1
|
Kumar S, Narwal S, Kumar V, Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn Rev 2011; 5:19-29. [PMID: 22096315 PMCID: PMC3210010 DOI: 10.4103/0973-7847.79096] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Indexed: 11/04/2022] Open
Abstract
Diabetes is a common metabolic disease characterized by abnormally high plasma glucose levels, leading to major complications, such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective managements of diabetes mellitus, in particular, non-insulin-dependent diabetes mellitus (NIDDM) to decrease postprandial hyperglycemia, is to retard the absorption of glucose by inhibition of carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase, in the digestive organs. α-Glucosidase is the key enzyme catalyzing the final step in the digestive process of carbohydrates. Hence, α-glucosidase inhibitors can retard the liberation of d-glucose from dietary complex carbohydrates and delay glucose absorption, resulting in reduced postprandial plasma glucose levels and suppression of postprandial hyperglycemia. In recent years, many efforts have been made to identify effective α-glucosidase inhibitors from natural sources in order to develop a physiologic functional food or lead compounds for use against diabetes. Many α-glucosidase inhibitors that are phytoconstituents, such as flavonoids, alkaloids, terpenoids,anthocyanins, glycosides, phenolic compounds, and so on, have been isolated from plants. In the present review, we focus on the constituents isolated from different plants having α-glucosidase inhibitory potency along with IC50 values.
Collapse
|
Journal Article |
14 |
413 |
2
|
Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2010; 9:425-474. [PMID: 20835386 PMCID: PMC2928447 DOI: 10.1007/s11101-010-9183-z] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/29/2010] [Indexed: 05/21/2023]
Abstract
Saponins are natural glycosides which possess a wide range of pharmacological properties including cytotoxic activity. In this review, the recent studies (2005-2009) concerning the cytotoxic activity of saponins have been summarized. The correlations between the structure and the cytotoxicity of both steroid and triterpenoid saponins have been described as well as the most common mechanisms of action.
Collapse
|
review-article |
15 |
404 |
3
|
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010; 67:3389-405. [PMID: 20490603 PMCID: PMC11115901 DOI: 10.1007/s00018-010-0399-2] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)(8)-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)(6) barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.
Collapse
|
Review |
15 |
402 |
4
|
Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 2007; 104:20238-43. [PMID: 18077347 PMCID: PMC2154415 DOI: 10.1073/pnas.0706421104] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Indexed: 11/18/2022] Open
Abstract
The glucosylation of pollutant and pesticide metabolites in plants controls their bioactivity and the formation of subsequent chemical residues. The model plant Arabidopsis thaliana contains >100 glycosyltransferases (GTs) dedicated to small-molecule conjugation and, whereas 44 of these enzymes catalyze the O-glucosylation of chlorinated phenols, only one, UGT72B1, shows appreciable N-glucosylating activity toward chloroanilines. UGT72B1 is a bifunctional O-glucosyltransferase (OGT) and N-glucosyltransferase (NGT). To investigate this unique dual activity, the structure of the protein was solved, at resolutions up to 1.45 A, in various forms including the Michaelis complex with intact donor analog and trichlorophenol acceptor. The catalytic mechanism and basis for O/N specificity was probed by mutagenesis and domain shuffling with an orthologous enzyme from Brassica napus (BnUGT), which possesses only OGT activity. Mutation of BnUGT at just two positions (D312N and F315Y) installed high levels of NGT activity. Molecular modeling revealed the connectivity of these residues to H19 on UGT72B1, with its mutagenesis exclusively defining NGT activity in the Arabidopsis enzyme. These results shed light on the conjugation of nonnatural substrates by plant GTs, highlighting the catalytic plasticity of this enzyme class and the ability to engineer unusual and desirable transfer to nitrogen-based acceptors.
Collapse
|
research-article |
18 |
234 |
5
|
Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 2017; 57:1874-1905. [PMID: 26176651 DOI: 10.1080/10408398.2015.1032400] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. The natural flavonoids almost all exist as their O-glycoside or C-glycoside forms in plants. In this review, we summarized the existing knowledge on the different biological benefits and pharmacokinetic behaviors between flavonoid aglycones and their glycosides. Due to various conclusions from different flavonoid types and health/disease conditions, it is very difficult to draw general or universally applicable comments regarding the impact of glycosylation on the biological benefits of flavonoids. It seems as though O-glycosylation generally reduces the bioactivity of these compounds - this has been observed for diverse properties including antioxidant activity, antidiabetes activity, anti-inflammation activity, antibacterial, antifungal activity, antitumor activity, anticoagulant activity, antiplatelet activity, antidegranulating activity, antitrypanosomal activity, influenza virus neuraminidase inhibition, aldehyde oxidase inhibition, immunomodulatory, and antitubercular activity. However, O-glycosylation can enhance certain types of biological benefits including anti-HIV activity, tyrosinase inhibition, antirotavirus activity, antistress activity, antiobesity activity, anticholinesterase potential, antiadipogenic activity, and antiallergic activity. However, there is a lack of data for most flavonoids, and their structures vary widely. There is also a profound lack of data on the impact of C-glycosylation on flavonoid biological benefits, although it has been demonstrated that in at least some cases C-glycosylation has positive effects on properties that may be useful in human healthcare such as antioxidant and antidiabetes activity. Furthermore, there is a lack of in vivo data that would make it possible to make broad generalizations concerning the influence of glycosylation on the benefits of flavonoids for human health. It is possible that the effects of glycosylation on flavonoid bioactivity in vitro may differ from that seen in vivo. With in vivo (oral) treatment, flavonoid glycosides showed similar or even higher antidiabetes, anti-inflammatory, antidegranulating, antistress, and antiallergic activity than their flavonoid aglycones. Flavonoid glycosides keep higher plasma levels and have a longer mean residence time than those of aglycones. We should pay more attention to in vivo benefits of flavonoid glycosides, especially C-glycosides.
Collapse
|
Review |
8 |
188 |
6
|
Badir SO, Dumoulin A, Matsui JK, Molander GA. Synthesis of Reversed C-Acyl Glycosides through Ni/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2018; 57:6610-6613. [PMID: 29575475 PMCID: PMC6526375 DOI: 10.1002/anie.201800701] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/15/2018] [Indexed: 12/17/2022]
Abstract
The incorporation of C-glycosides in drug design has become a routine practice for medicinal chemists. These naturally occurring building blocks exhibit attractive pharmaceutical profiles, and have become an important target of synthetic efforts in recent decades. Described herein is a practical, scalable, and versatile route for the synthesis of non-anomeric and unexploited C-acyl glycosides through a Ni/photoredox dual catalytic system. By utilizing an organic photocatalyst, a range of glycosyl-based radicals are generated and efficiently coupled with highly functionalized carboxylic acids at room temperature. Distinctive features of this transformation include its mild conditions, impressive compatibility with a wide array of functional groups, and most significantly, preservation of the anomeric carbon: a handle for further, late-stage derivatization.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
135 |
7
|
Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. A 3,4-trans-fused cyclic protecting group facilitates α-selective catalytic synthesis of 2-deoxy glycosides. Angew Chem Int Ed Engl 2014; 53:8190-4. [PMID: 24953049 PMCID: PMC4499252 DOI: 10.1002/anie.201403543] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 11/09/2022]
Abstract
A practical approach has been developed to convert glucals and rhamnals into disaccharides or glycoconjugates with high α-selectivity and yields (77-97%) using a trans-fused cyclic 3,4-O-disiloxane protecting group and TsOH⋅H2O (1 mol%) as a catalyst. Control of the anomeric selectivity arises from conformational locking of the intermediate oxacarbenium cation. Glucals outperform rhamnals because the C6 side-chain conformation augments the selectivity.
Collapse
|
research-article |
11 |
94 |
8
|
Cheng Y, Xue F, Yu S, Du S, Yang Y. Subcritical Water Extraction of Natural Products. Molecules 2021; 26:4004. [PMID: 34209151 PMCID: PMC8271798 DOI: 10.3390/molecules26134004] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subcritical water refers to high-temperature and high-pressure water. A unique and useful characteristic of subcritical water is that its polarity can be dramatically decreased with increasing temperature. Therefore, subcritical water can behave similar to methanol or ethanol. This makes subcritical water a green extraction fluid used for a variety of organic species. This review focuses on the subcritical water extraction (SBWE) of natural products. The extracted materials include medicinal and seasoning herbs, vegetables, fruits, food by-products, algae, shrubs, tea leaves, grains, and seeds. A wide range of natural products such as alkaloids, carbohydrates, essential oil, flavonoids, glycosides, lignans, organic acids, polyphenolics, quinones, steroids, and terpenes have been extracted using subcritical water. Various SBWE systems and their advantages and drawbacks have also been discussed in this review. In addition, we have reviewed co-solvents including ethanol, methanol, salts, and ionic liquids used to assist SBWE. Other extraction techniques such as microwave and sonication combined with SBWE are also covered in this review. It is very clear that temperature has the most significant effect on SBWE efficiency, and thus, it can be optimized. The optimal temperature ranges from 130 to 240 °C for extracting the natural products mentioned above. This review can help readers learn more about the SBWE technology, especially for readers with an interest in the field of green extraction of natural products. The major advantage of SBWE of natural products is that water is nontoxic, and therefore, it is more suitable for the extraction of herbs, vegetables, and fruits. Another advantage is that no liquid waste disposal is required after SBWE. Compared with organic solvents, subcritical water not only has advantages in ecology, economy, and safety, but also its density, ion product, and dielectric constant can be adjusted by temperature. These tunable properties allow subcritical water to carry out class selective extractions such as extracting polar compounds at lower temperatures and less polar ingredients at higher temperatures. SBWE can mimic the traditional herbal decoction for preparing herbal medication and with higher extraction efficiency. Since SBWE employs high-temperature and high-pressure, great caution is needed for safe operation. Another challenge for application of SBWE is potential organic degradation under high temperature conditions. We highly recommend conducting analyte stability checks when carrying out SBWE. For analytes with poor SBWE efficiency, a small number of organic modifiers such as ethanol, surfactants, or ionic liquids may be added.
Collapse
|
Review |
4 |
77 |
9
|
Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:374. [PMID: 28424705 PMCID: PMC5372812 DOI: 10.3389/fpls.2017.00374] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/03/2017] [Indexed: 05/20/2023]
Abstract
Plant's secondary metabolites such as flavonoids, terpenoids, and alkaloids etc. are known for their role in the defense against various insects-pests of plants and for medicinal benefits in human. Due to the immense biological importance of these phytochemicals, understanding the regulation of their biosynthetic pathway is crucial. In the recent past, advancement in the molecular technologies has enabled us to better understand the proteins, enzymes, genes, etc. involved in the biosynthetic pathway of the secondary metabolites. miRNAs are magical, tiny, non-coding ribonucleotides that function as critical regulators of gene expression in eukaryotes. Despite the accumulated knowledge of the miRNA-mediated regulation of several processes, the involvement of miRNAs in regulating secondary plant product biosynthesis is still poorly understood. Here, we summarize the recent progress made in the area of identification and characterizations of miRNAs involved in regulating the biosynthesis of secondary metabolites in plants and discuss the future perspectives for designing the viable strategies for their targeted manipulation.
Collapse
|
Review |
8 |
75 |
10
|
Beg S, Swain S, Hasan H, Barkat MA, Hussain MS. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacogn Rev 2011; 5:120-37. [PMID: 22279370 PMCID: PMC3263046 DOI: 10.4103/0973-7847.91102] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/14/2011] [Accepted: 12/23/2011] [Indexed: 12/20/2022] Open
Abstract
Many synthetic drugs reported to be used for the treatment of inflammatory disorders are of least interest now a days due to their potential side effects and serious adverse effects and as they are found to be highly unsafe for human assistance. Since the last few decades, herbal drugs have regained their popularity in treatment against several human ailments. Herbals containing anti-inflammatory activity (AIA) are topics of immense interest due to the absence of several problems in them, which are associated with synthetic preparations. The primary objective of this review is to provide a deep overview of the recently explored anti-inflammatory agents belonging to various classes of phytoconstituents like alkaloids, glycosides, terpenoids, steroids, polyphenolic compounds, and also the compounds isolated from plants of marine origin, algae and fungi. Also, it enlists a distended view on potential interactions between herbals and synthetic preparations, related adverse effects and clinical trials done on herbals for exploring their AIA. The basic aim of this review is to give updated knowledge regarding plants which will be valuable for the scientists working in the field of anti-inflammatory natural chemistry.
Collapse
|
review-article |
14 |
75 |
11
|
Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols. Molecules 2020; 25:molecules25041017. [PMID: 32102475 PMCID: PMC7070238 DOI: 10.3390/molecules25041017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/31/2022] Open
Abstract
Systemic inflammation, circulating immune cell activation, and endothelial cell damage play a critical role in vascular pathogenesis. Flavonoids have shown anti-inflammatory effects. In this study, we investigated the effects of different flavonoids on the production of pro-inflammatory interleukin (IL) 1β, 6, and 8, and tumor necrosis factor α (TNF-α), in peripheral blood cells. Methods: We studied the whole blood from 36 healthy donors. Lipopolysaccharide (LPS)-stimulated (0.5 μg/mL) whole-blood aliquots were incubated in the presence or absence of different concentrations of quercetin, rutin, naringenin, naringin, diosmetin, and diosmin for 6 h. Cultures were centrifuged and the supernatant was collected in order to measure IL-1β, TNF-α, IL-6, and IL-8 production using specific immunoassay techniques. This production was significantly inhibited by quercetin, naringenin, naringin, and diosmetin, but in no case by rutin or diosmin. Flavonoids exert different effects, maybe due to the differences between aglycons and glucosides present in their chemical structures. However, these studies suggest that quercetin, naringenin, naringin, and diosmetin could have a potential therapeutic effect in the inflammatory process of cardiovascular disease.
Collapse
|
Journal Article |
5 |
68 |
12
|
Ferreira V, Lopez R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019; 9:E818. [PMID: 31816941 PMCID: PMC6995537 DOI: 10.3390/biom9120818] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 01/24/2023] Open
Abstract
This review intends to rationalize the knowledge related to the aroma of grapes and to the aroma of wine with specific origin in molecules formed in grapes. The actual flavor of grapes is formed by the few free aroma molecules already found in the pulp and in the skin, plus by those aroma molecules quickly formed by enzymatic/catalytic reactions. The review covers key aroma components of aromatic grapes, raisins and raisinized grapes, and the aroma components responsible from green and vegetal notes. This knowledge is used to explain the flavor properties of neutral grapes. The aroma potential of grape is the consequence of five different systems/pools of specific aroma precursors that during fermentation and/or aging, release wine varietal aroma. In total, 27 relevant wine aroma compounds can be considered that proceed from grape specific precursors. Some of them are immediately formed during fermentation, while some others require long aging time to accumulate. Precursors are glycosides, glutathionyl and cysteinyl conjugates, and other non-volatile molecules.
Collapse
|
Review |
6 |
53 |
13
|
Mondol MAM, Shin HJ, Rahman MA, Islam MT. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties. Mar Drugs 2017; 15:md15100317. [PMID: 29039760 PMCID: PMC5666425 DOI: 10.3390/md15100317] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/29/2023] Open
Abstract
Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.
Collapse
|
Review |
8 |
52 |
14
|
Abstract
Because of their pivotal biological functions, attention to sugars and glycobiology has grown rapidly in recent decades, leading to increased demand for homogeneous oligosaccharides. The stereoselective preparation of oligosaccharides by chemical means remains challenging and continues to be a vivid research area for organic chemists. In the past decade, new approaches and reinvestigated traditional methods have transformed the field. These developments include novel catalyses, various types of glycosylation modulators and the use of photochemical energy to facilitate glycosylation. This Minireview presents a brief overview of the latest trends in chemical glycosylation, with emphasis on the stereoselective synthetic protocols developed in the past decade.
Collapse
|
Journal Article |
6 |
45 |
15
|
Martin HJ, Drescher M, Kählig H, Schneider S, Mulzer J. Synthesis of the C1-C13 Fragment of Kendomycin: Atropisomerism around a C-Aryl Glycosidic Bond. Angew Chem Int Ed Engl 2001; 40:3186-3188. [PMID: 29712054 DOI: 10.1002/1521-3773(20010903)40:17<3186::aid-anie3186>3.0.co;2-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Indexed: 11/08/2022]
Abstract
The left-hand fragment 2 of the novel antibiotic kendomycin (1) has been synthesized by an aldol addition and a Michael-type 1,4-addition of a C5 alcohol with a C9-C11 enone. Compound 2 shows an interesting atropisomerism around the C4a-C5-sp2 -sp3 bond. The atropisomers can be separated in pure forms by low-temperature high-pressure liquid chromatography.
Collapse
|
Journal Article |
24 |
44 |
16
|
Banala S, Moser S, Müller T, Kreutz C, Holzinger A, Lütz C, Kräutler B. Hypermodified fluorescent chlorophyll catabolites: source of blue luminescence in senescent leaves. Angew Chem Int Ed Engl 2010; 49:5174-7. [PMID: 20533476 PMCID: PMC2923073 DOI: 10.1002/anie.201000294] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
research-article |
15 |
43 |
17
|
Ueda Y, Furuta T, Kawabata T. Final-stage site-selective acylation for the total syntheses of multifidosides A-C. Angew Chem Int Ed Engl 2015; 54:11966-70. [PMID: 26384855 DOI: 10.1002/anie.201504729] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 11/11/2022]
Abstract
The first total syntheses of multifidosides A-C have been achieved. The synthetic strategy is characterized by catalytic site-selective acylation of unprotected glycoside precursors in the final stage of the synthesis. High functional-group tolerance of the site-selective acylation, promoted by an organocatalyst, enabled the conventionally difficult molecular transformation in a predictable and reliable manner. An advantage of this strategy is to avoid the risks of undesired side reactions during the removal of the protecting groups at the final stage of the total synthesis.
Collapse
|
Journal Article |
10 |
42 |
18
|
Zhang X, Dhawane AN, Sweeney J, He Y, Vasireddi M, Iyer SS. Electrochemical assay to detect influenza viruses and measure drug susceptibility. Angew Chem Int Ed Engl 2015; 54:5929-32. [PMID: 25823546 PMCID: PMC5453671 DOI: 10.1002/anie.201412164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/17/2022]
Abstract
An electrochemical assay has been designed to rapidly diagnose influenza viruses. Exposure of a glucose-bearing substrate to influenza viruses or its enzyme, neuraminidase (NA), releases glucose, which was detected amperometrically. Two methods were used to detect released glucose. First, we used a standard glucose blood meter to detect two viral NAs and three influenza strains. We also demonstrated drug susceptibility of two antivirals, Zanamivir and Oseltamivir, using the assay. Finally, we used disposable test strips to detect nineteen H1N1 and H3N2 influenza strains using this assay in one hour. The limit and range of detection of this first generation assay is 10(2) and 10(2)-10(8) plaque forming units (pfu), respectively. Current user-friendly glucose meters can be repurposed to detect influenza viruses.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
42 |
19
|
Hasty SJ, Kleine MA, Demchenko AV. S-Benzimidazolyl glycosides as a platform for oligosaccharide synthesis by an active-latent strategy. Angew Chem Int Ed Engl 2011; 50:4197-201. [PMID: 21433229 PMCID: PMC3150471 DOI: 10.1002/anie.201007212] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/19/2011] [Indexed: 11/11/2022]
|
Research Support, N.I.H., Extramural |
14 |
41 |
20
|
Johnson JB, Mani JS, Broszczak D, Prasad SS, Ekanayake CP, Strappe P, Valeris P, Naiker M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother Res 2021; 35:3484-3508. [PMID: 33615599 DOI: 10.1002/ptr.7042] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/01/2023]
Abstract
Phenolic acid and flavonoid glycosides form a varied class of naturally occurring compounds, characterised by high polarity-resulting from the glycone moiety-and the presence of multiple phenol functionalities, which often leads to strong antioxidant activity. Phenolic glycosides, and in particular flavonoid glycosides, may possess strong bioactive properties with broad spectrum activity. This systematic literature review provides a detailed overview of 28 studies examining the biological activity of phenolic and flavonoid glycosides from plant sources, highlighting the potential of these compounds as therapeutic agents. The activity of glycosides depends upon the biological activity type, identity of the aglycone and the identity and specific location of the glycone moiety. From studies reporting the activity of both glycosides and their respective aglycones, phenolic glycosides appear to generally be a storage/reserve pool of precursors of more bioactive compounds. The glycosylated compounds are likely to be more bioavailable compared to their aglycone forms, due to the presence of the sugar moieties. Hydrolysis of the glycoside in the in vivo environment would release the free aglycone, potentiating their biological activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of glycosides from many of the plant species studied.
Collapse
|
Review |
4 |
40 |
21
|
Kudo F, Eguchi T. Aminoglycoside Antibiotics: New Insights into the Biosynthetic Machinery of Old Drugs. CHEM REC 2015; 16:4-18. [PMID: 26455715 DOI: 10.1002/tcr.201500210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Indexed: 11/07/2022]
Abstract
2-Deoxystreptamine (2DOS) is the unique chemically stable aminocyclitol scaffold of clinically important aminoglycoside antibiotics such as neomycin, kanamycin, and gentamicin, which are produced by Actinomycetes. The 2DOS core can be decorated with various deoxyaminosugars to make structurally diverse pseudo-oligosaccharides. After the discovery of biosynthetic gene clusters for 2DOS-containing aminoglycoside antibiotics, the function of each biosynthetic enzyme has been extensively elucidated. The common biosynthetic intermediates 2DOS, paromamine and ribostamycin are constructed by conserved enzymes encoded in the gene clusters. The biosynthetic intermediates are then converted to characteristic architectures by unique enzymes encoded in each biosynthetic gene cluster. In this Personal Account, we summarize both common biosynthetic pathways and the pathways used for structural diversification.
Collapse
|
Review |
10 |
37 |
22
|
Khattab RR, Alshamari AK, Hassan AA, Elganzory HH, El-Sayed WA, Awad HM, Nossier ES, Hassan NA. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J Enzyme Inhib Med Chem 2021; 36:504-516. [PMID: 33504239 PMCID: PMC8759726 DOI: 10.1080/14756366.2020.1871335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
In the current study, new thienopyrimidine conjugates bearing 1,2,3-triazole core and different sugar moieties have been designed and synthesized by Cu(I)-catalysed click dipolar cycloaddition. The cytotoxic activity of the synthesised conjugates 2, 5, 7, and 13-18 was studied against HCT-116 and MCF-7 cell lines by the MTT assay. The triazole glycosides 16 and 18 provided significant cytotoxic activities against HCT-116 cell lines comparable to that of doxorubicin and other studied compounds. The cytotoxic behaviour against MCF-7 exhibited that all the investigated compounds were more potent than doxorubicin. Moreover, all screened targets were evaluated against mutant EGFR kinase type L858R and the results revealed that the acetylated 1,2,3-triazole glycosides 13-18 exhibited excellent EGFR inhibitory activity in comparison with gefitinib. Furthermore, molecular modelling studies were performed to investigate the binding affinity of the most active compounds to EGFR enzyme.
Collapse
|
research-article |
4 |
37 |
23
|
Dickerhoff J, Weisz K. Flipping a G-tetrad in a unimolecular quadruplex without affecting its global fold. Angew Chem Int Ed Engl 2015; 54:5588-91. [PMID: 25775974 DOI: 10.1002/anie.201411887] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/22/2015] [Indexed: 11/07/2022]
Abstract
A unimolecular G-quadruplex with a hybrid-type topology and propeller, diagonal, and lateral loops was examined for its ability to undergo structural changes upon specific modifications. Substituting 2'-deoxy-2'-fluoro analogues with a propensity to adopt an anti glycosidic conformation for two or three guanine deoxyribonucleosides in syn positions of the 5'-terminal G-tetrad significantly alters the CD spectral signature of the quadruplex. An NMR analysis reveals a polarity switch of the whole tetrad with glycosidic conformational changes detected for all four guanine nucleosides in the modified sequence. As no additional rearrangement of the overall fold occurs, a novel type of G-quadruplex is formed with guanosines in the four columnar G-tracts lined up in either an all-syn or an all-anti glycosidic conformation.
Collapse
|
Journal Article |
10 |
36 |
24
|
Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar Drugs 2012; 10:1671-1710. [PMID: 23015769 PMCID: PMC3447334 DOI: 10.3390/md10081671] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 11/17/2022] Open
Abstract
Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.
Collapse
|
Review |
13 |
35 |
25
|
Ahmad A, Ramasamy K, Majeed ABA, Mani V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. PHARMACEUTICAL BIOLOGY 2015; 53:758-66. [PMID: 25756802 DOI: 10.3109/13880209.2014.942791] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Soybean and its fermented products are the most common source of isoflavones in human food. OBJECTIVE The present study quantifies the major glycosides and aglycones in soybean and its fermented product tempeh isoflavone extracts. The comparision of antioxidant effects and BACE1 inhibitory activity between the isoflavones of soybean and tempeh were also established. MATERIALS AND METHODS The major isoflavones such as daidzein and genistein (aglycones), and their sugar conjugates (glycosides) daidzin and genistin in soybean and tempeh isoflavones were quantified using HPLC analysis. Comparative studies on BACE 1 (β-site amyloid precursor protein cleaving enzyme 1 or β-secretase 1) inhibition and free-radical scavenging activities (diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating ability) were conducted. RESULTS The amount of actives (mg/100 g) in soybean isoflavone compared with tempeh isoflavone is as follows: daidzein 16.72 mg/100 g versus 38.91 mg/100 g, genistein 11.10 mg/100 g versus 24.03 mg/100 g, daidzin 6.16 mg/100 g versus 0.69 mg/100 g, and genistin 24.61 mg/100 g versus 6.57 mg/100 g. The IC50 values of soybean and tempeh isoflavones against BACE1 were 10.87 and 5.47 mg/ml, respectively. The tempeh isoflavone had a more potent DPPH free-radical scavenging activity (IC50 = 2.67 mg/ml) than the soybean isoflavone (IC50 = 10 mg/ml). The ferrous ion chelating ability of the isoflavones was practically similar (IC50 = 10.40 mg/ml, soybean and 11.13 mg/ml, tempeh). DISCUSSION AND CONCLUSION The present study indicates that tempeh is a healthy supplement to alleviate oxidative stress through the enrichment of aglycones.
Collapse
|
|
10 |
34 |