1
|
Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi KI, Tanaka M. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 2007; 104:16958-63. [PMID: 17940041 PMCID: PMC2040408 DOI: 10.1073/pnas.0609932104] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Indexed: 11/18/2022] Open
Abstract
To further elucidate the roles of germ cells in the sex differentiation of gonads, we have used the medaka, a teleost fish, to generate mutants that lack germ cells from the onset of gonadogenesis by the morpholino-mediated knockdown of cxcr4. The resulting germ-cell-deficient medaka show female-to-male sex reversal of their secondary sex characteristics, accompanied by increased levels of androgen and reduced levels of estrogen. A failure to maintain granulosa cells or estrogen-producing cells also occurs at early stages of sex differentiation in the cxcr4 morphants, before the initiation of gonadal morphogenesis. In contrast, androgen-producing cells are unaffected in germ-cell-deficient medaka of either sex. In addition, a single tube-like gonad that expresses male-specific genes is formed in these mutants irrespective of the genetic sex. Significantly, each of these mutant phenotypes occurs in a somatic cell-autonomous manner, suggesting that gonadal somatic cells are predisposed toward male development in the absence of germ cells. This highlights the importance of germ cells in the sexual dimorphism of the gonads.
Collapse
|
research-article |
18 |
188 |
2
|
Bilezikjian LM, Justice NJ, Blackler AN, Wiater E, Vale WW. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol 2012; 359:43-52. [PMID: 22330643 PMCID: PMC3367026 DOI: 10.1016/j.mce.2012.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/01/2023]
Abstract
Activins are multifunctional proteins and members of the TGF-β superfamily. Activins are expressed locally in most tissues and, analogous to the actions of other members of this large family of pleiotropic factors, play prominent roles in the regulation of diverse biological processes in both differentiated and embryonic stem cells. They have an essential role in maintaining tissue homeostasis in the adult and are known to contribute to the developmental programs in the embryo. Activins are further implicated in the growth and metastasis of tumor cells. Through distinct modes of action, inhibins and follistatins function as antagonists of activin and several other TGF-β family members, including a subset of BMPs/GDFs, and modulate cellular responses and the signaling cascades downstream of these ligands. In the pituitary, the activin pathway is known to regulate key aspects of gonadotrope functions and also exert effects on other pituitary cell types. As in other tissues, activin is produced locally by pituitary cells and acts locally by exerting cell-type specific actions on gonadotropes. These local actions of activin on gonadotropes are modulated by the autocrine/paracrine actions of locally secreted follistatin and by the feedback actions of gonadal inhibin. Knowledge about the mechanism of activin, inhibin and follistatin actions is providing information about their importance for pituitary function as well as their contribution to the pathophysiology of pituitary adenomas. The aim of this review is to highlight recent findings and summarize the evidence that supports the important functions of activin, inhibin and follistatin in the pituitary.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
40 |
3
|
Li Y, Zhang L, Hu Y, Chen M, Han F, Qin Y, Chen M, Cui X, Duo S, Tang F, Gao F. β-Catenin directs the transformation of testis Sertoli cells to ovarian granulosa-like cells by inducing Foxl2 expression. J Biol Chem 2017; 292:17577-17586. [PMID: 28900034 DOI: 10.1074/jbc.m117.811349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Sertoli and granulosa cells are two major types of somatic cells in male and female gonads, respectively. Previous studies have shown that Sertoli and granulosa cells are derived from common progenitor cells and that differentiation of these two cell types is regulated by sex differentiation genes. The signaling pathway including the adhesion and transcription factor Ctnnb1 (cadherin-associated protein, β1, also known as β-catenin) regulates differentiation of granulosa cells in the absence of the transcription factor Sry, and overactivation of β-catenin in the presence of Sry leads to granulosa prior to sex determination. Surprisingly, our previous study found that β-catenin overactivation in Sertoli cells after sex determination can also cause disruption of the testicular cord and aberrant testis development. However, the underlying molecular mechanism was unclear. In this study, we found that constitutive activation of Ctnnb1 in Sertoli cells led to ectopic expression of the granulosa cell-specific marker FOXL2 in testes. Co-staining experiments revealed that FOXL2-positive cells were derived from Sertoli cells, and Sertoli cells were transformed into granulosa-like cells after Ctnnb1 overactivation. Further studies demonstrated that CTNNB1 induced Foxl2 expression by directly binding to transcription factor Tcf/Lef-binding sites in the FOXL2 promoter region. We also found that direct overexpression of Foxl2 decreased the expression of Sertoli cell-specific genes in primary Sertoli cells. Taken together, these results demonstrate that repression of β-catenin (CTNNB1) signaling is required for lineage maintenance of Sertoli cells. Our study provides a new mechanism for Sertoli cell lineage maintenance during gonad development.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
27 |
4
|
Nonis D, McTavish KJ, Shimasaki S. Essential but differential role of FOXL2wt and FOXL2C134W in GDF-9 stimulation of follistatin transcription in co-operation with Smad3 in the human granulosa cell line COV434. Mol Cell Endocrinol 2013; 372:42-8. [PMID: 23523567 PMCID: PMC3657561 DOI: 10.1016/j.mce.2013.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023]
Abstract
The FOXL2(C134W) mutation has been identified in virtually all adult granulosa cell tumors (GCTs). Here we show that the exogenous FOXL2 expression is necessary for GDF-9 stimulation of follistatin transcription in the human GCT cell line, COV434 that lacks endogenous FOXL2 expression. Interestingly, in the presence of Smad3 co-expression, FOXL2(C134W) negated GDF-9 stimulation of follistatin transcription. However, mutation of the Smad binding element (SBE) located in the intronic enhancer elements in the follistatin gene restored normal FOXL2 activity to FOXL2(C134W), thus the altered activity of FOXL2(C134W) is dependent on the ability of Smad3 to directly bind the SBE. Mutation of the FOXL2 binding element (FBE) or the FBE and SBE completely prevented GDF-9 activity, suggesting that the FBE is essential for GDF-9 stimulation in COV434. Overall, our study supports the view that altered interaction of FOXL2(C134W) with co-factors may underlie the pathogenesis of this mutation in GCTs.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
21 |
5
|
Horie Y, Kanazawa N, Takahashi C, Tatarazako N, Iguchi T. Bisphenol A induces a shift in sex differentiation gene expression with testis-ova or sex reversal in Japanese medaka (Oryzias latipes). J Appl Toxicol 2020; 40:804-814. [PMID: 32020657 DOI: 10.1002/jat.3945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022]
Abstract
Bisphenol A (BPA), a very important raw material in the plastics industry, is an endocrine-disrupting chemical in teleost fish. Although BPA induces testis-ova and sex reversal in teleost fish species, the molecular mechanism remains unclear. We evaluated the effects of BPA (measured concentrations: 45, 92, 326, 1030 and 3406 μg/L) on Japanese medaka (Oryzias latipes) using OECD TG234 (2011, Fish Sexual Development Test, OECD Guidelines for the Testing of Chemicals, Section 2). BPA at 1030 and 3406 μg/L induced testis-ova and sex reversal with female-type secondary sexual characteristics in XY males at 30 and 60 days posthatching (dph). Then we examined the BPA effect on the expression of sex differentiation genes related to the testis-ova and sex reversal in XY medaka. BPA exposure (1030 and 3406 μg/L) suppressed gsdf mRNA expression and increased cyp19a1a mRNA expression in XY individuals at stage 38 and 30 dph, although foxl2 mRNA expression showed no change. Interestingly, the concentration of BPA that suppressed gsdf mRNA expression at the larval stage was consistent with that needed to induce testis-ova and sex reversal. These results suggest that the gsdf gene at the embryonic stage can be used as a useful biomarker for predicting the impact of estrogenic endocrine-disrupting chemicals on sexual differentiation in Japanese medaka.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
6
|
Lyu Q, Hu J, Yang X, Liu X, Chen Y, Xiao L, Liu Y, Wang Q, Chen J, Huang M, Yu Z, Yang H, Shi H, Zhang Y, Zhao H. Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. Gen Comp Endocrinol 2019; 274:26-36. [PMID: 30594589 DOI: 10.1016/j.ygcen.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The orange-spotted grouper, Epinephelus coioides, is a marine protogynous hermaphrodite fish of commercial importance. There are many examples of sex change species among marine fish, but the molecular basis for the sex change is still unknown. Gonadal expression patterns of the dmrts and foxls genes in E. coioides have pointed to sexual dimorphism in this species and it has been shown that mRNA levels of dmrts and foxls to vary significantly during reproduction cycles. The steroid 17α-methyltestosterone was used to induce sex reversal in these fish, during which dmrts and foxls levels changed significantly and subsequently reverted to normal when 17α-methyltestosterone was withdrawn. Interestingly, the expression of dmrt2b and dmrt3 was not affected by this steroid. We speculate that the role of foxl2 in reproduction may be conserved via regulation of early differentiation of the ovary by the hypothalamus-pituitary-gonad axis, and dmrt2 may have a significant role in premature ovarian differentiation and maintenance in E. coioides. dmrt1 and foxl3 played a role in the development of the testes and are believed to be potential male regulatory genes.
Collapse
|
|
6 |
18 |
7
|
McTavish KJ, Nonis D, Hoang YD, Shimasaki S. Granulosa cell tumor mutant FOXL2C134W suppresses GDF-9 and activin A-induced follistatin transcription in primary granulosa cells. Mol Cell Endocrinol 2013; 372:57-64. [PMID: 23567549 PMCID: PMC3669547 DOI: 10.1016/j.mce.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/27/2013] [Accepted: 03/22/2013] [Indexed: 01/05/2023]
Abstract
A single somatic FOXL2 mutation (FOXL2(C134W)) was identified in almost all granulosa cell tumor (GCT) patients. In the pituitary, FOXL2 and Smad3 coordinately regulate activin stimulation of follistatin transcription. We explored whether a similar regulation occurs in the ovary, and whether FOXL2(C134W) has altered activity. We show that in primary granulosa cells, GDF-9 and activin increase Smad3-mediated follistatin transcription. In contrast to findings in the pituitary, FOXL2 negatively regulates GDF-9 and activin-stimulated follistatin transcription in the ovary. Knockdown of endogenous FOXL2 confirmed this inhibitory role. FOXL2(C134W) displayed enhanced inhibitory activity, completely ablating GDF-9 and activin-induced follistatin transcription. GDF-9 and activin activity was lost when either the smad binding element or the forkhead binding element were mutated, indicating that both sites are required for Smad3 actions. This study highlights that FOXL2 negatively regulates follistatin expression within the ovary, and that the pathogenesis of FOXL2(C134W) may involve an altered interaction with Smad3.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
13 |
8
|
Wan H, Zhong J, Zhang Z, Xie Y, Wang Y. Characterization of the foxl2 gene involved in the vtg expression in mud crab (Scylla paramamosain). Gene 2021; 798:145807. [PMID: 34224832 DOI: 10.1016/j.gene.2021.145807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Forkhead box protein L2 (Foxl2) is involved in multiple physiological processes, such as ovarian development, granulosa cell differentiation, ovarian follicle development, and oocyte growth. In this study, a Spfoxl2 gene encoded 530 amino acid protein with characteristic forkhead (FH) domain was identified from transcriptome data of mud crab Scylla paramamosain and validated the accuracy by PCR technology. Meanwhile, the orthologues of the Spfoxl2 gene in other 14 crustacean species were identified with the same method. Further multiple sequence alignment analysis revealed the Foxl2 was highly conserved, especially in the FH domain, even completely identical in several species. Besides, the semi-quantitative PCR (Sq-PCR) result showed Spfoxl2 gene was mainly expressed in the gonad (testis and ovary). Further quantitative real-time PCR (qRT-PCR) result demonstrated its expression level in the testis was significantly higher than that in the ovary (p < 0.01). In addition, the qRT-PCR result showed that in zoea V, megalopa, and larval I, the expression level of Spfoxl2 in megalopa is the highest. In addition, a putative Foxl2 binding site was identified on the promoter region of Spvtg, and knockdown of Spfoxl2 mediated by RNAi technology increased the expression of Spvtg in the ovary, suggesting Spfoxl2 might be the upstream negative regulator of Spvtg. Overall, this study provided new insights into the role of Spfoxl2 in ovary development through regulating Spvtg expression in S. paramamosain.
Collapse
|
Journal Article |
4 |
12 |
9
|
Wang W, Zhu H, Dong Y, Tian Z, Dong T, Hu H, Niu C. Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1557-1569. [PMID: 28963671 DOI: 10.1007/s10695-017-0392-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Molecular mechanism of sex determination and differentiation of sturgeon, a primitive fish species, is extraordinarily important due to the valuable caviar; however, it is still poorly known. The present work aimed to identify the major genes involved in regulating gonadal development of sterlet, a small species of sturgeon, from 13 candidate genes which have been shown to relate to gonadal differentiation and development in other teleost fish. The sex and gonadal development of sterlets were determined by histological observation and levels of sex steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) in serum. Sexually dimorphic gene expressions were investigated. The results revealed that gonadal development were asynchronous in 2-year-old male and female sterlets with the testes in early or mid-spermatogenesis and the ovaries in chromatin nucleolus stage or perinucleolus stage, respectively. The levels of T and E2 were not significantly different between sexes or different gonadal development stages while 11-KT had the higher level in mid-spermatogenesis testis stage. In all the investigated gonadal development stages, gene dmrt1 and hsd11b2 were expressed higher in male whereas foxl2 and cyp19a1 were expressed higher in female. Thus, these genes provided the promising markers for sex identification of sterlet. It was unexpected that dkk1 and dax1 had significantly higher expression in ovarian perinucleolus stage than in ovarian chromatin nucleolus stage and in the testis, suggesting that these two genes had more correlation with ovarian development than with the testis, contrary to the previous reports in other vertebrates. Testicular development-related genes (gsdf and amh) and estrogen receptor genes (era and erb) differentially expressed at different testis or ovary development stages, but their expressions were not absolutely significantly different in male and female, depending on the gonadal development stage. Expression of androgen receptor gene ar or rspo, which was supposed to be related to ovarian development, presented no difference between gonadal development stages investigated in this study whenever in male or female.
Collapse
|
|
8 |
10 |
10
|
He Z, Li Y, Wu Y, Shi S, Sun C, Deng Q, Xie J, Wang T, Zhang W, Zhang L. Differentiation and morphogenesis of the ovary and expression of gonadal development-related genes in the protogynous hermaphroditic ricefield eel Monopterus albus. JOURNAL OF FISH BIOLOGY 2014; 85:1381-1394. [PMID: 25123578 DOI: 10.1111/jfb.12488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The ovarian differentiation, morphogenesis and expression of some putative gonadal development-related genes were analysed in the ricefield eel Monopterus albus, a protogynous hermaphroditic teleost with a single elongate ovary. At c. 1 day post-hatching (dph), the gonadal ridge was colonized with primordial germ cells (PGCs) at the periphery and transformed into the gonadal primordium, which appeared to contain two germinal epithelia. At c. 7 dph, four ovarian cavities appeared in the gonadal tissue with two in each germinal epithelial compartment, and the indifferent gonad might have begun to differentiate into the ovary. The oocytes at the leptotene stage in meiosis I appeared at c. 14 dph, and oocytes at the diplotene stage at c. 30 dph. As development proceeded, the connective tissue separating the two germinal epithelia disappeared, and two of the four ovarian cavities collapsed into one. At 60 dph, the gonad had already taken the shape as observed in the adults. One outer and two inner ovarian cavities could be easily recognized, with slightly basophilic primary growth oocytes usually residing close to the outer ovarian cavity. The expression of cyp19a1a and erb in the early gonad was detected at 6 dph. The abundant expression of foxl2 coincided with the up-regulation of cyp19a1a at 8 dph onwards. The expression of dmrt1 isoforms was not detectable until 8 dph for dmrt1a and dmrt1b and until 33 dph for dmrt1d. The earlier appearance of cyp19a1a compared to dmrt1 transcripts in the indifferent gonad may contribute to the initial differentiation of the gonad towards the ovary in M. albus.
Collapse
|
|
11 |
7 |
11
|
Yarmohammadi M, Pourkazemi M, Kazemi R. Differential expression of foxl2 and cyp19a1a mRNA during gonad developmental stages in great sturgeon Huso huso. JOURNAL OF FISH BIOLOGY 2017; 90:1104-1111. [PMID: 27885666 DOI: 10.1111/jfb.13224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to determine the sex specificity and expression pattern of foxl2 and cyp19a1a genes in great sturgeon Huso huso gonads during gonadal sex differentiation and development. The results revealed that foxl2 and cyp19a1a mainly expressed in female gonads and during gonad development the foxl2 and cyp19a1a mRNA expression is required for ovarian development.
Collapse
|
|
8 |
7 |
12
|
Shen ZG, Eissa N, Yao H, Xie ZG, Wang HP. Effects of Temperature on the Expression of Two Ovarian Differentiation-Related Genes foxl2 and cyp19a1a. Front Physiol 2018; 9:1208. [PMID: 30356866 PMCID: PMC6190877 DOI: 10.3389/fphys.2018.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/13/2018] [Indexed: 01/24/2023] Open
Abstract
Exposure to stress induces a series of responses and influences a wide range of biological processes including sex differentiation in fish. The present work investigated the molecular and physiological response to thermal stress throughout the early development stage covering the whole period of sex differentiation of bluegill, Lepomis macrochirus. Larvae were treated using three temperatures, 17, 24, and 32°C from 6 to 90 days posthatching (dph) in 30-L round tanks. There is no significant difference of the sex ratio and survival among the three temperature groups in the geographic population used in this study. Two ovarian differentiation-related genes foxl2 and cyp19a1a were detected at 7 dph suggesting that these genes have already played a role prior to sex differentiation. The expression of foxl2 reached the peak and was thermosensitive just prior to the onset of ovarian differentiation at 27 dph. Histological examination displayed that the proliferation of germ cells and ovarian differentiation were delayed at the low-temperature treatment (17°C) at 97 dph compared with higher temperatures. In conclusion, the water temperature regulates the sex differentiation of bluegill through modulation of the expression of foxl2 and cyp19a1a. A comparative study of the expression profile of sex differentiation-related genes in species will shed light on the evolution of sex-determination mechanisms and the impact of stress on sex differentiation.
Collapse
|
|
7 |
6 |
13
|
Brown MS, Evans BS, Afonso LOB. Developmental changes in gene expression and gonad morphology during sex differentiation in Atlantic salmon (Salmo salar). Gene 2022; 823:146393. [PMID: 35248662 DOI: 10.1016/j.gene.2022.146393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The Atlantic salmon (Salmo salar) is a globally important species for its value in fisheries and aquaculture, and as a research model. In order to characterise aspects of sex differentiation at the morphological and mRNA level in this species, the present study examined developmental changes in gonad morphology and gene expression in males and females between 0 and 79 days post hatch (dph). Morphological differentiation of the ovary (indicated by the formation of germ cell cysts) became apparent from 52 dph. By 79 dph, ovarian phenotype was evident in 100% of genotypic females. Testes remained in an undifferentiated-like state throughout the experiment, containing germ cells dispersed singularly within the gonadal region distal to the mesentery. There were no significant sex-related differences in gonad cross-section size, germ cell number or germ cell diameter during the experiment. The expression of genes involved in teleost sex differentiation (anti-müllerian hormone (amh), cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a), forkhead box L2a (foxl2a), gonadal soma-derived factor (gsdf), r-spondin 1 (rspo1), sexually dimorphic on the Y chromosome (sdY)), retinoic acid-signalling (aldehyde dehydrogenase 1a2 (aldh1a2), cytochrome P450 family 26 a1 (cyp26a1), cytochrome P450 family 26 b1 (cyp26b1), t-box transcription factor 1 (tbx1a)) and neuroestrogen production (cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b)) was investigated. Significant sex-related differences were observed only for the expression of amh, cyp19a1a, gsdf and sdY. In males, amh, gsdf and sdY were upregulated from 34, 59 and 44 dph respectively. In females, cyp19a1a was upregulated from 66 dph. Independent of sex, foxl2a expression was highest at 0 dph and had reduced ∼ 47-fold by the time of morphological sex differentiation at 52 dph. This study provides new insights into the timing and sequence of some physiological changes associated with sex differentiation in Atlantic salmon. These findings also reveal that some aspects of the mRNA sex differentiation pathways in Atlantic salmon are unique compared to other teleost fishes, including other salmonids.
Collapse
|
|
3 |
5 |
14
|
Rahdari A, Khoshkholgh M, Yarmohammadi M, Ortiz-Zarragoitia M, Lokman PM, Akhavan SR, de Cerio OD, Cancio I, Falahatkar B. The effects of 11-ketotestosterone implants on transcript levels of gonadotropin receptors, and foxl2 and dmrt1 genes in the Previtellogenic ovary of cultured beluga (Huso huso). JOURNAL OF FISH BIOLOGY 2020; 97:374-382. [PMID: 32388872 DOI: 10.1111/jfb.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The in vivo effect of 11-ketotestosterone (11KT) on transcript levels of the gonadotropin receptors (fshr and lhr) and sex differentiation-related genes (dmrt1 and foxl2) was examined in the ovaries of immature female beluga. For this purpose, six fish were treated with implants containing 2.5 mg 11KT and a placebo group of six females of the same age and gametogenic stage were given a blank implant. The implants were intraperitoneally inserted into 4-year-old females at the previtellogenic stage (mean body weight 5580 ± 165 g) and maintained under culture conditions for 8 weeks. Ovary samples for gene expression analysis of lhr, fshr, dmrt1 and foxl2 were collected by biopsy at 3 and 8 weeks post implantation. Diameters of oocytes increased in response to 11KT treatment, both at 3 and at 8 weeks post implantation, but no obvious changes were evident in cytology. Three weeks of 11KT treatment did not affect target gene expression, but a tendency for a time-dependent decrease of lhr and dmrt1 mRNA levels was observed in both treatment and placebo groups. By 8 weeks of treatment, however, 11KT implants provoked the upregulation of fshr and foxl2 transcript levels. Furthermore, lhr and dmrt1 transcript abundances recovered by 8 weeks of exposure in both blank- and 11KT-implanted beluga. These results suggest that 11KT, either directly or indirectly, may affect gametogenesis and regulate some key components of the reproductive axis in female beluga.
Collapse
|
|
5 |
4 |
15
|
Zhang J, Sun ZH, Liu BZ, Su WY, Chang YQ. Sexually dimorphic expression of foxl2 in the sea urchin (Mesocentrotus nudus). Gene Expr Patterns 2022; 46:119280. [PMID: 36202345 DOI: 10.1016/j.gep.2022.119280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Sea urchin (Mesocentrotus nudus) is an important economically mariculture species in several Asian countries, and gonads are the sole edible parts for people. In addition to commercial value, it is an excellent model for studying gonadal development, sex determination and sex differentiation. Identify sex-related genes is an effective way to reveal the molecular mechanism of gonadal development. In the present study, the foxl2 homologous gene was identified in M. nudus. Foxl2 is not a maternal factor, and is detected for the first time in two-arm stages. Additionally, the expression of foxl2 in the testis is higher than in the ovaries at the same developmental stages. The foxl2 transcripts were specifically enriched in the cytoplasm of germ cellsboth in the ovary and testis, but their proteins were more concentrated in the area near the oocyte nucleus. Overall, this study contributes to our understanding of the dynamic and sexually dimorphic expression pattern of foxl2 and provide a useful germ cell marker during gametogenesis in sea urchin.
Collapse
|
|
3 |
1 |
16
|
Ruan R, Li Y, Yue H, Ye H, Jin J, Wu J, Du H, Li C. Transcriptome Analyses Reveal Expression Profiles of Morphologically Undifferentiated and Differentiated Gonads of Yangtze Sturgeon Acipenser dabryanus. Genes (Basel) 2023; 14:2058. [PMID: 38003000 PMCID: PMC10671670 DOI: 10.3390/genes14112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Sturgeon is known as a primitive fish with the ZZ/ZW sex determination system and is highly prized for its valuable caviar. Exploring the molecular mechanisms underlying gonadal differentiation would contribute to broadening our knowledge on the genetic regulation of sex differentiation of fish, enabling improved artificial breeding and management of sturgeons. However, the mechanisms are still poorly understood in sturgeons. This study aimed to profile expression patterns between female and male gonads at morphologically undifferentiated and early differentiated stages and identify vital genes involved in gonadal sex differentiation of sturgeons. The sexes of Yangtze sturgeon (Acipenser dabryanus) juveniles were identified via the sex-specific DNA marker and histological observation. Transcriptome analyses were carried out on female and male gonads at 30, 80 and 180 days post-hatching. The results showed that there was a total of 17 overlapped DEGs in the comparison groups of between female and male gonads at the three developmental stages, in which there were three DEGs related to ovarian steroidogenesis, including hsd17b1, foxl2 and cyp19a1. The three DEGs were highly expressed in the female gonads, of which the expression levels were gradually increased with the number of days after hatching. No well-known testis-related genes were found in the overlapped DEGs. Additionally, the expression levels of hsd17b1 and cyp19a1 mRNA were decreased with the knockdown of foxl2 mRNA via siRNA. The results further suggested that foxl2 should play a crucial role in the ovarian differentiation of sturgeons. In conclusion, this study showed that more genes involved in ovarian development than testis development emerged with sexually dimorphic expression during early gonadal sex differentiation, and it provided a preliminary understanding of the molecular regulation on gonadal differentiation of sturgeons.
Collapse
|
research-article |
2 |
|
17
|
Gan R, Cai J, Sun C, Wang Z, Yang W, Meng F, Zhang L, Zhang W. Transcription factors Dmrt1a, Foxl2, and Nr5a1a potentially interact to regulate cyp19a1a transcription in ovarian follicles of ricefield eel (Monopterus albus). J Steroid Biochem Mol Biol 2023; 231:106310. [PMID: 37044240 DOI: 10.1016/j.jsbmb.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/19/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
Aromatase (encoded by Cyp19a1) in the ovarian follicular cells catalyzes the production of estradiol from testosterone, which plays important roles in the ovarian development of vertebrates. In the present study, the interaction of Dmrt1, Foxl2, and Nr5a1a on the regulation of cyp19a1a transcription in ovarian follicles was examined in a teleost, the ricefield eel Monopterus albus. The expression of dmrt1a, foxl2, and nr5a1a was detected in ovarian follicular cells together with cyp19a1a at the mRNA and/or protein levels. Sequence analysis identified one conserved Foxo binding site in the proximal promoter region of ricefield eel cyp19a1a. Transient transfection assay showed that Foxl2 may bind to the conserved Foxo site to activate cyp19a1a transcription and act synergistically with Nr5a1a. Mutation of either the conserved Nr5a1 site or Foxo site abolished or significantly decreased the synergistic effects of Nr5a1a and Foxl2 on cyp19a1a transcription. The sequence between Region III and I-box of Nr5a1a was critical to this synergistic effect. Dmrt1a modulated the Foxl2- and Nr5a1a-induced activation of cyp19a1a transcription and their synergistic effects in a biphasic manner, with inhibitory roles observed at lower doses (10 to 50ng) but release of the inhibition or even potentiating effects observed at higher doses (100 to 200ng). Collectively, data of the present study suggest that the interaction of Dmrt1a, Foxl2, and Nr5a1a in the ovarian follicular cells may facilitate the adequate expression of cyp19a1a and the production of estradiol, and contribute to the development and maturation of ovarian follicles in ricefield eels and other vertebrates as well.
Collapse
|
|
2 |
|
18
|
Zhao C, Bian C, Mu X, Zhang X, Shi Q. Gonadal transcriptome sequencing reveals sexual dimorphism in expression profiling of sex-related genes in Asian arowana ( Scleropages formosus). Front Genet 2024; 15:1381832. [PMID: 38666292 PMCID: PMC11043485 DOI: 10.3389/fgene.2024.1381832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Asia arowana (Scleropages formosus) is an ornamental fish with high economic value, while its sex determination mechanism is still poorly understood. By far, no morphological evidence or molecular marker has been developed for effective distinguishment of genders, which poses a critical challenge to our captive breeding efforts. In this study, we sequenced gonadal transcriptomes of adult Asian arowanas and revealed differential expression profiling of sex-related genes. Based on the comparative transcriptomics analysis of testes (n = 3) and ovaries (n = 3), we identified a total of 8,872 differentially expressed genes (DEGs) and 18,490 differentially expressed transposable elements (TEs) between male and female individuals. Interestingly, the expression of TEs usually has been more significantly testis-biased than related coding genes. As expected, several genes related to females (such as foxl2 and cyp19a1a) are significantly transcribed in the ovary, and some genes related to male gonad development (such as dmrt1, gsdf and amh) are highly expressed in the testis. This sexual dimorphism is valuable for ascertaining the differential expression patterns of sex-related genes and enriching the genetic resources of this economically important species. These valuable genetic materials thereby provide instructive references for gender identification and one-to-one breeding practices so as to expand fish numbers for a rapid elevation of economic value.
Collapse
|
research-article |
1 |
|
19
|
Zhou J, Yang YJ, Gan RH, Wang Y, Li Z, Zhang XJ, Gui JF, Zhou L. Foxl2a and Foxl2b are involved in midbrain-hindbrain boundary development in zebrafish. Gene Expr Patterns 2022; 46:119286. [PMID: 36341978 DOI: 10.1016/j.gep.2022.119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
Foxl2 plays conserved central function in ovarian differentiation and maintenance in several fish species. However, its expression pattern and function in fish embryogenesis are still largely unknown. In this study, we first presented a sequential expression pattern of zebrafish foxl2a and foxl2b during embryo development. They were predominantly expressed in the cranial paraxial mesoderm (CPM) and cranial venous vasculature (CVV) during somitogenesis and subsequently expressed in the pharyngeal arches after 48 h post-fertilization (hpf). Then, we compared the brain structures among zebrafish wildtype (WT) and three homozygous foxl2 mutants (foxl2a-/-, foxl2b-/- and foxl2a-/-;foxl2b-/-) and found the reduction of the fourth ventricle in the three foxl2 mutants, especially in foxl2a-/-;foxl2b-/- mutant. Finally, we detected several key transcription factors involved in the gene regulatory network of midbrain-hindbrain boundary (MHB) patterning, such as wnt1, en1b and pax2a. Their expression levels were obviously downregulated in MHB of foxl2a-/- and foxl2a-/-;foxl2b-/- mutants. Thus, we suggest that Foxl2a and Foxl2b are involved in MHB and the fourth ventricle development in zebrafish. The current study provides insights into the molecular mechanism underlying development of brain ventricular system.
Collapse
|
|
3 |
|