1
|
Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M. Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus. Cell 2018; 174:744-757.e24. [PMID: 29887377 PMCID: PMC6548320 DOI: 10.1016/j.cell.2018.05.024] [Citation(s) in RCA: 613] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 11/22/2022]
Abstract
Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus. Current methods for studying genome-wide structure are based on proximity ligation. However, this approach can fail to detect known structures, such as interactions with nuclear bodies, because these DNA regions can be too far apart to directly ligate. Accordingly, our overall understanding of genome organization remains incomplete. Here, we develop split-pool recognition of interactions by tag extension (SPRITE), a method that enables genome-wide detection of higher-order interactions within the nucleus. Using SPRITE, we recapitulate known structures identified by proximity ligation and identify additional interactions occurring across larger distances, including two hubs of inter-chromosomal interactions that are arranged around the nucleolus and nuclear speckles. We show that a substantial fraction of the genome exhibits preferential organization relative to these nuclear bodies. Our results generate a global model whereby nuclear bodies act as inter-chromosomal hubs that shape the overall packaging of DNA in the nucleus.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
613 |
2
|
Abstract
Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably simple idea that digestion and religation of fixed chromatin in cells, followed by the quantification of ligation junctions, allows for the determination of DNA contact frequencies and insight into chromosome topology. Here we evaluate and compare the current 3C-based methods (including 4C [chromosome conformation capture-on-chip], 5C [chromosome conformation capture carbon copy], HiC, and ChIA-PET), summarize their contribution to our current understanding of genome structure, and discuss how shape influences genome function.
Collapse
|
Review |
13 |
533 |
3
|
Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1265-1274. [PMID: 29205771 PMCID: PMC5999312 DOI: 10.1111/pbi.12867] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 05/08/2023]
Abstract
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
Collapse
|
research-article |
7 |
172 |
4
|
Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 2021; 23:e3303. [PMID: 33305456 PMCID: PMC7883242 DOI: 10.1002/jgm.3303] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND At the end of December 2019, a novel coronavirus tentatively named SARS-CoV-2 in Wuhan, a central city in China, was announced by the World Health Organization. SARS-CoV-2 is an RNA virus that has become a major public health concern after the outbreak of the Middle East Respiratory Syndrome-CoV (MERS-CoV) and Severe Acute Respiratory Syndrome-CoV (SARS-CoV) in 2002 and 2012, respectively. As of 29 October 2020, the total number of COVID-19 cases had reached over 44 million worldwide, with more than 1.17 million confirmed deaths. DISCUSSION SARS-CoV-2 infected patients usually present with severe viral pneumonia. Similar to SARS-CoV, the virus enters respiratory tract cells via the angiotensin-converting enzyme receptor 2. The structural proteins play an essential role in budding the virus particles released from different host cells. To date, an approved vaccine or treatment option of a preventive character to avoid severe courses of COVID-19 is still not available. CONCLUSIONS In the present study, we provide a brief review of the general biological features of CoVs and explain the pathogenesis, clinical symptoms and diagnostic approaches regarding monitoring future infectivity and prevent emerging COVID-19 infections.
Collapse
|
Review |
4 |
171 |
5
|
Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, Zhang W, Kim K, Lee SC, Yang TJ, Wang Y. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses. FRONTIERS IN PLANT SCIENCE 2016; 7:306. [PMID: 27014326 PMCID: PMC4791396 DOI: 10.3389/fpls.2016.00306] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/26/2016] [Indexed: 05/18/2023]
Abstract
Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.
Collapse
|
research-article |
9 |
140 |
6
|
Feuillet C, Keller B. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. ANNALS OF BOTANY 2002; 89:3-10. [PMID: 12096816 PMCID: PMC4233775 DOI: 10.1093/aob/mcf008] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genomes of grasses are very different in terms of size, ploidy level and chromosome number. Despite these significant differences, it was found by comparative mapping that the linear order (colinearity) of genetic markers and genes is very well conserved between different grass genomes. The potential of such conservation has been exploited in several directions, e.g. in defining rice as a model genome for grasses and in designing better strategies for positional cloning in large genomes. Recently, the development of large insert libraries in species such as maize, rice, barley and diploid wheat has allowed the study of large stretches of DNA sequence and has provided insight into gene organization in grasses. It was found that genes are not distributed randomly along the chromosomes and that there are clusters of high gene density in species with large genomes. Comparative analysis performed at the DNA sequence level has demonstrated that colinearity between the grass genomes is retained at the molecular level (microcolinearity) in most cases. However, detailed analysis has also revealed a number of exceptions to microcolinearity, which have given insight into mechanisms that are involved in grass-genome evolution. In some cases, the use of rice as a model to support gene isolation from other grass genomes will be complicated by local rearrangements. In this Botanical Briefing, we present recent progress and future prospects of comparative genomics in grasses.
Collapse
|
Comparative Study |
23 |
102 |
7
|
Abstract
Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
84 |
8
|
Moriones E, Praveen S, Chakraborty S. Tomato Leaf Curl New Delhi Virus: An Emerging Virus Complex Threatening Vegetable and Fiber Crops. Viruses 2017; 9:E264. [PMID: 28934148 PMCID: PMC5691616 DOI: 10.3390/v9100264] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
The tomato leaf curl New Delhi virus (ToLCNDV) (genus Begomovirus, family Geminiviridae) represents an important constraint to tomato production, as it causes the most predominant and economically important disease affecting tomato in the Indian sub-continent. However, in recent years, ToLCNDV has been fast extending its host range and spreading to new geographical regions, including the Middle East and the western Mediterranean Basin. Extensive research on the genome structure, protein functions, molecular biology, and plant-virus interactions of ToLCNDV has been conducted in the last decade. Special emphasis has been given to gene silencing suppression ability in order to counteract host plant defense responses. The importance of the interaction with DNA alphasatellites and betasatellites in the biology of the virus has been demonstrated. ToLCNDV genetic variability has been analyzed, providing new insights into the taxonomy, host adaptation, and evolution of this virus. Recombination and pseudorecombination have been shown as motors of diversification and adaptive evolution. Important progress has also been made in control strategies to reduce disease damage. This review highlights these various achievements in the context of the previous knowledge of begomoviruses and their interactions with plants.
Collapse
|
Review |
8 |
81 |
9
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
|
Journal Article |
13 |
66 |
10
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
Review |
3 |
60 |
11
|
Rasschaert D, Gelfi J, Laude H. Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 1987; 69:591-600. [PMID: 2825819 PMCID: PMC7130962 DOI: 10.1016/0300-9084(87)90178-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The sequence of the 3'-most 8300 nucleotides of the genome RNA of the Purdue-115 strain of the transmissible gastroenteritis virus TGEV, a porcine coronavirus, was determined from cDNA clones. The available sequence corresponds to the part of the genome (total length greater than 20 kb) expressed through subgenomic mRNAs. The 5 subgenomic and the genomic RNA species detected in TGEV-infected cells form a 3'-coterminal 'nested' structure, a unique feature of Coronaviridae. The transcription initiation site of the TGEV subgenomic RNAs appears to involve the hexameric sequence 5'CTAAAC, which is present upstream from each coding region. In addition to the previously identified genes encoding the three structural proteins, E2, E1 and N, two regions, X1 and X2, corresponding to the non-overlapping portion of mRNAs 4 and 3, may code for so far unidentified non-structural polypeptides. The predicted X1 polypeptide (9.2 kDa) is highly hydrophobic. The sequence of the X2 region allows the translation of two non-overlapping products, i.e., X2a (7.7 kDa) and X2b (18.8 kDa). No RNA species liable to express the extreme 3' open reading frame X3 was found.
Collapse
|
research-article |
38 |
54 |
12
|
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content. Genome Biol Evol 2016; 8:2452-8. [PMID: 27401175 PMCID: PMC5010901 DOI: 10.1093/gbe/evw167] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2-3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
51 |
13
|
Abstract
Genomes exist in vivo as complex physical structures, and their functional output (i.e. the gene expression profile of a cell) is related to their spatial organization inside the nucleus as well as to local chromatin status. Chromatin modifications and chromosome conformation are distinct in different tissues and cell types, which corresponds closely with the diversity in gene-expression patterns found in different tissues of the body. The biological processes and mechanisms driving these general correlations are currently the topic of intense study. An emerging theme is that genome compartmentalization - both along the linear length of chromosomes, and in three dimensions by the spatial colocalization of chromatin domains and genomic loci from across the genome - is a crucial parameter in regulating genome expression. In this Commentary, we propose that a full understanding of genome regulation requires integrating three different types of data: first, one-dimensional data regarding the state of local chromatin - such as patterns of protein binding along chromosomes; second, three-dimensional data that describe the population-averaged folding of chromatin inside cells and; third, single-cell observations of three-dimensional spatial colocalization of genetic loci and trans factors that reveal information about their dynamics and frequency of colocalization.
Collapse
|
Evaluation Study |
15 |
48 |
14
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
|
Review |
3 |
45 |
15
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
|
Review |
5 |
38 |
16
|
Mason AS, Snowdon RJ. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:883-892. [PMID: 27063780 DOI: 10.1111/plb.12462] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/06/2016] [Indexed: 05/18/2023]
Abstract
Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high-throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation.
Collapse
|
Review |
9 |
36 |
17
|
Fang K, Chen X, Li X, Shen Y, Sun J, Czajkowsky DM, Shao Z. Super-resolution Imaging of Individual Human Subchromosomal Regions in Situ Reveals Nanoscopic Building Blocks of Higher-Order Structure. ACS NANO 2018; 12:4909-4918. [PMID: 29715004 DOI: 10.1021/acsnano.8b01963] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is widely recognized that the higher-order spatial organization of the genome, beyond the nucleosome, plays an important role in many biological processes. However, to date, direct information on even such fundamental structural details as the typical sizes and DNA content of these higher-order structures in situ is poorly characterized. Here, we examine the nanoscopic DNA organization within human nuclei using super-resolution direct stochastic optical reconstruction microscopy (dSTORM) imaging and 5-ethynyl-2'-deoxyuridine click chemistry, studying single fully labeled chromosomes within an otherwise unlabeled nuclei to improve the attainable resolution. We find that, regardless of nuclear position, individual subchromosomal regions consist of three different levels of DNA compaction: (i) dispersed chromatin; (ii) nanodomains of sizes ranging tens of nanometers containing a few kilobases (kb) of DNA; and (iii) clusters of nanodomains. Interestingly, the sizes and DNA content of the nanodomains are approximately the same at the nuclear periphery, nucleolar proximity, and nuclear interior, suggesting that these nanodomains share a roughly common higher-order architecture. Overall, these results suggest that DNA compaction within the eukaryote nucleus occurs via the condensation of DNA into few-kb nanodomains of approximately similar structure, with further compaction occurring via the clustering of nanodomains.
Collapse
|
|
7 |
33 |
18
|
Aoki R, Takeda T, Omata T, Ihara K, Fujita Y. MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J Biol Chem 2012; 287:13500-7. [PMID: 22375005 PMCID: PMC3339928 DOI: 10.1074/jbc.m112.346205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/22/2012] [Indexed: 01/17/2023] Open
Abstract
Oxygen is required for three enzyme reactions in chlorophyll and bilin biosynthesis pathways: coproporphyrinogen III oxidase (HemF), heme oxygenase (HO1), and Mg-protoporphyrin IX monomethylester cyclase (ChlA(I)). The cyanobacterium Synechocystis sp. PCC 6803 has alternative enzymes, HemN, HO2, and ChlA(II), to supply chlorophyll/bilins even under low-oxygen environments. The three genes form an operon, chlA(II)-ho2-hemN, that is induced in response to low-oxygen conditions to bypass the oxygen-dependent reactions. Here we identified a transcriptional regulator for the induction of the operon in response to low-oxygen conditions. A pseudorevertant, Δho1R, was isolated from a HO1-lacking mutant Δho1 that is lethal under aerobic conditions. Δho1R grew well even under aerobic conditions. In Δho1R, HO2 that is induced only under low-oxygen conditions was anomalously expressed under aerobic conditions to complement the loss of HO1. A G-to-C transversion in sll1512 causing the amino acid change from aspartate 35 to histidine was identified as the relevant mutation by resequencing of the Δho1R genome. Sll1512 is a MarR-type transcriptional regulator. An sll1512-lacking mutant grew poorly under low-oxygen conditions with a remarked decrease in Chl content that would be caused by the suppressed induction of the chlA(II) and hemN genes in Chl biosynthesis under low-oxygen conditions. These results demonstrated that Sll1512 is an activator in response to low-oxygen environments and that the D35H variant becomes a constitutive activator. This hypothesis was supported by a gel shift assay showing that the Sll1512-D35H variant binds to the DNA fragment upstream of the operon. We propose to name sll1512 chlR.
Collapse
|
research-article |
13 |
32 |
19
|
Gozashti L, Roy SW, Thornlow B, Kramer A, Ares M, Corbett-Detig R. Transposable elements drive intron gain in diverse eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2209766119. [PMID: 36417430 PMCID: PMC9860276 DOI: 10.1073/pnas.2209766119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
There is massive variation in intron numbers across eukaryotic genomes, yet the major drivers of intron content during evolution remain elusive. Rapid intron loss and gain in some lineages contrast with long-term evolutionary stasis in others. Episodic intron gain could be explained by recently discovered specialized transposons called Introners, but so far Introners are only known from a handful of species. Here, we performed a systematic search across 3,325 eukaryotic genomes and identified 27,563 Introner-derived introns in 175 genomes (5.2%). Species with Introners span remarkable phylogenetic diversity, from animals to basal protists, representing lineages whose last common ancestor dates to over 1.7 billion years ago. Aquatic organisms were 6.5 times more likely to contain Introners than terrestrial organisms. Introners exhibit mechanistic diversity but most are consistent with DNA transposition, indicating that Introners have evolved convergently hundreds of times from nonautonomous transposable elements. Transposable elements and aquatic taxa are associated with high rates of horizontal gene transfer, suggesting that this combination of factors may explain the punctuated and biased diversity of species containing Introners. More generally, our data suggest that Introners may explain the episodic nature of intron gain across the eukaryotic tree of life. These results illuminate the major source of ongoing intron creation in eukaryotic genomes.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
32 |
20
|
Linked genetic variation and not genome structure causes widespread differential expression associated with chromosomal inversions. Proc Natl Acad Sci U S A 2018; 115:5492-5497. [PMID: 29735663 DOI: 10.1073/pnas.1721275115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromosomal inversions are widely thought to be favored by natural selection because they suppress recombination between alleles that have higher fitness on the same genetic background or in similar environments. Nonetheless, few selected alleles have been characterized at the molecular level. Gene expression profiling provides a powerful way to identify functionally important variation associated with inversions and suggests candidate phenotypes. However, altered genome structure itself might also impact gene expression by influencing expression profiles of the genes proximal to inversion breakpoint regions or by modifying expression patterns genome-wide due to rearranging large regulatory domains. In natural inversions, genetic differentiation and genome structure are inextricably linked. Here, we characterize differential expression patterns associated with two chromosomal inversions found in natural Drosophila melanogaster populations. To isolate the impacts of genome structure, we engineered synthetic chromosomal inversions on controlled genetic backgrounds with breakpoints that closely match each natural inversion. We find that synthetic inversions have negligible effects on gene expression. Nonetheless, natural inversions have broad-reaching regulatory impacts in cis and trans Furthermore, we find that differentially expressed genes associated with both natural inversions are enriched for loci associated with immune response to bacterial pathogens. Our results support the idea that inversions in D. melanogaster experience natural selection to maintain associations between functionally related alleles to produce complex phenotypic outcomes.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
31 |
21
|
Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol 2020; 39:1741-1753. [PMID: 32716648 DOI: 10.1089/dna.2020.5703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On December 31, 2019, a novel coronavirus, being the third highly infective CoV and named as coronavirus disease 2019 (COVID-19) in the city of Wuhan, was announced by the World Health Organization. COVID-19 has a 2% mortality rate, is known as the third extremely infective CoV infection, and has a mortality rate less than MERS-CoV and SARS-CoV. The CoV family comprises a chief number of positive single-stranded ss (+) RNA viruses that are recognized in mammals. The 2019-nCoV patients showed that the angiotensin-converting enzyme II (ACE2) was the same for SARS-CoV. Structural proteins have an essential role in virus released and budding to various host cells. Notably, evidence indicated human-to-human transmission, along with several exported patients of virus infection worldwide. Nowadays, no licensed antivirals drugs or vaccines for being utilized against these coronavirus infections are recognized. There is an urgent requirement for an extensive research of CoV infections to disclose the route of extension, pathogenesis, and diagnosis and then to recognize the therapeutic targets to facilitate disease control and surveillance. In this article, we present an overview of the common biological criteria of CoVs and explain pathogenesis with a focus on the therapeutic approach to suggest potential goals for treating and monitoring this emerging zoonotic disease.
Collapse
|
Review |
5 |
30 |
22
|
Yu S, Lemos B. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome. Genome Biol Evol 2016; 8:3545-3558. [PMID: 27797956 PMCID: PMC5203791 DOI: 10.1093/gbe/evw257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
29 |
23
|
Comparative Chloroplast Genomics of Fritillaria (Liliaceae), Inferences for Phylogenetic Relationships between Fritillaria and Lilium and Plastome Evolution. PLANTS 2020; 9:plants9020133. [PMID: 31973113 PMCID: PMC7076684 DOI: 10.3390/plants9020133] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Fritillaria is a genus that has important medicinal and horticultural values. The study involved the most comprehensive chloroplast genome samples referring to Old and New World clades of Fritillaria for marker selection and phylogenetic studies. We reported and compared eleven newly sequenced whole-plastome sequences of Fritillaria which proved highly similar in overall size (151,652–152,434 bp), genome structure, gene content, and order. Comparing them with other species of Liliales (6 out of 10 families) indicated the same similarity but showed some structural variations due to the contraction or expansion of the inverted repeat (IR) regions. A/T mononucleotides, palindromic, and forward repeats were the most common types. Six hypervariable regions (rps16-trnQ, rbcL-accD, accD-psaI, psaJ-rpl33, petD-rpoA, and rpl32-trnL) were discovered based on 26 Fritillaria whole-plastomes to be potential molecular markers. Based on the plastome data that were collected from 26 Fritillaria and 21 Lilium species, a phylogenomic study was carried out with three Cardiocrinum species as outgroups. Fritillaria was sister to Lilium with a high support value, and the interspecies relationships within subgenus Fritillaria were resolved very well. The six hypervariable regions can be used as candidate DNA barcodes of Fritillaria and the phylogenomic framework can guide extensive genomic sampling for further phylogenetic analyses.
Collapse
|
Journal Article |
5 |
28 |
24
|
Li X, Jin X, Wang H, Zhang X, Lin Z. Structure, evolution, and comparative genomics of tetraploid cotton based on a high-density genetic linkage map. DNA Res 2016; 23:283-93. [PMID: 27084896 PMCID: PMC4909315 DOI: 10.1093/dnares/dsw016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/17/2016] [Indexed: 01/17/2023] Open
Abstract
A high-density linkage map was constructed using 1,885 newly obtained loci and 3,747 previously published loci, which included 5,152 loci with 4696.03 cM in total length and 0.91 cM in mean distance. Homology analysis in the cotton genome further confirmed the 13 expected homologous chromosome pairs and revealed an obvious inversion on Chr10 or Chr20 and repeated inversions on Chr07 or Chr16. In addition, two reciprocal translocations between Chr02 and Chr03 and between Chr04 and Chr05 were confirmed. Comparative genomics between the tetraploid cotton and the diploid cottons showed that no major structural changes exist between DT and D chromosomes but rather between AT and A chromosomes. Blast analysis between the tetraploid cotton genome and the mixed genome of two diploid cottons showed that most AD chromosomes, regardless of whether it is from the AT or DT genome, preferentially matched with the corresponding homologous chromosome in the diploid A genome, and then the corresponding homologous chromosome in the diploid D genome, indicating that the diploid D genome underwent converted evolution by the diploid A genome to form the DT genome during polyploidization. In addition, the results reflected that a series of chromosomal translocations occurred among Chr01/Chr15, Chr02/Chr14, Chr03/Chr17, Chr04/Chr22, and Chr05/Chr19.
Collapse
|
Journal Article |
9 |
27 |
25
|
Tschopp P, Tabin CJ. Deep homology in the age of next-generation sequencing. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150475. [PMID: 27994118 PMCID: PMC5182409 DOI: 10.1098/rstb.2015.0475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/14/2022] Open
Abstract
The principle of homology is central to conceptualizing the comparative aspects of morphological evolution. The distinctions between homologous or non-homologous structures have become blurred, however, as modern evolutionary developmental biology (evo-devo) has shown that novel features often result from modification of pre-existing developmental modules, rather than arising completely de novo. With this realization in mind, the term 'deep homology' was coined, in recognition of the remarkably conserved gene expression during the development of certain animal structures that would not be considered homologous by previous strict definitions. At its core, it can help to formulate an understanding of deeper layers of ontogenetic conservation for anatomical features that lack any clear phylogenetic continuity. Here, we review deep homology and related concepts in the context of a gene expression-based homology discussion. We then focus on how these conceptual frameworks have profited from the recent rise of high-throughput next-generation sequencing. These techniques have greatly expanded the range of organisms amenable to such studies. Moreover, they helped to elevate the traditional gene-by-gene comparison to a transcriptome-wide level. We will end with an outlook on the next challenges in the field and how technological advances might provide exciting new strategies to tackle these questions.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
|
Review |
8 |
26 |