1
|
Klebe D, McBride D, Krafft PR, Flores JJ, Tang J, Zhang JH. Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. J Neurosci Res 2020; 98:105-120. [PMID: 30793349 PMCID: PMC6703985 DOI: 10.1002/jnr.24394] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
Abstract
In addition to being the leading cause of morbidity and mortality in premature infants, germinal matrix hemorrhage (GMH) is also the leading cause of acquired infantile hydrocephalus. The pathophysiology of posthemorrhagic hydrocephalus (PHH) development after GMH is complex and vaguely understood, although evidence suggests fibrosis and gliosis in the periventricular and subarachnoid spaces disrupts normal cerebrospinal fluid (CSF) dynamics. Theories explaining general hydrocephalus etiology have substantially evolved from the original bulk flow theory developed by Dr. Dandy over a century ago. Current clinical and experimental evidence supports a new hydrodynamic theory for hydrocephalus development involving redistribution of vascular pulsations and disruption of Starling forces in the brain microcirculation. In this review, we discuss CSF flow dynamics, history and development of theoretical hydrocephalus pathophysiology, and GMH epidemiology and etiology as it relates to PHH development. We highlight known mechanisms and propose new avenues that will further elucidate GMH pathophysiology, specifically related to hydrocephalus.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
41 |
2
|
Köksal V, Öktem S. Ventriculosubgaleal shunt procedure and its long-term outcomes in premature infants with post-hemorrhagic hydrocephalus. Childs Nerv Syst 2010; 26:1505-15. [PMID: 20300758 PMCID: PMC2974185 DOI: 10.1007/s00381-010-1118-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It is well known that 10-15% of hydrocephalus cases at childhood and 40-50% in premature infants, occur following Germinal matrix hemorrhage (GMH). Such hemorrhages are reported to arise due to the rupture of germinal matrix (GM) vessels as a result of cerebral blood flow changes among infants with <1500 g birth weight and <32 weeks old. Intraventricular hemorrhage (IVH) associated with GMH leads to a disruption in the cerebrospinal fluid (CSF) and ventricular dilatation. Ventriculosubgaleal shunt (VSGS) is preferred in those hydrocephalus cases because it is a simple and rapid method, precludes the need for repetitive aspiration for evacuation of CSF, establishes a permanent decompression without causing electrolyte and nutritional losses, and aims to protect the cerebral development of newborns with GMH. MATERIAL AND METHOD The present study comprises 25 premature cases, subjected to VSGS and diagnosed with post-hemorrhagic hydrocephalus (PHH) arising from IVH associated with GM, and low birth weight (LBW) in the Neurosurgery Department of the Medical Faculty of Erciyes University between July 2002 and September 2006. VSGS surgery was performed on those cases, and their clinical and radiological prognoses were monitored with regard to several parameters. RESULTS Mortality and morbidity results were found to be lower than those in PPH treatment methods. While prognosis of grade 4 GMHs was poor, grades 2 and 3 GMHs displayed a much better prognosis after VSGS along with complete recovery in some hydrocephalus cases.
Collapse
|
research-article |
15 |
35 |
3
|
Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci 2014; 3:215-38. [PMID: 23667741 PMCID: PMC3647482 DOI: 10.3390/brainsci3010215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied a model of hemorrhagic encephalopathy of prematurity (EP) that closely recapitulates findings in humans with hemorrhagic EP. This model involves tandem insults of 20 min intrauterine ischemia (IUI) plus an episode of elevated venous pressure induced by intraperitoneal glycerol on post-natal day (P) 0. We examined Sur1 expression, which is upregulated after focal ischemia but has not been studied after brief global ischemia including IUI. We found that 20 min IUI resulted in robust upregulation of Sur1 in periventricular microvessels and tissues. We studied tandem insult pups from untreated or vehicle-treated dams (TI-CTR), and tandem insult pups from dams administered a low-dose, non-hypoglycemogenic infusion of the Sur1 blocker, glibenclamide, for 1 week after IUI (TI-GLIB). Compared to pups from the TI-CTR group, pups from the TI-GLIB group had significantly fewer and less severe hemorrhages on P1, performed significantly better on the beam walk and accelerating Rotarod on P35 and in tests of thigmotaxis and rapid learning on P35–49, and had significantly greater body and brain weights at P52. We conclude that low-dose glibenclamide administered to the mother at the end of pregnancy protects pups subjected to IUI from post-natal events of elevated venous pressure and its consequences.
Collapse
|
Journal Article |
11 |
31 |
4
|
Tortora D, Severino M, Malova M, Parodi A, Morana G, Sedlacik J, Govaert P, Volpe JJ, Rossi A, Ramenghi LA. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed 2018; 103:F59-F65. [PMID: 28588126 DOI: 10.1136/archdischild-2017-312710] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND PURPOSE The anatomy of the deep venous system plays an important role in the pathogenesis of brain lesions in the preterm brain as shown by different histological studies. The aims of this study were to compare the subependymal vein anatomy of preterm neonates with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH), as evaluated by susceptibility-weighted imaging (SWI) venography, with a group of age-matched controls with normal brain MRI, and to explore the relationship between the anatomical features of subependymal veins and clinical risk factors for GMH-IVH. METHODS SWI venographies of 48 neonates with GMH-IVH and 130 neonates with normal brain MRI were retrospectively evaluated. Subependymal vein anatomy was classified into six different patterns: type 1 represented the classic pattern and types 2-6 were considered anatomic variants. A quantitative analysis of the venous curvature index was performed. Variables were analysed by using Mann-Whitney U and χ2 tests, and a multiple logistic regression analysis was performed to evaluate the association between anatomical features, clinical factors and GMH-IVH. RESULTS A significant difference was noticed among the six anatomical patterns according to the presence of GMH-IVH (χ2=14.242, p=0.014). Anatomic variants were observed with higher frequency in neonates with GMH-IVH than in controls (62.2% and 49.6%, respectively). Neonates with GMH-IVH presented a narrower curvature of the terminal portion of subependymal veins (p<0.05). These anatomical features were significantly associated with GMH-IVH (p<0.05). CONCLUSION Preterm neonates with GMH-IVH show higher variability of subependymal veins anatomy confirming a potential role as predisposing factor for GMH-IVH.
Collapse
|
|
7 |
24 |
5
|
Li Q, Ding Y, Krafft P, Wan W, Yan F, Wu G, Zhang Y, Zhan Q, Zhang JH. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats. J Am Heart Assoc 2018; 7:e007192. [PMID: 29386206 PMCID: PMC5850237 DOI: 10.1161/jaha.117.007192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. METHODS AND RESULTS GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. CONCLUSIONS Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
22 |
6
|
Dave JM, Mirabella T, Weatherbee SD, Greif DM. Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. Dev Cell 2018; 44:665-678.e6. [PMID: 29456135 DOI: 10.1016/j.devcel.2018.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
Abstract
The murine embryonic blood-brain barrier (BBB) consists of endothelial cells (ECs), pericytes (PCs), and basement membrane. Although PCs are critical for inducing vascular stability, signaling pathways in PCs that regulate EC morphogenesis during BBB development remain unexplored. Herein, we find that murine embryos lacking the transforming growth factor β (TGF-β) receptor activin receptor-like kinase 5 (Alk5) in brain PCs (mutants) develop gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH). The germinal matrix (GM) is a highly vascularized structure rich in neuronal and glial precursors. We show that GM microvessels of mutants display abnormal dilation, reduced PC coverage, EC hyperproliferation, reduced basement membrane collagen, and enhanced perivascular matrix metalloproteinase activity. Furthermore, ALK5-depleted PCs downregulate tissue inhibitor of matrix metalloproteinase 3 (TIMP3), and TIMP3 administration to mutants improves endothelial morphogenesis and attenuates GMH-IVH. Overall, our findings reveal a key role for PC ALK5 in regulating brain endothelial morphogenesis and a substantial therapeutic potential for TIMP3 during GMH-IVH.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
20 |
7
|
Varghese B, Xavier R, Manoj VC, Aneesh MK, Priya PS, Kumar A, Sreenivasan VK. Magnetic resonance imaging spectrum of perinatal hypoxic-ischemic brain injury. Indian J Radiol Imaging 2021; 26:316-327. [PMID: 27857456 PMCID: PMC5036328 DOI: 10.4103/0971-3026.190421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Perinatal hypoxic–ischemic brain injury results in neonatal hypoxic–ischemic encephalopathy and serious long-term neurodevelopmental sequelae. Magnetic resonance imaging (MRI) of the brain is an ideal and safe imaging modality for suspected hypoxic–ischemic injury. The pattern of injury depends on brain maturity at the time of insult, severity of hypotension, and duration of insult. Time of imaging after the insult influences the imaging findings. Mild to moderate hypoperfusion results in germinal matrix hemorrhages and periventricular leukomalacia in preterm neonates and parasagittal watershed territory infarcts in full-term neonates. Severe insult preferentially damages the deep gray matter in both term and preterm infants. However, associated frequent perirolandic injury is seen in term neonates. MRI is useful in establishing the clinical diagnosis, assessing the severity of injury, and thereby prognosticating the outcome. Familiarity with imaging spectrum and insight into factors affecting the injury will enlighten the radiologist to provide an appropriate diagnosis.
Collapse
|
Journal Article |
4 |
18 |
8
|
Rolland WB, Krafft PR, Lekic T, Klebe D, LeGrand J, Weldon AJ, Xu L, Zhang JH. Fingolimod confers neuroprotection through activation of Rac1 after experimental germinal matrix hemorrhage in rat pups. J Neurochem 2017; 140:776-786. [PMID: 28054340 DOI: 10.1111/jnc.13946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/23/2023]
Abstract
Fingolimod, a sphingosine-1-phosphate receptor (S1PR) agonist, is clinically available to treat multiple sclerosis and is showing promise in treating stroke. We investigated if fingolimod provides long-term protection from experimental neonatal germinal matrix hemorrhage (GMH), aiming to support a potential mechanism of acute fingolimod-induced protection. GMH was induced in P7 rats by infusion of collagenase (0.3 U) into the right ganglionic eminence. Animals killed at 4 weeks post-GMH received low- or high-dose fingolimod (0.25 or 1.0 mg/kg) or vehicle, and underwent neurocognitive testing before histopathological evaluation. Subsequently, a cohort of animals killed at 72 h post-GMH received 1.0 mg/kg fingolimod; the specific S1PR1 agonist, SEW2871; or fingolimod co-administered with the S1PR1/3/4 inhibitor, VPC23019, or the Rac1 inhibitor, EHT1864. All drugs were injected intraperitoneally 1, 24, and 48 h post-surgery. At 72 h post-GMH, brain water content, extravasated Evans blue dye, and hemoglobin were measured as well as the expression levels of phospho-Akt, Akt, GTP-Rac1, Total-Rac1, ZO1, occludin, and claudin-3 determined. Fingolimod significantly improved long-term neurocognitive performance and ameliorated brain tissue loss. At 72 h post-GMH, fingolimod reduced brain water content and Evans blue dye extravasation as well as reversed GMH-induced loss of tight junctional proteins. S1PR1 agonism showed similar protection, whereas S1PR or Rac1 inhibition abolished the protective effect of fingolimod. Fingolimod treatment improved functional and morphological outcomes after GMH, in part, by tempering acute post-hemorrhagic blood-brain barrier disruption via the activation of the S1PR1/Akt/Rac1 pathway.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
15 |
9
|
Flores JJ, Klebe D, Tang J, Zhang JH. A comprehensive review of therapeutic targets that induce microglia/macrophage-mediated hematoma resolution after germinal matrix hemorrhage. J Neurosci Res 2019; 98:121-128. [PMID: 30667078 DOI: 10.1002/jnr.24388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
Currently, there is no effective treatment for germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH), a common and often fatal stroke subtype in premature infants. Secondary brain injury after GMH-IVH is known to involve blood clots that contribute to inflammation and neurological deficits. Furthermore, the subsequent blood clots disrupt normal cerebrospinal fluid circulation and absorption after GMH-IVH, contributing to posthemorrhagic hydrocephalus (PHH). Clinically, GMH-IVH severity is graded on a I to IV scale: Grade I is confined to the germinal matrix, grade II includes intraventricular hemorrhage, grade III includes intraventricular hemorrhage with extension into dilated ventricles, and grade IV includes intraventricular hemorrhage with extension into dilated ventricles as well as parenchymal hemorrhaging. GMH-IVH hematoma volume is the best prognostic indicator, where patients with higher grades have worsened outcomes. Various preclinical studies have shown that rapid hematoma resolution quickly ameliorates inflammation and improves neurological outcomes. Current experimental evidence identifies alternatively activated microglia as playing a pivotal role in hematoma clearance. In this review, we discuss the pathophysiology of GMH-IVH in the development of PHH, microglia/macrophage's role in the neonatal CNS, and established/potential therapeutic targets that enhance M2 microglia/macrophage phagocytosis of blood clots after GMH-IVH.
Collapse
|
Review |
6 |
13 |
10
|
Abstract
Germinal matrix (GM) hemorrhage (GMH) is a major cause of mortality and of life-long morbidity from cerebral palsy. GMH is typically preceded by hypoxic/ischemic events and is believed to arise from rupture of weakened veins in the GM. In the CNS, hypoxia/ischemia up-regulate sulfonylurea receptor 1 (SUR1)-regulated NCCa-ATP channels in microvascular endothelium, with channel activation by depletion of ATP being responsible for progressive secondary hemorrhage. We hypothesized that this channel might be up-regulated in the GM of preterm infants at risk for GMH. Here, we studied expression of the regulatory subunit of the channel, SUR1, and its transcriptional antecedent, hypoxia inducible factor 1 (HIF1), in postmortem tissues of premature infants who either were at risk for or who sustained GMH. We found regionally specific up-regulation of HIF1 and of SUR1 protein and mRNA in GM tissues, compared with remote cortical tissues. Up-regulation was prominent in most progenitor cells, whereas in veins, SUR1 was found predominantly in infants who had sustained GMH compared with those without hemorrhage. Our data suggest that the SUR1-regulated NCCa-ATP channel may be associated with GMH, and that pharmacological block of these channels could potentially reduce the incidence of this devastating complication of prematurity.
Collapse
|
research-article |
17 |
11 |
11
|
Tortora D, Severino M, Sedlacik J, Toselli B, Malova M, Parodi A, Morana G, Fato MM, Ramenghi LA, Rossi A. Quantitative susceptibility map analysis in preterm neonates with germinal matrix-intraventricular hemorrhage. J Magn Reson Imaging 2018; 48:1199-1207. [PMID: 29746715 DOI: 10.1002/jmri.26163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Germinal matrix-intraventricular hemorrhage (GMH-IVH) is a common form of intracranial hemorrhage occurring in preterm neonates that may affect normal brain development. Although the primary lesion is easily identified on MRI by the presence of blood products, its exact extent may not be recognizable with conventional sequences. Quantitative susceptibility mapping (QSM) quantify the spatial distribution of magnetic susceptibility within biological tissues, including blood degradation products. PURPOSE/HYPOTHESIS To evaluate magnetic susceptibility of normal-appearing white (WM) and gray matter regions in preterm neonates with and without GMH-IVH. STUDY TYPE Retrospective case-control. POPULATION A total of 127 preterm neonates studied at term equivalent age: 20 had mild GMH-IVH (average gestational age 28.7 ± 2.1 weeks), 15 had severe GMH-IVH (average gestational age 29.3 ± 1.8 weeks), and 92 had normal brain MRI (average gestational age 29.8 ± 1.8 weeks). FIELD STRENGTH/SEQUENCE QSM at 1.5 Tesla. ASSESSMENT QSM analysis was performed for each brain hemisphere with a region of interest-based approach including five WM regions (centrum semiovale, frontal, parietal, temporal, and cerebellum), and a subcortical gray matter region (basal ganglia/thalami). STATISTICAL TESTS Changes in magnetic susceptibility were explored using a one-way analysis of covariance, according to GMH-IVH severity (P < 0.05). RESULTS In preterm neonates with normal brain MRI, all white and subcortical gray matter regions had negative magnetic susceptibility values (diamagnetic). Neonates with severe GMH-IVH showed higher positive magnetic susceptibility values (i.e. paramagnetic) in the centrum semiovale (0.0019 versus -0.0014 ppm; P < 0.001), temporal WM (0.0011 versus -0.0012 ppm; P = 0.037), and parietal WM (0.0005 versus -0.0001 ppm; P = 0.002) compared with controls. No differences in magnetic susceptibility were observed between neonates with mild GMH-IVH and controls (P = 0.236). DATA CONCLUSION Paramagnetic susceptibility changes occur in several normal-appearing WM regions of neonates with severe GMH-IVH, likely related to the accumulation of hemosiderin/ferritin iron secondary to diffusion of extracellular hemoglobin from the ventricle into the periventricular WM. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1199-1207.
Collapse
|
Journal Article |
7 |
11 |
12
|
Abrantes De Lacerda Almeida T, Santos MV, Da Silva Lopes L, Goel G, Leonardo De Freitas R, De Medeiros P, Crippa JA, Machado HR. Intraperitoneal cannabidiol attenuates neonatal germinal matrix hemorrhage-induced neuroinflamation and perilesional apoptosis. Neurol Res 2019; 41:980-990. [PMID: 31378168 DOI: 10.1080/01616412.2019.1651487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background. As the survival of preterm infants has increased significantly, germinal matrix hemorrhage (GMH) has become an important public health issue. Nevertheless, treatment strategies for the direct neuronal injury are still scarce. The present study aims to analyze the neuroprotective properties of cannabidiol in germinal matrix hemorrhage. Methods. 112 Wistar rat pups (P7) were submitted to an experimental collagenase induced model of GMH. Inflammatory response and neuronal death were analyzed both at the perilesional area as at the distant ipsilateral CA1 hippocampal area. Immunohistochemistry for GFAP and caspase 3 was used. The ipsilateral free water content was assessed for stimation of cerebral edema, and neurodevelopment and neurofunctional tests were conducted. Results. Reduction of reactive astrocytosis was observed both in the perilesional area 24 hours and 14 days after the hemorrhage lesion (p < 0.001) and in the Stratum oriens of the ipsilateral hippocampal CA1 14 days after the hemorrhage lesion (p < 0.05) in the treated groups. Similarly, there was a reduction in the number of Caspase 3-positive astrocytes in the perilesional area in the treated groups 24 hours after the hemorrhage lesion (p < 0.001). Finally, we found a significant increase in the weight of the rats treated with cannabidiol. Conclusion. The treatment of GMH with cannabidiol significantly reduced the number of apoptotic cells and reactive astrocytes in the perilesional area and the ipsilateral hippocampus. In addition, this response was sustained 14 days after the hemorrhage. These results corroborate our hypothesis that cannabidiol is a potential neuroprotective agent in the treatment of germinal matrix hemorrhage.
Collapse
|
Journal Article |
6 |
9 |
13
|
Koltz MT, Tosun C, Kurland DB, Coksaygan T, Castellani RJ, Ivanova S, Gerzanich V, Simard JM. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity. J Neurosurg Pediatr 2011; 8:628-39. [PMID: 22132923 PMCID: PMC3465975 DOI: 10.3171/2011.9.peds11174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Encephalopathy of prematurity (EP) is common in preterm, low birth weight infants who require postnatal mechanical ventilation. The worst types of EP are the hemorrhagic forms, including choroid plexus, germinal matrix, periventricular, and intraventricular hemorrhages. Survivors exhibit life-long cognitive, behavioral, and motor abnormalities. Available preclinical models do not fully recapitulate the salient features of hemorrhagic EP encountered in humans. In this study, the authors evaluated a novel model using rats that featured tandem insults of transient prenatal intrauterine ischemia (IUI) plus transient postnatal raised intrathoracic pressure (RIP). METHODS Timed-pregnant Wistar rats were anesthetized and underwent laparotomy on embryonic Day 19. Intrauterine ischemia was induced by clamping the uterine and ovarian vasculature for 20 minutes. Natural birth occurred on embryonic Day 22. Six hours after birth, the pups were subjected to an episode of RIP, induced by injecting glycerol (50%, 13 μl/g intraperitoneally). Control groups included naive, sham surgery, and IUI alone. Pathological, histological, and behavioral analyses were performed on pups up to postnatal Day 52. RESULTS Compared with controls, pups subjected to IUI+RIP exhibited significant increases in postnatal mortality and hemorrhages in the choroid plexus, germinal matrix, and periventricular tissues as well as intraventricularly. On postnatal Days 35-52, they exhibited significant abnormalities involving complex vestibulomotor function and rapid spatial learning. On postnatal Day 52, the brain and body mass were significantly reduced. CONCLUSIONS Tandem insults of IUI plus postnatal RIP recapitulate many features of the hemorrhagic forms of EP found in humans, suggesting that these insults in combination may play important roles in pathogenesis.
Collapse
|
research-article |
14 |
6 |
14
|
Alshareef M, Mallah K, Vasas T, Alawieh A, Borucki D, Couch C, Cutrone J, Shope C, Eskandari R, Tomlinson S. A Role of Complement in the Pathogenic Sequelae of Mouse Neonatal Germinal Matrix Hemorrhage. Int J Mol Sci 2022; 23:2943. [PMID: 35328364 PMCID: PMC8954718 DOI: 10.3390/ijms23062943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022] Open
Abstract
Germinal matrix hemorrhage (GMH) is a devastating disease of infancy that results in intraventricular hemorrhage, post-hemorrhagic hydrocephalus (PHH), periventricular leukomalacia, and neurocognitive deficits. There are no curative treatments and limited surgical options. We developed and characterized a mouse model of GMH based on the injection of collagenase into the subventricular zone of post-natal pups and utilized the model to investigate the role of complement in PHH development. The site-targeted complement inhibitor CR2Crry, which binds deposited C3 complement activation products, localized specifically in the brain following its systemic administration after GMH. Compared to vehicle, CR2Crry treatment reduced PHH and lesion size, which was accompanied by decreased perilesional complement deposition, decreased astrocytosis and microgliosis, and the preservation of dendritic and neuronal density. Complement inhibition also improved survival and weight gain, and it improved motor performance and cognitive outcomes measured in adolescence. The progression to PHH, neuronal loss, and associated behavioral deficits was linked to the microglial phagocytosis of complement opsonized neurons, which was reversed with CR2Crry treatment. Thus, complement plays an important role in the pathological sequelae of GMH, and complement inhibition represents a novel therapeutic approach to reduce the disease progression of a condition for which there is currently no treatment outside of surgical intervention.
Collapse
|
research-article |
3 |
6 |
15
|
McBride D, Tang J, Zhang JH. Maintaining Plasma Fibrinogen Levels and Fibrinogen Replacement Therapies for Treatment of Intracranial Hemorrhage. Curr Drug Targets 2018; 18:1349-1357. [PMID: 26648060 DOI: 10.2174/1389450117666151209123857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intracranial hemorrhage is characterized by the blood vessel rupture and subsequent hematoma expansion. It is the least treatable stroke subtype, resulting in higher morbidity and mortality per incidence than ischemic stroke. Recent studies have observed lower than normal levels of plasma fibrinogen in patients of intracerebral hemorrhage. Furthermore, in other cases of severe hemorrhage, plasma fibrinogen levels have been identified as an indicator of prognosis. Current clinical management of cerebral hemorrhage includes adjunctive therapies and possible surgical evacuation. However, a possible therapeutic target for intracranial hemorrhage is fibrinogen. During intracranial hemorrhage with hematoma expansion, fibrinogen levels are rapidly depleted and thus are in need of replacement. Maintaining high levels of fibrinogen can promote rapid clotting and reduction of hematoma expansion. OBJECTIVES Within this review, we examine the role of fibrinogen in intracranial hemorrhage and evaluate the use of fibrinogen replacement therapies for maintaining normal levels of this key hemostatic protein. The pros and cons are discussed and an opinion of the most appropriate fibrinogen replacement therapy for intracranial hemorrhage is made. CONCLUSION It is concluded that fibrinogen concentrate seems to be the most suitable therapy for elevating plasma fibrinogen for the treatment of intracranial hemorrhage with hematoma expansion.
Collapse
|
Review |
7 |
6 |
16
|
Jinnai M, Koning G, Singh-Mallah G, Jonsdotter A, Leverin AL, Svedin P, Nair S, Takeda S, Wang X, Mallard C, Ek CJ, Rocha-Ferreira E, Hagberg H. A Model of Germinal Matrix Hemorrhage in Preterm Rat Pups. Front Cell Neurosci 2020; 14:535320. [PMID: 33343300 PMCID: PMC7744792 DOI: 10.3389/fncel.2020.535320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 11/05/2020] [Indexed: 01/26/2023] Open
Abstract
Germinal matrix hemorrhage (GMH) is a serious complication in extremely preterm infants associated with neurological deficits and mortality. The purpose of the present study was to develop and characterize a grade III and IV GMH model in postnatal day 5 (P5) rats, the equivalent of preterm human brain maturation. P5 Wistar rats were exposed to unilateral GMH through intracranial injection into the striatum close to the germinal matrix with 0.1, 0.2, or 0.3 U of collagenase VII. During 10 days following GMH induction, motor functions and body weight were assessed and brain tissue collected at P16. Animals were tested for anxiety, motor coordination and motor asymmetry on P22–26 and P36–40. Using immunohistochemical staining and neuropathological scoring we found that a collagenase dose of 0.3 U induced GMH. Neuropathological assessment revealed that the brain injury in the collagenase group was characterized by dilation of the ipsilateral ventricle combined with mild to severe cellular necrosis as well as mild to moderate atrophy at the levels of striatum and subcortical white matter, and to a lesser extent, hippocampus and cortex. Within 0.5 h post-collagenase injection there was clear bleeding at the site of injury, with progressive increase in iron and infiltration of neutrophils in the first 24 h, together with focal microglia activation. By P16, blood was no longer observed, although significant gray and white matter brain infarction persisted. Astrogliosis was also detected at this time-point. Animals exposed to GMH performed worse than controls in the negative geotaxis test and also opened their eyes with latency compared to control animals. At P40, GMH rats spent more time in the center of open field box and moved at higher speed compared to the controls, and continued to show ipsilateral injury in striatum and subcortical white matter. We have established a P5 rat model of collagenase-induced GMH for the study of preterm brain injury. Our results show that P5 rat pups exposed to GMH develop moderate brain injury affecting both gray and white matter associated with delayed eye opening and abnormal motor functions. These animals develop hyperactivity and show reduced anxiety in the juvenile stage.
Collapse
|
Journal Article |
5 |
5 |
17
|
Lai GY, Chu Kwan W, Piorkowska K, Wagner MW, Jamshidi P, Ertl-Wagner B, Looi T, Waspe AC, Drake JM. Prediction of persistent ventricular dilation by initial ventriculomegaly and clot volume in a porcine model. J Neurosurg Pediatr 2021:1-8. [PMID: 34798598 DOI: 10.3171/2021.9.peds2190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE While intraventricular hemorrhage (IVH) is associated with posthemorrhagic ventricular dilation (PHVD), not all infants affected by high-grade IVH develop PHVD. The authors aimed to determine clot-associated predictors of PHVD in a porcine model by varying the amount and rate of direct intraventricular injection of whole autologous blood. METHODS Seven 1-week-old piglets underwent craniectomy and injection of autologous blood into the right lateral ventricle. They survived for a maximum of 28 days. MRI was performed prior to injection, immediately postoperatively, and every 7 days thereafter. T1-weighted, T2-weighted, and susceptibility-weighted imaging (SWI) sequences were used to segment ventricular and clot volumes. Spearman correlations were used to determine the relationship between blood and clot volumes and ventricular volumes over time. RESULTS The maximum ventricular volume was up to 12 times that of baseline. One animal developed acute hydrocephalus on day 4. All other animals survived until planned endpoints. The interaction between volume of blood injected and duration of injection was significantly associated with clot volume on the postoperative scan (p = 0.003) but not the amount of blood injected alone (p = 0.38). Initial postoperative and day 7 clot volumes, but not volume of blood injected, were correlated with maximum (p = 0.007 and 0.014) and terminal (p = 0.014 and 0.036) ventricular volumes. Initial postoperative ventricular volume was correlated with maximum and terminal ventricular volume (p = 0.007 and p = 0.014). CONCLUSIONS Initial postoperative, maximum, and terminal ventricular dilations were associated with the amount of clot formed, rather than the amount of blood injected. This supports the hypothesis that PHVD is determined by clot burden rather than the presence of blood products and allows further testing of early clot lysis to minimize PHVD risk.
Collapse
|
|
4 |
3 |
18
|
Alshareef M, Hatchell D, Vasas T, Mallah K, Shingala A, Cutrone J, Alawieh A, Guo C, Tomlinson S, Eskandari R. Complement Drives Chronic Inflammation and Progressive Hydrocephalus in Murine Neonatal Germinal Matrix Hemorrhage. Int J Mol Sci 2023; 24:10171. [PMID: 37373319 PMCID: PMC10299267 DOI: 10.3390/ijms241210171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Germinal matrix hemorrhage (GMH) is a pathology that occurs in infancy, with often devastating long-term consequences. Posthemorrhagic hydrocephalus (PHH) can develop acutely, while periventricular leukomalacia (PVL) is a chronic sequala. There are no pharmacological therapies to treat PHH and PVL. We investigated different aspects of the complement pathway in acute and chronic outcomes after murine neonatal GMH induced at postnatal day 4 (P4). Following GMH-induction, the cytolytic complement membrane attack complex (MAC) colocalized with infiltrating red blood cells (RBCs) acutely but not in animals treated with the complement inhibitor CR2-Crry. Acute MAC deposition on RBCs was associated with heme oxygenase-1 expression and heme and iron deposition, which was reduced with CR2-Crry treatment. Complement inhibition also reduced hydrocephalus and improved survival. Following GMH, there were structural alterations in specific brain regions linked to motor and cognitive functions, and these changes were ameliorated by CR2-Crry, as measured at various timepoints through P90. Astrocytosis was reduced in CR2-Crry-treated animals at chronic, but not acute, timepoints. At P90, myelin basic protein and LAMP-1 colocalized, indicating chronic ongoing phagocytosis of white matter, which was reduced by CR2-Crry treatment. Data indicate acute MAC-mediated iron-related toxicity and inflammation exacerbated the chronic effects of GMH.
Collapse
|
research-article |
2 |
1 |
19
|
Ho SS, Zhou Y, Rajderkar D. Intracranial Imaging of Preterm Infants with Suspected Hypoxic Ischemic Encephalopathy: Comparing MRI and Ultrasound. Curr Pediatr Rev 2023; 19:179-186. [PMID: 35440311 DOI: 10.2174/1573396318666220417233146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
AIMS We correlate ultrasound, MRI, and clinical findings in neonates with suspected hypoxic ischemic injury. BACKGROUND Recent advances in neuroimaging have led to improved detection of subtle insults associated with neurodevelopmental outcomes, beyond more historically described lesions such as large hemorrhages and hydrocephalus. OBJECTIVE In this study, we compare cranial ultrasound to MRI for the evaluation of suspected HIE in preterm infants. METHODS 147 premature infant patients with paired ultrasound and MRI exams were retrospectively analyzed to compare imaging finding accuracy and clinical value. RESULT We confirm that ultrasound is highly sensitive and specific for hydrocephalus, ventricular prominence, and gross structural abnormalities. Ultrasound is not a substitute for MRI in cases of small hemorrhages or white matter injury, however, certain US findings were associated with Apgar score and MRI sequelae of HIE. CONCLUSION Choosing between ultrasound and MRI for preterm neonates at risk for intracranial abnormalities based on their strengths can reduce cost and maximize clinical utility. MRI provides a highly sensitive identification of subtle brain injury, yet ultrasound is correlated with the peripartum clinical picture as measured by Apgar score.
Collapse
|
|
2 |
|
20
|
Cerisola A, Baltar F, Ferrán C, Turcatti E. [Mechanisms of brain injury of the premature baby]. Medicina (B Aires) 2019; 79 Suppl 3:10-14. [PMID: 31603836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Preterm birth is one of the main country health indicators. It is associated with high mortality and significant morbidity in preterm newborns with cerebral palsy and potential long-term neurodevelopmental disabilities like cognitive and learning problems. The main lesions could be: a) white matter injuries, generally associated with cortical and other regions of grey matter neuronal-axonal disturbances; b) intracranial hemorrhage that includes germinal matrix, intraventricular and parenchymal, c) cerebellum injuries. The white matter lesions include cystic and non-cystic (with microscopic focal necrosis) periventricular leukomalacia and non-necrotic diffuse white matter injury. Multiple etiologic factors are associated with these injuries. Anatomical and physiological characteristics of periventricular vascular structures predispose white matter to cerebral ischemia and, interacting with infection/inflammation factors, activate microglia, generating oxidative stress (mediated by free oxygen and nitrogen radicals), pro-inflammatory cytokine and glutamate toxicity, energetic failure and vascular integrity disturbances. All these factors lead to a particular vulnerability of pre-oligodendrocytes that will affect myelination. Hypoxia-ischemia also may produce selective neuronal necrosis in different cerebral regions. Germinal matrix is a highly vascularized zone beneath ependymal or periventricular region that constitutes a capillary bed with a particular structural fragility that predispose it to hemorrhage.
Collapse
|
|
6 |
|
21
|
Yang PH, Karuparti S, Varagur K, Alexopoulos D, Reeder RW, Lean RE, Rogers CE, Limbrick DD, Smyser CD, Strahle JM. Association of germinal matrix hemorrhage volume with neurodevelopment and hydrocephalus. J Neurosurg Pediatr 2024; 34:347-356. [PMID: 38968622 PMCID: PMC11653773 DOI: 10.3171/2024.3.peds22376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/01/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate whether volumetric measurements on early cranial ultrasound (CUS) in high-grade germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) are associated with hydrocephalus and neurodevelopmental metrics. METHODS A retrospective case series analysis of infants with high-grade GMH-IVH admitted to the St. Louis Children's Hospital neonatal intensive care unit between 2007 and 2015 who underwent neurodevelopmental testing using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III) at 2 years of corrected age was performed. GMH volume, periventricular hemorrhagic infarction volume, and frontotemporal horn ratio were obtained from direct review of neonatal CUS studies. Univariate and multivariable regression models were used to evaluate the association between hemorrhage volumes and hydrocephalus requiring permanent CSF diversion with ventricular shunt or endoscopic third ventriculostomy with or without choroid plexus cauterization and composite Bayley-III cognitive, language, and motor scores. RESULTS Forty-three infants (29 males, mean gestational age 25 weeks) met the inclusion criteria. The mean age at time of the CUS with the largest hemorrhage volume or first diagnosis of highest grade was 6.2 days. Nineteen patients underwent treatment for hydrocephalus with permanent CSF diversion. In multivariable analyses, larger GMH volume was associated with worse estimated Bayley-III cognitive (left-sided GMH volume: p = 0.048, total GMH volume: p = 0.023) and motor (left-sided GMH volume: p = 0.010; total GMH volume: p = 0.014) scores. Larger periventricular hemorrhagic infarction volume was associated with worse estimated Bayley-III motor scores (each side p < 0.04). Larger left-sided (OR 2.55, 95% CI 1.10-5.88; p = 0.028) and total (OR 1.35, 95% CI 1.01-1.79; p = 0.041) GMH volumes correlated with hydrocephalus. There was no relationship between early ventricular volume and hydrocephalus or neurodevelopmental outcomes. CONCLUSIONS Location-specific hemorrhage volume on early CUS may be prognostic for neurodevelopmental and hydrocephalus outcomes in high-grade GMH-IVH.
Collapse
|
research-article |
1 |
|
22
|
Paez-Gonzalez P, Lopez-de-San-Sebastian J, Ceron-Funez R, Jimenez AJ, Rodríguez-Perez LM. Therapeutic strategies to recover ependymal barrier after inflammatory damage: relevance for recovering neurogenesis during development. Front Neurosci 2023; 17:1204197. [PMID: 37397456 PMCID: PMC10308384 DOI: 10.3389/fnins.2023.1204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
The epithelium covering the surfaces of the cerebral ventricular system is known as the ependyma, and is essential for maintaining the physical and functional integrity of the central nervous system. Additionally, the ependyma plays an essential role in neurogenesis, neuroinflammatory modulation and neurodegenerative diseases. Ependyma barrier is severely affected by perinatal hemorrhages and infections that cross the blood brain barrier. The recovery and regeneration of ependyma after damage are key to stabilizing neuroinflammatory and neurodegenerative processes that are critical during early postnatal ages. Unfortunately, there are no effective therapies to regenerate this tissue in human patients. Here, the roles of the ependymal barrier in the context of neurogenesis and homeostasis are reviewed, and future research lines for development of actual therapeutic strategies are discussed.
Collapse
|
Review |
2 |
|
23
|
Massirio P, Cardiello V, Andreato C, Caruggi S, Battaglini M, Calandrino A, Polleri G, Mongelli F, Malova M, Minghetti D, Parodi A, Calevo MG, Tortora D, Rossi A, Ramenghi LA. Ventilatory Support, Extubation, and Cerebral Perfusion Changes in Pre-Term Neonates: A Near Infrared Spectroscopy Study. Neurotrauma Rep 2024; 5:409-416. [PMID: 38655113 PMCID: PMC11035839 DOI: 10.1089/neur.2023.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Early extubation is considered to be beneficial for pre-term neonates. On the other hand, premature extubation can cause lung derecruitment, compromised gas exchange, and need for reintubation, which may be associated with severe brain injury caused by sudden cerebral blood flow changes. We used near infrared spectroscopy (NIRS) to investigate changes in cerebral oxygenation (rScO2) and fractional tissue oxygen extraction (+) after extubation in pre-term infants. This is a single-center retrospective study of NIRS data at extubation time of all consecutive pre-term neonates born at our institution over a 1-year period. Comparison between subgroups was performed. Nineteen patients were included; average gestational age (GA) was 29.4 weeks. No significant change was noted in rScO2 and cFTOE after extubation in the whole population. GA and germinal matrix hemorrhage (GMH)-intraventricular hemorrhage (IVH) showed a significant change in rScO2 and cFTOE after extubation. A significant increase in cFTOE was noted in patients with previous GMH-IVH (+0.040; p = 0.05). To conclude, extubation per se was not associated with significant change in cerebral oxygenation and perfusion. Patients with a diagnosed GMH-IVH showed an increase in cFTOE, suggesting perturbation in cerebral perfusion suggesting further understanding during this challenging phenomenon. Larger studies are required to corroborate our findings.
Collapse
|
research-article |
1 |
|
24
|
Recent Review of Germinal Matrix Hemorrhage-Intraventricular Hemorrhage in Preterm Infants. Neonatal Netw 2022; 41:100-106. [PMID: 35260427 DOI: 10.1891/11-t-722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/25/2022]
Abstract
Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) is a particular type of intracranial hemorrhage that affects the preterm population. GMH-IVH originates from bleeding within the highly vascular area near the center of the brain known as the germinal matrix. The pathogenesis of GMH-IVH is unclear; it is likely related to hemodynamic changes and fluctuations in cerebral blood flow within a fragile developing brain. Cranial ultrasound is the primary diagnostic test and reveals the degree of GMH-IVH based on a grading system. Management includes prevention of preterm delivery with meticulous antenatal and postnatal preventative strategies. This article discusses current evidence specific to the pathogenesis, risk factors, diagnosis, grading scales, and management approaches with GMH-IVH in preterm infants.
Collapse
|
|
3 |
|
25
|
Çizmeci MN, Akın MA, Özek E. Turkish Neonatal Society Guideline on the Diagnosis and Management of Germinal Matrix Hemorrhage-Intraventricular Hemorrhage and Related Complications. Turk Arch Pediatr 2021; 56:499-512. [PMID: 35110121 PMCID: PMC8849013 DOI: 10.5152/turkarchpediatr.2021.21142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) remains an important cause of brain injury in preterm infants, and is associated with high rates of mortality and adverse neurodevelopmental outcomes, despite the recent advances in perinatal care. Close neuroimaging is recommended for both the detection of GMH-IVH and for the follow-up of serious complications, such as post-hemorrhagic ventricular dilatation (PHVD). Although the question when best to treat PHVD remains a matter of debate, recent literature on this topic shows that later timing of interventions predicted higher rates of neurodevelopmental impairment, emphasizing the importance of a well-structured neuroimaging protocol and timely interventions. In this guideline, pathophysiologic mechanisms, preventive measures, and clinical presentations of GMH-IVH and PHVD will be presented, and a neuroimaging protocol as well as an optimal treatment approach will be proposed in light of the recent literature.
Collapse
|
research-article |
4 |
|