmacokinetics and safety/tolerability of amikacin/fosfomycin solution using a vibrating plate nebulizer, in mechanically ventilated patients with ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP). METHODS Nine adult patients were consented to receive three escalating doses of a combination of 50 mg/mL amikacin and 20 mg/mL fosfomycin; doses were separated by 24±2 hr. On day 3, patients received two blinded, randomized treatments (amikacin/fosfomycin and volume-matched placebo), separated by 2 hr. All treatments were administered with a single-patient, multitreatment nebulizer (Investigational eFlow(®) Inline Nebulizer System; PARI Pharma GmbH, positioned in the inspiratory limb tubing between the ventilator and the patient. The nebulizer remained in-line until all treatments had been delivered. Concentrations of amikacin and fosfomycin were measured in tracheal aspirate and plasma samples obtained during the 24 hr after each dose. RESULTS Fifteen minutes after dosing with the 300/120 mg amikacin/fosfomycin combination, tracheal aspirate amikacin concentrations±SD were 12,390±3,986 μg/g, and fosfomycin concentrations were 6,174±2,548 μg/g (n=6). Airway clearance was rapid. Plasma concentrations were subtherapeutic; the highest observed amikacin plasma concentration was 1.4 μg/mL, and the highest observed fosfomycin plasma concentration was 0.8 μg/mL. Administration time was approximately 2 min/mL. No adverse effects on respiratory rate, peak airway pressures, or oxygenation were observed during or following drug or placebo administration. CONCLUSIONS High tracheal aspirate concentrations of amikacin and fosfomycin were achieved in mechanically ventilated patients with VAT or VAP after aerosolized administration with an inline nebulizer system. Airway clearance was rapid. No adverse respiratory effects were noted during or following drug administration.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
58 |
18
|
del Río A, Gasch O, Moreno A, Peña C, Cuquet J, Soy D, Mestres CA, Suárez C, Pare JC, Tubau F, Garcia de la Mària C, Marco F, Carratalà J, Gatell JM, Gudiol F, Miró JM, del Rio A, Moreno A, Pericas JM, Cervera C, Gatell JM, Marco F, de la Maria CG, Armero Y, Almela M, Mestres CA, Pare JC, Fuster D, Cartana R, Ninot S, Azqueta M, Sitges M, Heras M, Pomar JL, Ramirez J, Brunet M, Soy D, Llopis J, Gasch O, Suarez C, Pena C, Pujol M, Ariza J, Carratala J, Gudiol F, Cuquet J, Marti C, Mijana M. Efficacy and safety of fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: a multicenter clinical trial. Clin Infect Dis 2014; 59:1105-12. [PMID: 25048851 DOI: 10.1093/cid/ciu580] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There is an urgent need for alternative rescue therapies in invasive infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We assessed the clinical efficacy and safety of the combination of fosfomycin and imipenem as rescue therapy for MRSA infective endocarditis and complicated bacteremia. METHODS The trial was conducted between 2001 and 2010 in 3 Spanish hospitals. Adult patients with complicated MRSA bacteremia or endocarditis requiring rescue therapy were eligible for the study. Treatment with fosfomycin (2 g/6 hours IV) plus imipenem (1 g/6 hours IV) was started and monitored. The primary efficacy endpoints were percentage of sterile blood cultures at 72 hours and clinical success rate assessed at the test-of-cure visit (45 days after the end of therapy). RESULTS The combination was administered in 12 patients with endocarditis, 2 with vascular graft infection, and 2 with complicated bacteremia. Therapy had previously failed with vancomycin in 9 patients, daptomycin in 2, and sequential antibiotics in 5. Blood cultures were negative 72 hours after the first dose of the combination in all cases. The success rate was 69%, and only 1 of 5 deaths was related to the MRSA infection. Although the combination was safe in most patients (94%), a patient with liver cirrhosis died of multiorgan failure secondary to sodium overload. There were no episodes of breakthrough bacteremia or relapse. CONCLUSIONS Fosfomycin plus imipenem was an effective and safe combination when used as rescue therapy for complicated MRSA bloodstream infections and deserves further clinical evaluation as initial therapy in these infections.
Collapse
|
Clinical Trial |
11 |
58 |
19
|
Papp-Wallace KM, Zeiser ET, Becka SA, Park S, Wilson BM, Winkler ML, D'Souza R, Singh I, Sutton G, Fouts DE, Chen L, Kreiswirth BN, Ellis-Grosse EJ, Drusano GL, Perlin DS, Bonomo RA. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas aeruginosa. J Infect Dis 2020; 220:666-676. [PMID: 31099835 DOI: 10.1093/infdis/jiz149] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Previously, by targeting penicillin-binding protein 3, Pseudomonas-derived cephalosporinase (PDC), and MurA with ceftazidime-avibactam-fosfomycin, antimicrobial susceptibility was restored among multidrug-resistant (MDR) Pseudomonas aeruginosa. Herein, ceftazidime-avibactam-fosfomycin combination therapy against MDR P. aeruginosa clinical isolate CL232 was further evaluated. Checkerboard susceptibility analysis revealed synergy between ceftazidime-avibactam and fosfomycin. Accordingly, the resistance elements present and expressed in P. aeruginosa were analyzed using whole-genome sequencing and transcriptome profiling. Mutations in genes that are known to contribute to β-lactam resistance were identified. Moreover, expression of blaPDC, the mexAB-oprM efflux pump, and murA were upregulated. When fosfomycin was administered alone, the frequency of mutations conferring resistance was high; however, coadministration of fosfomycin with ceftazidime-avibactam yielded a lower frequency of resistance mutations. In a murine infection model using a high bacterial burden, ceftazidime-avibactam-fosfomycin significantly reduced the P. aeruginosa colony-forming units (CFUs), by approximately 2 and 5 logs, compared with stasis and in the vehicle-treated control, respectively. Administration of ceftazidime-avibactam and fosfomycin separately significantly increased CFUs, by approximately 3 logs and 1 log, respectively, compared with the number at stasis, and only reduced CFUs by approximately 1 log and 2 logs, respectively, compared with the number in the vehicle-treated control. Thus, the combination of ceftazidime-avibactam-fosfomycin was superior to either drug alone. By employing a "mechanism-based approach" to combination chemotherapy, we show that ceftazidime-avibactam-fosfomycin has the potential to offer infected patients with high bacterial burdens a therapeutic hope against infection with MDR P. aeruginosa that lack metallo-β-lactamases.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
52 |
20
|
Pharmacokinetics, Safety, and Tolerability of Single-Dose Intravenous (ZTI-01) and Oral Fosfomycin in Healthy Volunteers. Antimicrob Agents Chemother 2017. [PMID: 28630194 DOI: 10.1128/aac.00775-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics, safety, and tolerability of intravenous (i.v.) fosfomycin disodium (ZTI-01) and oral fosfomycin tromethamine were evaluated after a single dose in 28 healthy adult subjects. Subjects received a single 1-h i.v. infusion of 1 g and 8 g fosfomycin disodium and a single dose of 3 g oral fosfomycin tromethamine in a phase I, randomized, open-label, three-period crossover study. Serial blood and urine samples were collected before and up to 48 h after dosing. The mean pharmacokinetic parameters ± standard deviations of fosfomycin in plasma after 1 g and 8 g i.v., respectively, were the following: maximum clearance of drug in serum (Cmax), 44.3 ± 7.6 and 370 ± 61.9 μg/ml; time to maximum concentration of drug in serum (Tmax), 1.1 ± 0.05 and 1.08 ± 0.01 h; volume of distribution (V), 29.7 ± 5.7 and 31.5 ± 10.4 liters; clearance (CL), 8.7 ± 1.7 and 7.8 ± 1.4 liters/h; renal clearance (CLR), 6.6 ± 1.9 and 6.3 ± 1.6 liters/h; area under the concentration-time curve from 0 to infinity (AUC0-∞), 120 ± 28.5 and 1,060 ± 192 μg·h/ml; and half-life (t1/2), 2.4 ± 0.4 and 2.8 ± 0.6 h. After oral administration, the parameters were the following: Cmax, 26.8 ± 6.4 μg/ml; Tmax, 2.25 ± 0.4 h; V/F, 204 ± 70.7 liters; CL/F, 17 ± 4.7 liters/h; CLR, 6.5 ± 1.8 liters/h; AUC0-∞, 191 ± 57.6 μg · h/ml; and t1/2, 9.04 ± 4.5 h. The percent relative bioavailability of orally administered fosfomycin was 52.8% in relation to the 1-g i.v. dose. Approximately 74% and 80% of the 1-g and 8-g i.v. doses were excreted unchanged in the urine by 48 h compared to 37% after oral administration, with the majority of this excretion occurring by 12 h regardless of dosage form. No new safety concerns were identified during this study. The results of this study support further investigation of i.v. fosfomycin in the target patient population, including patients with complicated urinary tract infections and pyelonephritis.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
48 |
21
|
Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics (Basel) 2020; 9:500. [PMID: 32785114 PMCID: PMC7460049 DOI: 10.3390/antibiotics9080500] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections. In patients with systemic involvement, intravenous fosfomycin is usually administered as a partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper clinical management of severe bacterial infections. We performed a systematic review to point out fosfomycin's synergistic properties, when administered with other antibiotics, in order to help clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions, while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%) and cephalosporins (33%) in Enterobactaerales; with linezolid (74%), tetracyclines (72%) and daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances. Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms, make fosfomycin a good partner drug in clinical practice.
Collapse
|
Review |
5 |
44 |
22
|
Perera VR, Newton GL, Pogliano K. Bacillithiol: a key protective thiol in Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:1089-107. [PMID: 26184907 DOI: 10.1586/14787210.2015.1064309] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillithiol is a low-molecular-weight thiol analogous to glutathione and is found in several Firmicutes, including Staphylococcus aureus. Since its discovery in 2009, bacillithiol has been a topic of interest because it has been found to contribute to resistance during oxidative stress and detoxification of electrophiles, such as the antibiotic fosfomycin, in S. aureus. The rapid increase in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to available therapeutic agents is a great health concern, and many research efforts are focused on identifying new drugs and targets to combat this organism. This review describes the discovery of bacillithiol, studies that have elucidated the physiological roles of this molecule in S. aureus and other Bacilli, and the contribution of bacillithiol to S. aureus fitness during pathogenesis. Additionally, the bacillithiol biosynthesis pathway is evaluated as a novel drug target that can be utilized in combination with existing therapies to treat S. aureus infections.
Collapse
|
Review |
10 |
44 |
23
|
Grayson ML, Macesic N, Trevillyan J, Ellis AG, Zeglinski PT, Hewitt NH, Gardiner BJ, Frauman AG. Fosfomycin for Treatment of Prostatitis: New Tricks for Old Dogs. Clin Infect Dis 2015; 61:1141-3. [PMID: 26063723 DOI: 10.1093/cid/civ436] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/21/2015] [Indexed: 11/12/2022] Open
Abstract
Treatment options for prostatitis caused by multidrug-resistant gram-negative bacilli are limited. We report two cases cured with oral fosfomycin and provide a pharmacokinetic analysis of fosfomycin predose concentrations during treatment.
Collapse
|
Journal Article |
10 |
42 |
24
|
Gajdács M, Urbán E. Resistance Trends and Epidemiology of Citrobacter- Enterobacter- Serratia in Urinary Tract Infections of Inpatients and Outpatients (RECESUTI): A 10-Year Survey. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E285. [PMID: 31216725 PMCID: PMC6630883 DOI: 10.3390/medicina55060285] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Background and objectives: Urinary tract infections (UTIs) are the third most common infections in humans, representing a significant factor of morbidity, both among outpatients and inpatients. The pathogenic role of Citrobacter, Enterobacter, and Serratia species (CES bacteria) has been described in UTIs. CES bacteria present a therapeutic challenge due to the various intrinsic and acquired resistance mechanisms they possess. Materials and Methods: The aim of this study was to assess and compare the resistance trends and epidemiology of CES pathogens in UTIs (RECESUTI) in inpatients and outpatients during a 10-year study period. To evaluate the resistance trends of isolated strains, several antibiotics were chosen as indicator drugs based on local utilization data. 578 CES isolates were obtained from inpatients and 554 from outpatients, representing 2.57 ± 0.41% of all positive urine samples for outpatients and 3.02 ± 0.40% for inpatients. E. cloacae was the most prevalent species. Results: The ratio of resistant strains to most of the indicator drugs was higher in the inpatient group and lower in the second half of the study period. ESBL-producing isolates were detected in 0-9.75% from outpatient and 0-29.09% from inpatient samples. Conclusions: Resistance developments of CES bacteria, coupled with their intrinsic non-susceptibility to several antibiotics, severely limits the number of therapeutic alternatives, especially for outpatients.
Collapse
|
research-article |
6 |
41 |
25
|
Cyoia PS, Koga VL, Nishio EK, Houle S, Dozois CM, de Brito KCT, de Brito BG, Nakazato G, Kobayashi RKT. Distribution of ExPEC Virulence Factors, bla CTX-M, fosA3, and mcr-1 in Escherichia coli Isolated From Commercialized Chicken Carcasses. Front Microbiol 2019; 9:3254. [PMID: 30692971 PMCID: PMC6339928 DOI: 10.3389/fmicb.2018.03254] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
Pathogenic Escherichia coli found in humans and poultry carcasses harbor similar virulence and resistance genes. The present study aimed to analyze the distribution of extraintestinal pathogenic E. coli (ExPEC) virulence factors (VF), blaCTX−M groups, fosA3, and mcr-1 genes in E. coli isolated from commercialized chicken carcasses in southern Brazil and to evaluate their pathogenic risk. A total of 409 E. coli strains were isolated and characterized for genes encoding virulence factors described in ExPEC. Results of antimicrobial susceptibility testing confirmed that the strains were resistant to β-lactams, fosfomycin, colistin, and others resistance groups. The highest prevalence of VFs was observed in isolates belonging to the CTX-M groups, especially the CTX-M-2 group, when compared to those in other susceptible strains or strains with different mechanisms of resistance. Furthermore, ESBL strains were found to be 1.40 times more likely to contain three to five ExPEC virulence genes than non-ESBL strains. Our findings revealed the successful conjugation between ESBL-producing E. coli isolated from chicken carcass and the E. coli recipient strain J53, which suggested that genetic determinants encoding CTX-M enzymes may have originated from animals and could be transmitted to humans via food chain. In summary, chicken meat is a potential reservoir of MDR E. coli strains harboring resistance and virulence genes that could pose serious risks to human public health.
Collapse
|
Journal Article |
6 |
41 |