1
|
Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am J Hum Genet 2017; 100:267-280. [PMID: 28132688 DOI: 10.1016/j.ajhg.2017.01.004] [Citation(s) in RCA: 725] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022] Open
Abstract
In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published updated standards and guidelines for the clinical interpretation of sequence variants with respect to human diseases on the basis of 28 criteria. However, variability between individual interpreters can be extensive because of reasons such as the different understandings of these guidelines and the lack of standard algorithms for implementing them, yet computational tools for semi-automated variant interpretation are not available. To address these problems, we propose a suite of methods for implementing these criteria and have developed a tool called InterVar to help human reviewers interpret the clinical significance of variants. InterVar can take a pre-annotated or VCF file as input and generate automated interpretation on 18 criteria. Furthermore, we have developed a companion web server, wInterVar, to enable user-friendly variant interpretation with an automated interpretation step and a manual adjustment step. These tools are especially useful for addressing severe congenital or very early-onset developmental disorders with high penetrance. Using results from a few published sequencing studies, we demonstrate the utility of InterVar in significantly reducing the time to interpret the clinical significance of sequence variants.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
725 |
2
|
Oza AM, DiStefano MT, Hemphill SE, Cushman BJ, Grant AR, Siegert RK, Shen J, Chapin A, Boczek NJ, Schimmenti LA, Murry JB, Hasadsri L, Nara K, Kenna M, Booth KT, Azaiez H, Griffith A, Avraham KB, Kremer H, Rehm HL, Amr SS, Abou Tayoun AN. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat 2019; 39:1593-1613. [PMID: 30311386 DOI: 10.1002/humu.23630] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/23/2018] [Accepted: 08/25/2018] [Indexed: 12/23/2022]
Abstract
Due to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL. As one of its major tasks, our Expert Panel has adapted the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for the interpretation of sequence variants in HL genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP HL rules. Three rules remained unchanged, four rules were removed, and the remaining 21 rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and disease experts. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These HL-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with HL.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
344 |
3
|
Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol 2016; 241:236-250. [PMID: 27659608 PMCID: PMC5215404 DOI: 10.1002/path.4809] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/30/2022]
Abstract
Mitochondria are double-membrane-bound organelles that are present in all nucleated eukaryotic cells and are responsible for the production of cellular energy in the form of ATP. Mitochondrial function is under dual genetic control - the 16.6-kb mitochondrial genome, with only 37 genes, and the nuclear genome, which encodes the remaining ∼1300 proteins of the mitoproteome. Mitochondrial dysfunction can arise because of defects in either mitochondrial DNA or nuclear mitochondrial genes, and can present in childhood or adulthood in association with vast clinical heterogeneity, with symptoms affecting a single organ or tissue, or multisystem involvement. There is no cure for mitochondrial disease for the vast majority of mitochondrial disease patients, and a genetic diagnosis is therefore crucial for genetic counselling and recurrence risk calculation, and can impact on the clinical management of affected patients. Next-generation sequencing strategies are proving pivotal in the discovery of new disease genes and the diagnosis of clinically affected patients; mutations in >250 genes have now been shown to cause mitochondrial disease, and the biochemical, histochemical, immunocytochemical and neuropathological characterization of these patients has led to improved diagnostic testing strategies and novel diagnostic techniques. This review focuses on the current genetic landscape associated with mitochondrial disease, before focusing on advances in studying associated mitochondrial pathology in two, clinically relevant organs - skeletal muscle and brain. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
|
Review |
9 |
294 |
4
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
|
Review |
10 |
229 |
5
|
Ellard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K, Houghton JAL, Shepherd M, Hattersley AT, Weedon MN, Caswell R. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 2013; 56:1958-63. [PMID: 23771172 PMCID: PMC3737433 DOI: 10.1007/s00125-013-2962-5] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/23/2013] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Current genetic tests for diagnosing monogenic diabetes rely on selection of the appropriate gene for analysis according to the patient's phenotype. Next-generation sequencing enables the simultaneous analysis of multiple genes in a single test. Our aim was to develop a targeted next-generation sequencing assay to detect mutations in all known MODY and neonatal diabetes genes. METHODS We selected 29 genes in which mutations have been reported to cause neonatal diabetes, MODY, maternally inherited diabetes and deafness (MIDD) or familial partial lipodystrophy (FPLD). An exon-capture assay was designed to include coding regions and splice sites. A total of 114 patient samples were tested--32 with known mutations and 82 previously tested for MODY (n = 33) or neonatal diabetes (n = 49) but in whom a mutation had not been found. Sequence data were analysed for the presence of base substitutions, small insertions or deletions (indels) and exonic deletions or duplications. RESULTS In the 32 positive controls we detected all previously identified variants (34 mutations and 36 polymorphisms), including 55 base substitutions, ten small insertions or deletions and five partial/whole gene deletions/duplications. Previously unidentified mutations were found in five patients with MODY (15%) and nine with neonatal diabetes (18%). Most of these patients (12/14) had mutations in genes that had not previously been tested. CONCLUSIONS/INTERPRETATION Our novel targeted next-generation sequencing assay provides a highly sensitive method for simultaneous analysis of all monogenic diabetes genes. This single test can detect mutations previously identified by Sanger sequencing or multiplex ligation-dependent probe amplification dosage analysis. The increased number of genes tested led to a higher mutation detection rate.
Collapse
|
brief-report |
12 |
209 |
6
|
Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova JL, Cunningham-Rundles C. Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency. Front Immunol 2016; 7:220. [PMID: 27379089 PMCID: PMC4903998 DOI: 10.3389/fimmu.2016.00220] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023] Open
Abstract
Whole exome sequencing (WES) has proven an effective tool for the discovery of genetic defects in patients with primary immunodeficiencies (PIDs). However, success in dissecting the genetic etiology of common variable immunodeficiency (CVID) has been limited. We outline a practical framework for using WES to identify causative genetic defects in these subjects. WES was performed on 50 subjects diagnosed with CVID who had at least one of the following criteria: early onset, autoimmune/inflammatory manifestations, low B lymphocytes, and/or familial history of hypogammaglobulinemia. Following alignment and variant calling, exomes were screened for mutations in 269 PID-causing genes. Variants were filtered based on the mode of inheritance and reported frequency in the general population. Each variant was assessed by study of familial segregation and computational predictions of deleteriousness. Out of 433 variations in PID-associated genes, we identified 17 probable disease-causing mutations in 15 patients (30%). These variations were rare or private and included monoallelic mutations in NFKB1, STAT3, CTLA4, PIK3CD, and IKZF1, and biallelic mutations in LRBA and STXBP2. Forty-two other damaging variants were found but were not considered likely disease-causing based on the mode of inheritance and/or patient phenotype. WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of our cohort. As targeted therapeutics are becoming the mainstay of treatment for non-infectious manifestations in CVID, this approach will improve management of patients with more severe phenotypes.
Collapse
|
Journal Article |
9 |
196 |
7
|
Abstract
Mitochondrial disease is a challenging area of genetics because two distinct genomes can contribute to disease pathogenesis. It is also challenging clinically because of the myriad of different symptoms and, until recently, a lack of a genetic diagnosis in many patients. The last five years has brought remarkable progress in this area. We provide a brief overview of mitochondrial origin, function, and biology, which are key to understanding the genetic basis of mitochondrial disease. However, the primary purpose of this review is to describe the recent advances related to the diagnosis, genetic basis, and prevention of mitochondrial disease, highlighting the newly described disease genes and the evolving methodologies aimed at preventing mitochondrial DNA disease transmission.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
189 |
8
|
Wang Q, Chaerkady R, Wu J, Hwang HJ, Papadopoulos N, Kopelovich L, Maitra A, Matthaei H, Eshleman JR, Hruban RH, Kinzler KW, Pandey A, Vogelstein B. Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci U S A 2011; 108:2444-9. [PMID: 21248225 PMCID: PMC3038743 DOI: 10.1073/pnas.1019203108] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cancer biomarkers are currently the subject of intense research because of their potential utility for diagnosis, prognosis, and targeted therapy. In theory, the gene products resulting from somatic mutations are the ultimate protein biomarkers, being not simply associated with tumors but actually responsible for tumorigenesis. We show here that the altered protein products resulting from somatic mutations can be identified directly and quantified by mass spectrometry. The peptides expressed from normal and mutant alleles were detected by selected reaction monitoring (SRM) of their product ions using a triple-quadrupole mass spectrometer. As a prototypical example of this approach, we demonstrated that it is possible to quantify the number and fraction of mutant Ras protein present in cancer cell lines. There were an average of 1.3 million molecules of Ras protein per cell, and the ratio of mutant to normal Ras proteins ranged from 0.49 to 5.6. Similarly, we found that mutant Ras proteins could be detected and quantified in clinical specimens such as colorectal and pancreatic tumor tissues as well as in premalignant pancreatic cyst fluids. In addition to answering basic questions about the relative levels of genetically abnormal proteins in tumors, this approach could prove useful for diagnostic applications.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
141 |
9
|
Cui C, Shu W, Li P. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications. Front Cell Dev Biol 2016; 4:89. [PMID: 27656642 PMCID: PMC5011256 DOI: 10.3389/fcell.2016.00089] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH techniques have visualized intra-nuclear genomic structure and sub-cellular transcriptional dynamics of many genes and revealed their functions in various biological processes.
Collapse
|
Review |
9 |
121 |
10
|
Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med 2020; 22:1005-1014. [PMID: 32123317 PMCID: PMC7272326 DOI: 10.1038/s41436-020-0766-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain significance (VUSs) identified through next-generation sequencing. Many such variants may disrupt normal RNA splicing. We examined effects on splicing of a large cohort of clinically identified variants and compared performance of bioinformatic splicing prediction tools commonly used in diagnostic laboratories. METHODS Two hundred fifty-seven variants (coding and noncoding) were referred for analysis across three laboratories. Blood RNA samples underwent targeted reverse transcription polymerase chain reaction (RT-PCR) analysis with Sanger sequencing of PCR products and agarose gel electrophoresis. Seventeen samples also underwent transcriptome-wide RNA sequencing with targeted splicing analysis based on Sashimi plot visualization. Bioinformatic splicing predictions were obtained using Alamut, HSF 3.1, and SpliceAI software. RESULTS Eighty-five variants (33%) were associated with abnormal splicing. The most frequent abnormality was upstream exon skipping (39/85 variants), which was most often associated with splice donor region variants. SpliceAI had greatest accuracy in predicting splicing abnormalities (0.91) and outperformed other tools in sensitivity and specificity. CONCLUSION Splicing analysis of blood RNA identifies diagnostically important splicing abnormalities and clarifies functional effects of a significant proportion of VUSs. Bioinformatic predictions are improving but still make significant errors. RNA analysis should therefore be routinely considered in genetic disease diagnostics.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
117 |
11
|
Van Gijn ME, Ceccherini I, Shinar Y, Carbo EC, Slofstra M, Arostegui JI, Sarrabay G, Rowczenio D, Omoyımnı E, Balci-Peynircioglu B, Hoffman HM, Milhavet F, Swertz MA, Touitou I. New workflow for classification of genetic variants' pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J Med Genet 2018; 55:530-537. [PMID: 29599418 DOI: 10.1136/jmedgenet-2017-105216] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hereditary recurrent fevers (HRFs) are rare inflammatory diseases sharing similar clinical symptoms and effectively treated with anti-inflammatory biological drugs. Accurate diagnosis of HRF relies heavily on genetic testing. OBJECTIVES This study aimed to obtain an experts' consensus on the clinical significance of gene variants in four well-known HRF genes: MEFV, TNFRSF1A, NLRP3 and MVK. METHODS We configured a MOLGENIS web platform to share and analyse pathogenicity classifications of the variants and to manage a consensus-based classification process. Four experts in HRF genetics submitted independent classifications of 858 variants. Classifications were driven to consensus by recruiting four more expert opinions and by targeting discordant classifications in five iterative rounds. RESULTS Consensus classification was reached for 804/858 variants (94%). None of the unsolved variants (6%) remained with opposite classifications (eg, pathogenic vs benign). New mutational hotspots were found in all genes. We noted a lower pathogenic variant load and a higher fraction of variants with unknown or unsolved clinical significance in the MEFV gene. CONCLUSION Applying a consensus-driven process on the pathogenicity assessment of experts yielded rapid classification of almost all variants of four HRF genes. The high-throughput database will profoundly assist clinicians and geneticists in the diagnosis of HRFs. The configured MOLGENIS platform and consensus evolution protocol are usable for assembly of other variant pathogenicity databases. The MOLGENIS software is available for reuse at http://github.com/molgenis/molgenis; the specific HRF configuration is available at http://molgenis.org/said/. The HRF pathogenicity classifications will be published on the INFEVERS database at https://fmf.igh.cnrs.fr/ISSAID/infevers/.
Collapse
|
Journal Article |
7 |
107 |
12
|
Seo GH, Kim T, Choi IH, Park JY, Lee J, Kim S, Won DG, Oh A, Lee Y, Choi J, Lee H, Kang HG, Cho HY, Cho MH, Kim YJ, Yoon YH, Eun BL, Desnick RJ, Keum C, Lee BH. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin Genet 2020; 98:562-570. [PMID: 32901917 PMCID: PMC7756481 DOI: 10.1111/cge.13848] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023]
Abstract
EVIDENCE, an automated variant prioritization system, has been developed to facilitate whole exome sequencing analyses. This study investigated the diagnostic yield of EVIDENCE in patients with suspected genetic disorders. DNA from 330 probands (age range, 0‐68 years) with suspected genetic disorders were subjected to whole exome sequencing. Candidate variants were identified by EVIDENCE and confirmed by testing family members and/or clinical reassessments. EVIDENCE reported a total 228 variants in 200 (60.6%) of the 330 probands. The average number of organs involved per patient was 4.5 ± 5.0. After clinical reassessment and/or family member testing, 167 variants were identified in 141 probands (42.7%), including 105 novel variants. These variants were confirmed as being responsible for 121 genetic disorders. A total of 103 (61.7%) of the 167 variants in 95 patients were classified as pathogenic or probably to be pathogenic before, and 161 (96.4%) variants in 137 patients (41.5%) after, clinical assessment and/or family member testing. Factor associated with a variant being regarded as causative includes similar symptom scores of a gene variant to the phenotype of the patient. This new, automated variant interpretation system facilitated the diagnosis of various genetic diseases with a 42.7% diagnostic yield.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
100 |
13
|
Amiri-Yekta A, Coutton C, Kherraf ZE, Karaouzène T, Le Tanno P, Sanati MH, Sabbaghian M, Almadani N, Sadighi Gilani MA, Hosseini SH, Bahrami S, Daneshipour A, Bini M, Arnoult C, Colombo R, Gourabi H, Ray PF. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod 2016; 31:2872-2880. [PMID: 27798045 DOI: 10.1093/humrep/dew262] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can whole-exome sequencing (WES) of patients with multiple morphological abnormalities of the sperm flagella (MMAF) identify causal mutations in new genes or mutations in the previously identified dynein axonemal heavy chain 1 (DNAH1) gene? SUMMARY ANSWER WES for six families with men affected by MMAF syndrome allowed the identification of DNAH1 mutations in four affected men distributed in two out of the six families but no new candidate genes were identified. WHAT IS KNOWN ALREADY Mutations in DNAH1, an axonemal inner dynein arm heavy chain gene, have been shown to be responsible for male infertility due to a characteristic form of asthenozoospermia called MMAF, defined by the presence in the ejaculate of spermatozoa with a mosaic of flagellar abnormalities including absent, coiled, bent, angulated, irregular and short flagella. STUDY DESIGN, SIZE, DURATION This was a retrospective genetics study of patients presenting a MMAF phenotype. Patients were recruited in Iran and Italy between 2008 and 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS WES was performed for a total of 10 subjects. All identified variants were confirmed by Sanger sequencing. Two additional affected family members were analyzed by direct Sanger sequencing. To establish the prevalence of the DNAH1 mutation identified in an Iranian family, we carried out targeted sequencing on 38 additional MMAF patients of the same geographical origin. RT-PCR and immunochemistry were performed on sperm samples to assess the effect of the identified mutation on RNA and protein. MAIN RESULTS AND THE ROLE OF CHANCE WES in six families identified a causal mutations in two families. Two additional affected family members were confirmed to hold the same homozygous mutation as their sibling. In total, DNAH1 mutations were identified in 5 out of 12 analyzed subjects (41.7%). If we only include index cases, we detected two mutated subjects out of six (33%) tested MMAF individuals. Furthermore we sequenced one DNAH1 exon found to be mutated (c.8626-1G > A) in an Iranian family in an additional 38 MMAF patients from Iran. One of these patients carried the variant confirming that this variant is relatively frequent in the Iranian population. The effect of the c.8626-1G > A variant was confirmed by RT-PCR and immunochemistry as no RNA or protein could be observed in sperm from the affected men. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION WES allows the amplification of 80-90% of all coding exons. It is possible that some DNAH1 exons may not have been sequenced and that we may have missed some additional mutations. Also, WES cannot identify deep intronic mutations and it is not efficient for detection of large genomic events (deletions, insertions, inversions). We did not identify any causal mutations in DNAH1 or in other candidate genes in four out of the six tested families. This indicates that the technique and/or the analysis of our data can be improved to increase the diagnosis efficiency. WIDER IMPLICATIONS OF THE FINDINGS Our findings confirm that DNAH1 is one of the main genes involved in MMAF syndrome. It is a large gene with 78 exons making it challenging and expensive to sequence using the traditional Sanger sequencing methods. We show that WES sequencing is good alternative to Sanger sequencing to reach a genetic diagnosis in patients with severe male infertility phenotypes. STUDY FUNDING/COMPETING INTERESTS This work was supported by following grants: the 'MAS-Flagella' project financed by the French ANR and the DGOS for the program PRTS 2014 and the 'Whole genome sequencing of patients with Flagellar Growth Defects (FGD)' project financed by the Fondation Maladies Rares for the program Séquençage à haut débit 2012. The authors have no conflict of interest.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
89 |
14
|
Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet Med 2020; 22:1478-1488. [PMID: 32528171 PMCID: PMC7462745 DOI: 10.1038/s41436-020-0840-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Several hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology. METHODS Exome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions. RESULTS We identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation. CONCLUSION Using our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
74 |
15
|
Galvin O, Chi G, Brady L, Hippert C, Del Valle Rubido M, Daly A, Michaelides M. The Impact of Inherited Retinal Diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a Cost-of-Illness Perspective. Clin Ophthalmol 2020; 14:707-719. [PMID: 32184557 PMCID: PMC7062501 DOI: 10.2147/opth.s241928] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
To date, there has been a global lack of data regarding the prevalence of conditions falling under the Inherited Retinal Diseases (IRD) classification, the impact on the individuals and families affected, and the cost burden to economies. The absence of an international patient registry, and equitable access to genetic testing, compounds this matter. The resulting incomplete knowledge of the impact of IRDs hinders the development and commissioning of clinical services, provision of treatments, and planning and implementation of clinical trials. Thus, there is a need for stronger evidence to support value for money to regulatory bodies for treatments approved, and progressing through clinical trials. To ensure a strategic approach to future research and service provision, it is necessary to learn more about the IRD landscape. This review highlights two recent cost-of-illness reports on the socio-economic impact of 10 IRDs in the Republic of Ireland (ROI) and the United Kingdom (UK), which demonstrate the comprehensive impact of IRDs on individuals affected, their families, friends and society. Total costs attributable to IRDs in the ROI were estimated to be £42.6 million in 2019, comprising economic (£28.8 million) and wellbeing costs (£13.8 million). Wellbeing costs were estimated using the World Health Organization (WHO) burden of disease methodology, a non-financial approach, where pain, suffering and premature mortality are measured in terms of disability-adjusted-life-years (DALYs). In the UK, wellbeing costs attributable to IRDs were £196.1 million, and economic costs were £327.2 million amounting to £523.3 million total costs in 2019. Accounting for over one-third of total costs, the wellbeing burden of persons affected by IRDs should be emphasized and factored into reimbursement processes for therapies and care pathways. This targeted review presents the most current and relevant data on IRD prevalence in the ROI and the UK, and the impacts (financial and non-financial) of IRDs in terms of diagnosis, wellbeing, employment, formal and informal care, health system costs, deadweight losses and issues surrounding payers and reimbursement. This review demonstrates IRD patients and their families have common issues including, the need for timely equitable access to genetic testing and counselling, equality in accessing employment, and a revision of the assessment process for reimbursement of therapies currently focused on the cost-of-illness to the healthcare system. This review reveals that IRD patients do not frequently engage the healthcare system and as such suggests a cost-of-illness model from a societal perspective may be a better format.
Collapse
|
Review |
5 |
73 |
16
|
Lionti T, Reid SM, White SM, Rowell MM. A population-based profile of 160 Australians with Prader-Willi syndrome: trends in diagnosis, birth prevalence and birth characteristics. Am J Med Genet A 2014; 167A:371-8. [PMID: 25424396 DOI: 10.1002/ajmg.a.36845] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/29/2014] [Indexed: 11/08/2022]
Abstract
Perceived temporal trends in recognition and diagnosis of Prader-Willi syndrome served as the rationale for an updated epidemiological profile of individuals with this syndrome. Data from the Victorian Prader-Willi Syndrome Register were used to explore birth prevalence, birth characteristics, timing of diagnosis, and molecular mechanism, and to identify trends over time. Maternal age, birth gestation, small for gestational age, and sex were compared across molecular mechanisms. Between 1951 and 2012 there were 160 individuals with Prader-Willi syndrome, known to the Victorian Prader-Willi Syndrome Register, who were born in the Australian state of Victoria. The birth prevalence for individuals with a molecular diagnosis of Prader-Willi syndrome was estimated to be 1:15,830 for 2003-2012. Compared to 1973-1981, the decade 2003-2012 saw an increase in the rate of molecular diagnosis from 58% to 96%, more complete identification of the molecular mechanism (42% vs. 83%), earlier molecular diagnosis (1.3 years vs. 8.6 weeks), and a rise in the relative proportion of maternal uniparental disomy from 0% to 45%. One quarter of infants was born preterm and 53% were small for gestational age. This study confirms a temporal change in diagnostic patterns, suggests a greater relative contribution of maternal uniparental disomy as a molecular mechanism, provides a more robust estimate of birth prevalence and provides evidence of in utero growth restriction for this group. These findings have important clinical and health service delivery implications and pave the way for further research in Prader-Willi syndrome.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
72 |
17
|
Schon KR, Ratnaike T, van den Ameele J, Horvath R, Chinnery PF. Mitochondrial Diseases: A Diagnostic Revolution. Trends Genet 2020; 36:702-717. [PMID: 32674947 DOI: 10.1016/j.tig.2020.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial disorders have emerged as a common cause of inherited disease, but are traditionally viewed as being difficult to diagnose clinically, and even more difficult to comprehensively characterize at the molecular level. However, new sequencing approaches, particularly whole-genome sequencing (WGS), have dramatically changed the landscape. The combined analysis of nuclear and mitochondrial DNA (mtDNA) allows rapid diagnosis for the vast majority of patients, but new challenges have emerged. We review recent discoveries that will benefit patients and families, and highlight emerging questions that remain to be resolved.
Collapse
|
Review |
5 |
70 |
18
|
Kennedy J, Goudie D, Blair E, Chandler K, Joss S, McKay V, Green A, Armstrong R, Lees M, Kamien B, Hopper B, Tan TY, Yap P, Stark Z, Okamoto N, Miyake N, Matsumoto N, Macnamara E, Murphy JL, McCormick E, Hakonarson H, Falk MJ, Li D, Blackburn P, Klee E, Babovic-Vuksanovic D, Schelley S, Hudgins L, Kant S, Isidor B, Cogne B, Bradbury K, Williams M, Patel C, Heussler H, Duff-Farrier C, Lakeman P, Scurr I, Kini U, Elting M, Reijnders M, Schuurs-Hoeijmakers J, Wafik M, Blomhoff A, Ruivenkamp CAL, Nibbeling E, Dingemans AJM, Douine ED, Nelson SF, Hempel M, Bierhals T, Lessel D, Johannsen J, Arboleda VA, Newbury-Ecob R. KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet Med 2019; 21:850-860. [PMID: 30245513 PMCID: PMC6634310 DOI: 10.1038/s41436-018-0259-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Pathogenic variants in KAT6A have recently been identified as a cause of syndromic developmental delay. Within 2 years, the number of patients identified with pathogenic KAT6A variants has rapidly expanded and the full extent and variability of the clinical phenotype has not been reported. METHODS We obtained data for patients with KAT6A pathogenic variants through three sources: treating clinicians, an online family survey distributed through social media, and a literature review. RESULTS We identified 52 unreported cases, bringing the total number of published cases to 76. Our results expand the genotypic spectrum of pathogenic variants to include missense and splicing mutations. We functionally validated a pathogenic splice-site variant and identified a likely hotspot location for de novo missense variants. The majority of clinical features in KAT6A syndrome have highly variable penetrance. For core features such as intellectual disability, speech delay, microcephaly, cardiac anomalies, and gastrointestinal complications, genotype- phenotype correlations show that late-truncating pathogenic variants (exons 16-17) are significantly more prevalent. We highlight novel associations, including an increased risk of gastrointestinal obstruction. CONCLUSION Our data expand the genotypic and phenotypic spectrum for individuals with genetic pathogenic variants in KAT6A and we outline appropriate clinical management.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
67 |
19
|
Wang X, Jin H, Han F, Cui Y, Chen J, Yang C, Zhu P, Wang W, Jiao G, Wang W, Hao C, Gao Z. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet 2016; 91:313-321. [PMID: 27573432 DOI: 10.1111/cge.12857] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the genetic pathogeny of multiple morphological anomalies of the flagella (MMAF), which is a genetically heterogeneous disorder leading to male infertility. Nine patients with severe asthenozoospermia caused by MMAF were recruited. Whole genome sequencing and Sanger sequencing were performed, and we found that four of the nine patients were affected by the same homozygous frameshift mutation c.11726_11727delCT (p.[Pro3909ArgfsTer33]) in exon 73 of dynein axonemal heavy chain 1 ( DNAH1 ) gene. The parents and the sibling of proband 1 were all identified as heterozygous carriers. This mutation was distinct from previously reported DNAH1 mutations associated with MMAF and only affected the East Asian group. Furthermore, the variant DNAH1 protein could not be detected in spermatozoa by Western blot or immunofluorescence staining although DNAH1 mRNA was expressed in the spermatozoa. Scanning electron microscopy and transmission electron microscopy analysis showed the anomalies in sperm flagella morphology and ultrastructure in patients carrying this genetic variant. In conclusion, our results add to knowledge of the genetic pathogeny of MMAF and further confirmed the effectiveness of genetic screening in the diagnosis of MMAF.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
66 |
20
|
ClinGen expert clinical validity curation of 164 hearing loss gene-disease pairs. Genet Med 2019; 21:2239-2247. [PMID: 30894701 PMCID: PMC7280024 DOI: 10.1038/s41436-019-0487-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semiquantitative framework to assign clinical validity to gene-disease relationships. METHODS The ClinGen Hearing Loss Gene Curation Expert Panel (HL GCEP) uses this framework to perform evidence-based curations of genes present on testing panels from 17 clinical laboratories in the Genetic Testing Registry. The HL GCEP curated and reviewed 142 genes and 164 gene-disease pairs, including 105 nonsyndromic and 59 syndromic forms of hearing loss. RESULTS The final outcome included 82 Definitive (50%), 12 Strong (7%), 25 Moderate (15%), 32 Limited (20%), 10 Disputed (6%), and 3 Refuted (2%) classifications. The summary of each curation is date stamped with the HL GCEP approval, is live, and will be kept up-to-date on the ClinGen website ( https://search.clinicalgenome.org/kb/gene-validity ). CONCLUSION This gene curation approach serves to optimize the clinical sensitivity of genetic testing while reducing the rate of uncertain or ambiguous test results caused by the interrogation of genes with insufficient evidence of a disease link.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
65 |
21
|
Kherraf ZE, Cazin C, Bouker A, Fourati Ben Mustapha S, Hennebicq S, Septier A, Coutton C, Raymond L, Nouchy M, Thierry-Mieg N, Zouari R, Arnoult C, Ray PF. Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am J Hum Genet 2022; 109:508-517. [PMID: 35172124 DOI: 10.1016/j.ajhg.2022.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a severe and frequent cause of male infertility, often treated by testicular sperm extraction followed by intracytoplasmic sperm injection. The aim of this study is to improve the genetic diagnosis of NOA, by identifying new genes involved in human NOA and to better assess the chances of successful sperm extraction according to the individual's genotype. Exome sequencing was performed on 96 NOA-affected individuals negative for routine genetic tests. Bioinformatics analysis was limited to a panel of 151 genes selected as known causal or candidate genes for NOA. Only highly deleterious homozygous or hemizygous variants were retained as candidates. A likely causal defect was identified in 16 genes in a total of 22 individuals (23%). Six genes had not been described in man (DDX25, HENMT1, MCMDC2, MSH5, REC8, TDRKH) and 10 were previously reported (C14orf39, DMC1, FANCM, GCNA, HFM1, MCM8, MEIOB, PDHA2, TDRD9, TERB1). Seven individuals had defects in genes from piwi or DNA repair pathways, three in genes involved in post-meiotic maturation, and 12 in meiotic processes. Interestingly, all individuals with defects in meiotic genes had an unsuccessful sperm retrieval, indicating that genetic diagnosis prior to TESE could help identify individuals with low or null chances of successful sperm retrieval and thus avoid unsuccessful surgeries.
Collapse
|
|
3 |
64 |
22
|
Rudnik-Schöneborn S, Tölle D, Senderek J, Eggermann K, Elbracht M, Kornak U, von der Hagen M, Kirschner J, Leube B, Müller-Felber W, Schara U, von Au K, Wieczorek D, Bußmann C, Zerres K. Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin Genet 2015; 89:34-43. [PMID: 25850958 DOI: 10.1111/cge.12594] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
We present clinical features and genetic results of 1206 index patients and 124 affected relatives who were referred for genetic testing of Charcot-Marie-Tooth (CMT) neuropathy at the laboratory in Aachen between 2001 and 2012. Genetic detection rates were 56% in demyelinating CMT (71% of autosomal dominant (AD) CMT1/CMTX), and 17% in axonal CMT (24% of AD CMT2/CMTX). Three genetic defects (PMP22 duplication/deletion, GJB1/Cx32 or MPZ/P0 mutation) were responsible for 89.3% of demyelinating CMT index patients in whom a genetic diagnosis was achieved, and the diagnostic yield of the three main genetic defects in axonal CMT (GJB1/Cx32, MFN2, MPZ/P0 mutations) was 84.2%. De novo mutations were detected in 1.3% of PMP22 duplication, 25% of MPZ/P0, and none in GJB1/Cx32. Motor nerve conduction velocity was uniformly <38 m/s in median or ulnar nerves in PMP22 duplication, >40 m/s in MFN2, and more variable in GJB1/Cx32, MPZ/P0 mutations. Patients with CMT2A showed a broad clinical severity regardless of the type or position of the MFN2 mutation. Out of 75 patients, 8 patients (11%) with PMP22 deletions were categorized as CMT1 or CMT2. Diagnostic algorithms are still useful for cost-efficient mutation detection and for the interpretation of large-scale genetic data made available by next generation sequencing strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
56 |
23
|
Whitmarsh I, Davis AM, Skinner D, Bailey DB. A place for genetic uncertainty: parents valuing an unknown in the meaning of disease. Soc Sci Med 2007; 65:1082-93. [PMID: 17561324 PMCID: PMC2267724 DOI: 10.1016/j.socscimed.2007.04.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Klinefelter, Turner, and fragile X syndromes are conditions defined by a genetic or chromosomal variant. The timing of diagnosis, tests employed, specialists involved, symptoms evident, and prognoses available vary considerably within and across these syndromes, but all three share in common a diagnosis verified through a molecular or cytogenetic test. The genetic or chromosomal variant identified designates a syndrome, even when symptoms associated with the particular syndrome are absent. This article analyzes interviews conducted with parents and grandparents of children with these syndromes from across the USA to explore how they interpret a confirmed genetic diagnosis that is associated with a range of possible symptoms that may never be exhibited. Parents' responses indicate that they see the genetic aspects of the syndrome as stable, permanent, and authoritative. But they allow, and even embrace, uncertainty about the condition by focusing on variation between diagnosed siblings, the individuality of their diagnosed child, his or her accomplishments, and other positive aspects that go beyond the genetic diagnosis. Some families counter the genetic diagnosis by arguing that in the absence of symptoms, the syndrome does not exist. They use their own expertise to question the perceived certainty of the genetic diagnosis and to employ the diagnosis strategically. These multiple and often conflicting evaluations of the diagnostic label reveal the rich ways families make meaning of the authority attributed to genetic diagnosis.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
56 |
24
|
Drew AP, Zhu D, Kidambi A, Ly C, Tey S, Brewer MH, Ahmad-Annuar A, Nicholson GA, Kennerson ML. Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol Genet Genomic Med 2015; 3:143-54. [PMID: 25802885 PMCID: PMC4367087 DOI: 10.1002/mgg3.126] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of related diseases primarily affecting the peripheral motor and sensory neurons. They include the hereditary sensory neuropathies (HSN), hereditary motor neuropathies (HMN), and Charcot-Marie-Tooth disease (CMT). Using whole-exome sequencing (WES) to achieve a genetic diagnosis is particularly suited to IPNs, where over 80 genes are involved with weak genotype–phenotype correlations beyond the most common genes. We performed WES for 110 index patients with IPN where the genetic cause was undetermined after previous screening for mutations in common genes selected by phenotype and mode of inheritance. We identified 41 missense sequence variants in the known IPN genes in our cohort of 110 index patients. Nine variants (8%), identified in the genes MFN2, GJB1, BSCL2, and SETX, are previously reported mutations and considered to be pathogenic in these families. Twelve novel variants (11%) in the genes NEFL, TRPV4, KIF1B, BICD2, and SETX are implicated in the disease but require further evidence of pathogenicity. The remaining 20 variants were confirmed as polymorphisms (not causing the disease) and are detailed here to help interpret sequence variants identified in other family studies. Validation using segregation, normal controls, and bioinformatics tools was valuable as supporting evidence for sequence variants implicated in disease. In addition, we identified one SETX sequence variant (c.7640T>C), previously reported as a putative mutation, which we have confirmed as a nonpathogenic rare polymorphism. This study highlights the advantage of using WES for genetic diagnosis in highly heterogeneous diseases such as IPNs and has been particularly powerful in this cohort where genetic diagnosis could not be achieved due to phenotype and mode of inheritance not being previously obvious. However, first tier testing for common genes in clinically well-defined cases remains important and will account for most positive results.
Collapse
|
Journal Article |
10 |
55 |
25
|
Genetic disorders and mortality in infancy and early childhood: delayed diagnoses and missed opportunities. Genet Med 2018; 20:1396-1404. [PMID: 29790870 PMCID: PMC6185816 DOI: 10.1038/gim.2018.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Infants admitted to a level IV neonatal intensive care unit (NICU) who do not survive early childhood are a population that is probably enriched for rare genetic disease; we therefore characterized their genetic diagnostic evaluation. METHODS This is a retrospective analysis of infants admitted to our NICU between 1 January 2011 and 31 December 2015 who were deceased at the time of records review, with age at death less than 5 years. RESULTS A total of 2,670 infants were admitted; 170 later died. One hundred six of 170 (62%) had an evaluation for a genetic or metabolic disorder. Forty-seven of 170 (28%) had laboratory-confirmed genetic diagnoses, although 14/47 (30%) diagnoses were made postmortem. Infants evaluated for a genetic disorder spent more time in the NICU (median 13.5 vs. 5.0 days; p = 0.003), were older at death (median 92.0 vs. 17.5 days; p < 0.001), and had similarly high rates of redirection of care (86% vs. 79%; p = 0.28). CONCLUSION Genetic disorders were suspected in many infants but found in a minority. Approximately one-third of diagnosed infants died before a laboratory-confirmed genetic diagnosis was made. This highlights the need to improve genetic diagnostic evaluation in the NICU, particularly to support end-of-life decision making.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
54 |