1
|
Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol 2017; 8:1765. [PMID: 29018410 PMCID: PMC5614963 DOI: 10.3389/fmicb.2017.01765] [Citation(s) in RCA: 693] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.
Collapse
|
Review |
8 |
693 |
2
|
Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 2018; 10:nu10101499. [PMID: 30322146 PMCID: PMC6213552 DOI: 10.3390/nu10101499] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.
Collapse
|
Review |
7 |
353 |
3
|
Chen J, Tellez G, Richards JD, Escobar J. Identification of Potential Biomarkers for Gut Barrier Failure in Broiler Chickens. Front Vet Sci 2015; 2:14. [PMID: 26664943 PMCID: PMC4672187 DOI: 10.3389/fvets.2015.00014] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to identify potential biomarkers for gut barrier failure in chickens. A total of 144 day-of-hatch Ross 308 male broiler chickens were housed in 24 battery cages with six chicks per cage. Cages were randomly assigned to either a control group (CON) or gut barrier failure (GBF) group. During the first 13 days, birds in CON or GBF groups were fed a common corn–soy starter diet. On day 14, CON chickens were switched to a corn grower diet, and GBF chickens were switched to rye–wheat–barley grower diet. In addition, on day 21, GBF chickens were orally challenged with a coccidiosis vaccine. At days 21 and 28, birds were weighed by cage and feed intake was recorded to calculate feed conversion ratio. At day 28, one chicken from each cage was euthanized to collect intestinal samples for morphometric analysis, blood for serum, and intestinal mucosa scrapings for gene expression. Overall performance and feed efficiency was severely affected (P < 0.05) by a GBF model when compared with CON group at days 21 and 28. Duodenum of GBF birds had wider villi, longer crypt depth, and higher crypt depth/villi height ratio than CON birds. Similarly, GBF birds had longer crypt depth in jejunum and ileum when compared with CON birds. Protein levels of endotoxin and α1-acid glycoprotein (AGP) in serum, as well as mRNA levels of interleukin (IL)-8, IL-1β, transforming growth factor (TGF)-β4, and fatty acid-binding protein (FABP) 6 were increased (P < 0.05) in GBF birds compared to CON birds; however, mRNA levels of FABP2, occludin, and mucin 2 (MUC2) were reduced by 34% (P < 0.05), 24% (P = 0.107), and 29% (P = 0.088), respectively, in GBF birds compared to CON birds. The results from the present study suggest that serum endotoxin and AGP, as well as, gene expression of FABP2, FABP6, IL-8, IL-1β, TGF-β4, occludin, and MUC2 in mucosa may work as potential biomarkers for gut barrier health in chickens.
Collapse
|
Journal Article |
10 |
166 |
4
|
Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016; 8:126. [PMID: 26938554 PMCID: PMC4808856 DOI: 10.3390/nu8030126] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 12/24/2022] Open
Abstract
This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01) and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01). Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01). These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05) and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05) expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01). The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01) and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01). These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
147 |
5
|
Jing W, Dong S, Luo X, Liu J, Wei B, Du W, Yang L, Luo H, Wang Y, Wang S, Lu H. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites. Pharmacol Res 2021; 164:105358. [PMID: 33285228 DOI: 10.1016/j.phrs.2020.105358] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) are kind of recurrent inflammatory issues that occur in the gastrointestinal tract, and currently clinical treatment is still unideal due to the complex pathogenesis of IBD. Basically, gut barrier dysfunction is triggered by gut microbiota dysbiosis that is closely associated with the development of IBD, we thus investigated the therapeutic capacity of berberine (BBR) to improve the dysregulated gut microbiota, against IBD in rats, using a combinational strategy of targeted metabolomics and 16 s rDNA amplicon sequencing technology. Expectedly, our data revealed that BBR administration could greatly improve the pathological phenotype, gut barrier disruption, and the colon inflammation in rats with dextran sulfate sodium (DSS)-induced colitis. In addition, 16S rDNA-based microbiota analysis demonstrated that BBR could alleviate gut dysbiosis in rats. Furthermore, our targeted metabolomics analysis illustrated that the levels of microbial tryptophan catabolites in the gastrointestinal tract were significantly changed during the development of the colitis in rats, and BBR treatment can significantly restore such changes of the tryptophan catabolites accordingly. At last, our in vitro mechanism exploration was implemented with a Caco-2 cell monolayer model, which verified that the modulation of the dysregulated gut microbiota to change microbial metabolites coordinated the improvement effect of BBR on gut barrier disruption in the colitis, and we also confirmed that the activation of AhR induced by microbial metabolites is indispensable to the improvement of gut barrier disruption by BBR. Collectively, BBR has the capacity to treat DSS-induced colitis in rats through the regulation of gut microbiota associated tryptophan metabolite to activate AhR, which can greatly improve the disrupted gut barrier function. Importantly, our finding elucidated a novel mechanism of BBR to improve gut barrier function, which holds the expected capacity to promote the BBR derived drug discovery and development against the colitis in clinic setting.
Collapse
|
|
4 |
120 |
6
|
Šuligoj T, Vigsnæs LK, den Abbeele PV, Apostolou A, Karalis K, Savva GM, McConnell B, Juge N. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function. Nutrients 2020; 12:E2808. [PMID: 32933181 PMCID: PMC7551690 DOI: 10.3390/nu12092808] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Human milk oligosaccharides (HMOs) shape the gut microbiota in infants by selectively stimulating the growth of bifidobacteria. Here, we investigated the impact of HMOs on adult gut microbiota and gut barrier function using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), Caco2 cell lines, and human intestinal gut organoid-on-chips. We showed that fermentation of 2'-O-fucosyllactose (2'FL), lacto-N-neotetraose (LNnT), and combinations thereof (MIX) led to an increase of bifidobacteria, accompanied by an increase of short chain fatty acid (SCFA), in particular butyrate with 2'FL. A significant reduction in paracellular permeability of FITC-dextran probe was observed using Caco2 cell monolayers with fermented 2'FL and MIX, which was accompanied by an increase in claudin-8 gene expression as shown by qPCR, and a reduction in IL-6 as determined by multiplex ELISA. Using gut-on-chips generated from human organoids derived from proximal, transverse, and distal colon biopsies (Colon Intestine Chips), we showed that claudin-5 was significantly upregulated across all three gut-on-chips following treatment with fermented 2'FL under microfluidic conditions. Taken together, these data show that, in addition to their bifidogenic activity, HMOs have the capacity to modulate immune function and the gut barrier, supporting the potential of HMOs to provide health benefits in adults.
Collapse
|
research-article |
5 |
116 |
7
|
Clostridium butyricum and Its Derived Extracellular Vesicles Modulate Gut Homeostasis and Ameliorate Acute Experimental Colitis. Microbiol Spectr 2022; 10:e0136822. [PMID: 35762770 PMCID: PMC9431305 DOI: 10.1128/spectrum.01368-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbiological treatments are expected to have a role in the future management of inflammatory bowel disease (IBD). Clostridium butyricum (C. butyricum) is a probiotic microorganism that exhibits beneficial effects on various disease conditions. Although many studies have revealed that C. butyricum provides protective effects in mice with colitis, the way C. butyricum establishes beneficial results in the host remains unclear. In this study, we investigated the mechanisms by which C. butyricum modifies the gut microbiota, produces bacterial metabolites that may be involved, and, specifically, how microbial extracellular vesicles (EVs) positively influence IBD, using a dextran sulfate sodium (DSS)-induced colitis murine model in mice. First, we showed that C. butyricum provides a protective effect against colitis, as evidenced by the prevention of body weight loss, a reduction in the disease activity index (DAI) score, a shortened colon length, decreased histology score, and an improved gut barrier function, accompanied by reduced levels of pathogenic bacteria, including Escherichia/Shigella, and an increased relative abundance of butyrate-producing Clostridium sensu stricto-1 and Butyricicoccus. Second, we also confirmed that the gut microbiota and metabolites produced by C. butyricum played key roles in the attenuation of DSS-induced experimental colitis, as supported by the profound alleviation of colitis effects following fecal transplantation or fecal filtrate insertion supplied from C. butyricum-treated mice. Finally, C. butyricum-derived EVs protected the gut barrier function, improved gut microbiota homeostasis in ulcerative colitis, and contributed to overall colitis alleviation. IMPORTANCE This study indicated that C. butyricum provided a prevention effect against colitis mice, which involved protection of the intestinal barrier and positively regulating gut microbiota. Furthermore, we confirmed that the gut microbiota and metabolites that were induced by C. butyricum also contributed to the attenuation of DSS-induced colitis. Importantly, C. butyricum-derived EVs showed an effective impact in alleviating colitis.
Collapse
|
|
3 |
110 |
8
|
Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, Cherbuy C, Leclercq S, Van Hul M, Plovier H, Pachikian B, Bermúdez-Humarán LG, Langella P, Cani PD, Thissen JP, Delzenne NM. Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget 2018; 9:18224-18238. [PMID: 29719601 PMCID: PMC5915068 DOI: 10.18632/oncotarget.24804] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.
Collapse
|
Journal Article |
7 |
106 |
9
|
McNaught CE, Woodcock NP, MacFie J, Mitchell CJ. A prospective randomised study of the probiotic Lactobacillus plantarum 299V on indices of gut barrier function in elective surgical patients. Gut 2002; 51:827-31. [PMID: 12427785 PMCID: PMC1773461 DOI: 10.1136/gut.51.6.827] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Bacterial translocation occurs in surgical patients and may predispose to postoperative septic morbidity. Many factors are thought to influence the prevalence of bacterial translocation, one of which is the composition of the gut microflora. The aim of this prospective and randomised study was to assess the effect of the probiotic Lactobacillus plantarum 299v on the incidence of bacterial translocation, gastric colonisation, and septic complications in elective surgical patients. METHODS Patients undergoing elective major abdominal surgery were randomised to either a treatment or control group. The treatment group received an oral preparation containing Lactobacillus plantarum 299v (Proviva) for at least one week preoperatively and also in the postoperative period. Bacterial translocation was determined by culture of a mesenteric lymph node and serosal scraping obtained at laparotomy. Gastric colonisation was assessed by microbiological culture of nasogastric aspirates. All postoperative septic complications were recorded. RESULTS A total of 129 patients completed the study (probiotic group n=64). There was no significant difference between the two groups in terms of bacterial translocation (12% v 12%; p=0.82), gastric colonisation with enteric organisms (11% v 17%; p=0.42), or septic morbidity (13% v 15%; p=0.74). CONCLUSIONS Administration of Lactobacillus plantarum 299v in elective surgical patients does not influence the rate of bacterial translocation, gastric colonisation, or incidence of postoperative septic morbidity.
Collapse
|
Clinical Trial |
23 |
98 |
10
|
Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H, Huang L. The Synergistic Effects of Polysaccharides and Ginsenosides From American Ginseng ( Panax quinquefolius L.) Ameliorating Cyclophosphamide-Induced Intestinal Immune Disorders and Gut Barrier Dysfunctions Based on Microbiome-Metabolomics Analysis. Front Immunol 2021; 12:665901. [PMID: 33968068 PMCID: PMC8100215 DOI: 10.3389/fimmu.2021.665901] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cyclophosphamide (CTX), used in cancer chemotherapy, a high dose of which would cause immunosuppressive effect and intestinal mucosa damage. American ginseng (Panax quinquefolius L.) has a long history of functional food use for immunological disorder, colitis, cancer, and so on. This study aimed to illustrate the underlying mechanism of American ginseng’s immunomodulatory effect in CTX-induced mice. In this study, all groups of American ginseng (American ginseng polysaccharide [AGP], American ginseng ginsenoside [AGG], co-treated with American ginseng polysaccharide and ginsenoside [AGP_AGG]) have relieve the immune disorder by reversing the lymphocyte subsets ratio in spleen and peripheral blood, as well as stimulating CD4+T cells and IgA-secreting cells in small intestine. These three treatment groups, especially AGP_AGG co-treated group recovered the intestine morphology that up-regulated villus height (VH)/crypt depth (CD) ratio, areas of mucins expression, quantity of goblet cells, and expression of tight junction proteins (ZO-1, occludin). Importantly, the microbiome-metabolomics analysis was applied in this study to illustrate the possible immuno-modulating mechanism. The synergistic effect of polysaccharides and ginsenosides (AGP_AGG group) restored the gut microbiota composition and increased various beneficial mucosa-associated bacterial taxa Clostridiales, Bifidobacterium, and Lachnospiraceae, while decreased harmful bacteria Escherichia-Shigella and Peptococcaceae. Also, AGP_AGG group altered various fecal metabolites such as uric acid, xanthurenic acid, acylcarnitine, 9,10-DHOME, 13-HDoHE, LysoPE15:0, LysoPC 16:0, LysoPI 18:0, and so on, that associated with immunometabolism or protective effect of gut barrier. These results suggest AG, particularly co-treated of polysaccharide and ginsenoside may be used as immunostimulants targeting microbiome-metabolomics axis to prevent CTX-induced side effects in cancer patients.
Collapse
|
Journal Article |
4 |
79 |
11
|
Bi J, Zhang J, Ren Y, Du Z, Li T, Wang T, Zhang L, Wang M, Wu Z, Lv Y, Wu R. Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor. J Cell Mol Med 2020; 24:996-1009. [PMID: 31701659 PMCID: PMC6933384 DOI: 10.1111/jcmm.14811] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/30/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023] Open
Abstract
Disruption of the gut barrier results in severe clinical outcomes with no specific treatment. Metabolic disorders and destruction of enterocytes play key roles in gut barrier dysfunction. Irisin is a newly identified exercise hormone that regulates energy metabolism. However, the effect of irisin on gut barrier function remains unknown. The therapeutic effect of irisin on gut barrier dysfunction was evaluated in gut ischemia reperfusion (IR). The direct effect of irisin on gut barrier function was studied in Caco-2 cells. Here, we discovered that serum and gut irisin levels were decreased during gut IR and that treatment with exogenous irisin restored gut barrier function after gut IR in mice. Meanwhile, irisin decreased oxidative stress, calcium influx and endoplasmic reticulum (ER) stress after gut IR. Moreover, irisin protected mitochondrial function and reduced enterocyte apoptosis. The neutralizing antibody against irisin significantly aggravated gut injury, oxidative stress and enterocyte apoptosis after gut IR. Further studies revealed that irisin activated the AMPK-UCP 2 pathway via binding to the integrin αVβ5 receptor. Inhibition of integrin αVβ5, AMPK or UCP 2 abolished the protective role of irisin in gut barrier function. In conclusion, exogenous irisin restores gut barrier function after gut IR via the integrin αVβ5-AMPK-UCP 2 pathway.
Collapse
|
research-article |
5 |
79 |
12
|
Kong C, Elderman M, Cheng L, de Haan BJ, Nauta A, de Vos P. Modulation of Intestinal Epithelial Glycocalyx Development by Human Milk Oligosaccharides and Non-Digestible Carbohydrates. Mol Nutr Food Res 2019; 63:e1900303. [PMID: 31140746 PMCID: PMC6771538 DOI: 10.1002/mnfr.201900303] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/26/2019] [Indexed: 12/11/2022]
Abstract
SCOPE The epithelial glycocalyx development is of great importance for microbial colonization. Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) may modulate glycocalyx development. METHODS AND RESULTS The effects of hMOs and NDCs on human gut epithelial cells (Caco2) are investigated by quantifying thickness and area coverage of adsorbed albumin, heparan sulfate (HS), and hyaluronic acid (HA) in the glycocalyx. Effects of hMOs (2'-FL and 3-FL) and NDCs [inulins with degrees of polymerization (DP) (DP3-DP10, DP10-DP60, DP30-DP60) and pectins with degrees of methylation (DM) (DM7, DM55, DM69)] are tested using immunofluorescence staining at 1 and 5 days stimulation. HMOs show a significant enhancing effect on glycocalyx development but effects are structure-dependent. 3-FL induces a stronger albumin adsorption and increases HS and HA stronger than 2'-FL. The DP3-DP10, DP30-60 inulins also increase glycocalyx development in a structure-dependent manner as DP3-DP10 selectively increases HS, while DP30-DP60 specifically increases HA. Pectins have less effects, and only increase albumin adsorption. CONCLUSION Here, it is shown that 2'-FL and 3-FL and inulins stimulate glycocalyx development in a structure-dependent fashion. This may contribute to formulation of effective hMO and NDC formulations in infant formulas to support microbial colonization and gut barrier function.
Collapse
|
research-article |
6 |
77 |
13
|
Wu R, Dong W, Qiang X, Wang H, Blau SA, Ravikumar TS, Wang P. Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 2009; 37:2421-6. [PMID: 19531942 PMCID: PMC2742951 DOI: 10.1097/ccm.0b013e3181a557a2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We have recently shown that ghrelin, a novel orexigenic hormone, is reduced in sepsis. Ghrelin treatment, mediated through ghrelin receptors in the brain, attenuates sepsis-induced inflammation and mortality. Gut barrier dysfunction is common in sepsis. High-mobility group B1 (HMGB1) increases gut permeability both in vitro and in vivo. However, it remains unknown whether ghrelin has any effects on HMGB1 and gut barrier function in sepsis. We hypothesized that ghrelin decreases HMGB1 release and attenuates sepsis-induced gut barrier dysfunction through central ghrelin receptors. DESIGN Prospective, controlled, and randomized animal study. SETTING A research institute laboratory. SUBJECTS Male adult Sprague-Dawley rats (275-325 g). INTERVENTIONS Cecal ligation and puncture (CLP) followed by injection/infusion of ghrelin. MEASUREMENTS AND MAIN RESULTS Five hours after CLP, a bolus intravenous injection of 2 nmol of ghrelin was followed by a continuous infusion of 12 nmol of ghrelin via an osmotic mini-pump for 15 hrs. Twenty hours after CLP, brain ghrelin levels, serum HMGB1 levels, ileal mucosal permeability to fluorescein isothiocyanate dextran, bacterial counts in the mesenteric lymph nodes complex, and gut water content were determined. In additional groups of animals, bilateral trunk vagotomy was performed at 5 hrs after CLP before ghrelin injection. Furthermore, to confirm the role of central ghrelin receptors in ghrelin's effect, ghrelin (1 nmol) was administered through intracerebroventricular injection at 5 hrs after CLP. Our results showed that brain levels of ghrelin decreased by 34% at 20 hrs after CLP. Intravenous administration of ghrelin completely restored brain levels of ghrelin, significantly reduced the elevated HMGB1 levels, and attenuated gut barrier dysfunction. Vagotomy eliminated ghrelin's inhibition of HMGB1 and attenuation of gut barrier dysfunction. Intracerebroventricular injection of ghrelin decreased serum HMGB1 levels and ameliorated gut barrier dysfunction. CONCLUSIONS Ghrelin reduces serum HMGB1 levels and ameliorates gut barrier dysfunction in sepsis by vagus nerve activation via central ghrelin receptors. Ghrelin can be further developed as a novel agent to protect gut barrier function in sepsis.
Collapse
|
Evaluation Study |
16 |
65 |
14
|
Dai X, Guo Z, Chen D, Li L, Song X, Liu T, Jin G, Li Y, Liu Y, Ajiguli A, Yang C, Wang B, Cao H. Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes 2020; 11:1043-1063. [PMID: 32228300 PMCID: PMC7524393 DOI: 10.1080/19490976.2020.1738187] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is considered to be associated with diet and gut dysbiosis. Excessive sucralose can induce gut dysbiosis and negatively affect host health. Maternal diet shapes the microbial communities of neonate and this effect continues in later life. We aimed to investigate the effects of maternal sucralose (MS) intake on the susceptibility of offspring to hepatic steatosis in adulthood. METHODS C57BL/6 pregnant mice were randomized into MS group (MS during gestation and lactation) and maternal control (MC) group (MC diet). After weaning, all offspring were fed a control diet until 8 weeks of age, and then treated with a high-fat diet (HFD) for 4 weeks. The intestinal development, mucosal barrier function, and gut microbiota were assessed in the 3-week-old offspring. Moreover, the severity of hepatic steatosis, serum biochemistry, lipid metabolism, and gut microbiota was then assessed in the 12th week. RESULTS MS significantly inhibited intestinal development and disrupted barrier function in 3-week-old offspring. MS also induced intestinal low-grade inflammation, significantly changed the compositions and diversity of gut microbiota including reducing butyrate-producing bacteria and cecal butyrate production with down-regulation of GPR43. Mechanically, blocking GPR43 blunted the anti-inflammatory effect of one of the butyrate-producing bacteria, Clostridium butyricum in vitro. After HFD treatment, MS exacerbated hepatic steatosis, and disturbed fatty acid biosynthesis and metabolism, accompanied by inducing gut dysbiosis compared with MC group. CONCLUSIONS MS intake inhibits intestinal development, induces gut dysbiosis in offspring through down-regulation of GPR43, and exacerbates HFD-induced hepatic steatosis in adulthood.
Collapse
|
research-article |
5 |
55 |
15
|
Peng JH, Leng J, Tian HJ, Yang T, Fang Y, Feng Q, Zhao Y, Hu YY. Geniposide and Chlorogenic Acid Combination Ameliorates Non-alcoholic Steatohepatitis Involving the Protection on the Gut Barrier Function in Mouse Induced by High-Fat Diet. Front Pharmacol 2018; 9:1399. [PMID: 30618733 PMCID: PMC6298419 DOI: 10.3389/fphar.2018.01399] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Gut-liver axis is increasingly recognized to be involved in the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). The gut microbiota and intestinal permeability have been demonstrated to be the key players in the gut-liver cross talk in NAFLD. Geniposide and chlorogenic acid (GC) combination is derived from a traditional Chinese medicine, Qushi Huayu Decoction (QHD), which has been used in clinic for NAFLD treatment for decades in China and validated in multiple animal models of NAFLD. GC combination previously has been demonstrated to treat NAFLD via modulation on the gut microbiota composition. In the present study, the effects of GC combination on gut barrier function in NAFLD were evaluated, and QHD and sodium butyrate (NaB), the intestinal mucosa protectant, were used as positive control. The therapeutic effect of GC combination on NAFLD were confirmed by amelioration on non-alcoholic steatohepatitis (NASH) induced by high-fat diet (HFD) in mouse, which was comparable to that of QHD. Simultaneously, GC combination was found to reduce the signaling of gut-derived lipopolysaccharide (LPS) including hepatic LPS binding protein, Toll like receptor 4, interleukin-1β, tumor necrosis factor –α, and Kupffer cells infiltration. Furthermore, GC combination reduced LPS and D-lactate in plasma, restoring the colonic tight junction (TJ) expression and inhibited colonic TJs disassembly by down-regulation on RhoA/ROCK signaling in NASH induced by HFD. On the other hand, NASH was also alleviated in NaB group. The results of the present study suggested the important role of protection on gut barrier function in NAFLD treatment, which contributed to the therapeutic effects of GC combination on NASH.
Collapse
|
Journal Article |
7 |
53 |
16
|
Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, Wang Y, Gao H, Rouchka EC, Yin X, Zhou Z, Prough RA, Cave MC, McClain CJ. Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G119-G130. [PMID: 29025734 PMCID: PMC5866377 DOI: 10.1152/ajpgi.00378.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
Abstract
Dietary copper-fructose interactions contribute to the development of nonalcoholic fatty liver disease (NAFLD). Gut microbiota play critical roles in the pathogenesis of NAFLD. The aim of this study was to determine the effect of different dietary doses of copper and their interactions with high fructose on gut microbiome. Male weanling Sprague-Dawley rats were fed diets with adequate copper (6 ppm CuA), marginal copper (1.5 ppm CuM) (low copper), or supplemented copper (20 ppm CuS) (high copper) for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was given ad libitum. Copper status, liver enzymes, gut barrier function, and gut microbiome were evaluated. Both low- and high-copper diets led to liver injury in high-fructose-fed rats, and this was associated with gut barrier dysfunction, as shown by the markedly decreased tight junction proteins and increased gut permeability. 16S rDNA sequencing analysis revealed distinct alterations of the gut microbiome associated with dietary low- and high-copper/high-fructose feeding. The common features of the alterations of the gut microbiome were the increased abundance of Firmicutes and the depletion of Akkermansia. However, they differed mainly within the phylum Firmicutes. Our data demonstrated that a complex interplay among host, microbes, and dietary copper-fructose interaction regulates gut microbial metabolic activity, which may contribute to the development of liver injury and hepatic steatosis. The distinct alterations of gut microbial activity, which were associated with the different dietary doses of copper and fructose, imply that separate mechanism(s) may be involved. NEW & NOTEWORTHY First, dietary low- and high-copper/high-fructose-induced liver injury are associated with distinct alterations of gut microbiome. Second, dietary copper level plays a critical role in maintaining the gut barrier integrity, likely by acting on the intestinal tight junction proteins and the protective commensal bacteria Akkermansia. Third, the alterations of gut microbiome induced by dietary low and high copper with or without fructose differ mainly within the phylum Firmicutes.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
42 |
17
|
Qin X, Sheth SU, Sharpe SM, Dong W, Lu Q, Xu D, Deitch EA. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function. Shock 2011; 35:275-81. [PMID: 20856173 PMCID: PMC3261620 DOI: 10.1097/shk.0b013e3181f6aaf1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface epithelia, but also plays a critical role in the maintenance and restitution of gut barrier function.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
41 |
18
|
Wong X, Carrasco-Pozo C, Escobar E, Navarrete P, Blachier F, Andriamihaja M, Lan A, Tomé D, Cires MJ, Pastene E, Gotteland M. Deleterious Effect of p-Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3574-3583. [PMID: 27039931 DOI: 10.1021/acs.jafc.6b00656] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The protective effect of proanthocyanidin-containing polyphenol extracts from apples, avocados, cranberries, grapes, or proanthocyanidin microbial metabolites was evaluated in colonic epithelial cells exposed to p-cresol, a deleterious compound produced by the colonic microbiota from l-tyrosine. In HT29 Glc(-/+) cells, p-cresol significantly increased LDH leakage and decreased ATP contents, whereas in Caco-2 cell monolayers, it significantly decreased the transepithelial electrical resistance and increased the paracellular transport of FITC-dextran. The alterations induced by p-cresol in HT29 Glc(-/+) cells were prevented by the extracts from cranberries and avocados, whereas they became worse by extracts from apples and grapes. The proanthocyanidin bacterial metabolites decreased LDH leakage, ameliorating cell viability without improving intracellular ATP. All of the polyphenol extracts and proanthocyanidin bacterial metabolites prevented the p-cresol-induced alterations of barrier function. These results suggest that proanthocyanidin-containing polyphenol extracts and proanthocyanidin metabolites likely contribute to the protection of the colonic mucosa against the deleterious effects of p-cresol.
Collapse
|
|
9 |
37 |
19
|
Singh DP, Khare P, Bijalwan V, Baboota RK, Singh J, Kondepudi KK, Chopra K, Bishnoi M. Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. Biofactors 2017; 43:821-835. [PMID: 28799667 DOI: 10.1002/biof.1381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/05/2023]
Abstract
Bacteriostatic properties of a potential anti-obesity agent cinnamaldehyde (CMN) may present untoward effects on the resident gut microbiota. Here, we evaluated whether the combination of Isomalto-oligosaccharides (IMOs) with CMN prevents unwanted effects of CMN on gut microbiota and associated metabolic outcomes in HFD-fed mice. Male Swiss albino mice divided into four groups (n = 10), were fed on normal chow, or HFD (58% fat kcal), HFD + CMN (10 mg kg-1 ) and HFD + CMN (10 mg kg-1 ) + IMOs (1 g kg-1 ) for 12 weeks. Effects on HFD-induced biochemical, histological, inflammatory and genomic changes in the gastrointestinal tract, liver, and visceral white adipose tissue were studied. Cosupplementation of CMN with IMOs potentiates its preventive action against HFD-induced increase in serum LPS and abundances of selected LPS producing bacteria (Enterobacteriaceae, Escherichia Coli, Cronobacter sp, Citrobacter sp., Klebsiella sp., Salmonella sp.). CMN and IMOs co-administration prevented HFD-induced decrease in selected beneficial gut bacterial abundances (Bifidobacteria, Roseburia sp., Akkermansia muciniphila, Feacalibacterium sp.). CMN's effects against HFD-induced increase in gut permeability, histological and inflammatory changes in the colon were further augmented by cosupplementation of IMOs. Similar effects were observed in hepatic inflammatory markers. Cosupplementation of CMN with IMOs and CMN alone administration prevented HFD-induced changes in peripheral hormones and lipid metabolism-related parameters. This study provides evidence that coadministration of IMOs with CMN potentiates its anti-obesity effect and limits the side effects of CMN on gastrointestinal flora. Further, this study gives us important direction for the development of a concept-based novel class of functional foods/nutraceuticals for improved metabolic health. © BioFactors, 43(6):821-835, 2017.
Collapse
|
|
8 |
24 |
20
|
Kong C, Cheng L, Krenning G, Fledderus J, de Haan BJ, Walvoort MTC, de Vos P. Human Milk Oligosaccharides Mediate the Crosstalk Between Intestinal Epithelial Caco-2 Cells and Lactobacillus PlantarumWCFS1in an In Vitro Model with Intestinal Peristaltic Shear Force. J Nutr 2020; 150:2077-2088. [PMID: 32542361 PMCID: PMC7398781 DOI: 10.1093/jn/nxaa162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. OBJECTIVES We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. METHODS We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2'-fucosyllactose (2'-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarumWCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. RESULTS Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0-94.9% by shear force (P <0.001). The presence of L. plantarumWCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarumWCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). CONCLUSIONS 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarumWCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.
Collapse
|
research-article |
5 |
23 |
21
|
Yang C, Du Y, Zhao A, Liu L, Ren D, Niu P, Zhang X, Wang Y, Zhao Y, Yang X. Dietary Turmeric Consumption Alleviates Ulcerative Colitis via Restoring Tryptophan Metabolism and Alleviating Gut Microbiota Dysbiosis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15213-15224. [PMID: 36413756 DOI: 10.1021/acs.jafc.2c04509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was designed to first verify the protective capacity of turmeric powder (TP) as a traditional cooking spice against dextran sulfate sodium (DSS)-induced intestinal inflammation and intestine microbiota imbalance. The DSS-induced mice were fed a standard rodent chow supplemented with or without TP (8%) for 37 days. The results indicated that the pathological phenotype, gut barrier disruption, and colon inflammation of DSS-induced mice were significantly improved through supplementation of TP. In addition, 16S rRNA-based microbiota or targeted metabolomics analysis indicated that TP ameliorated intestinal microbiota dysbiosis caused by DSS and particularly enhanced the abundances of probiotics correlated with tryptophan metabolism, such as Lactobacillus and Bifidobacterium, where the cecal tryptophan was metabolized to indole-3-propionic acid and indole-3-acetic acid. Consumption of TP markedly enhanced the expression levels of colonic aromatic hydrocarbon receptors and further increased the expressions of intestinal tight junction proteins and interleukin-22 in the colitis mice. Collectively, these findings manifest the protective actions of dietary TP consumption against ulcerative colitis via restoring the intestinal microbiota disorders, promoting microbial metabolism, and improving intestinal barrier damage.
Collapse
|
|
3 |
22 |
22
|
Oh YJ, Kim HJ, Kim TS, Yeo IH, Ji GE. Effects of Lactobacillus plantarum PMO 08 Alone and Combined with Chia Seeds on Metabolic Syndrome and Parameters Related to Gut Health in High-Fat Diet-Induced Obese Mice. J Med Food 2019; 22:1199-1207. [PMID: 31747330 DOI: 10.1089/jmf.2018.4349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study researched the effects of Lactobacillus plantarum PMO 08 alone and combined with chia seeds on metabolic syndrome and parameters related to microbiota modulation and intestinal barrier integrity in obese mice fed high-fat diets (HFDs; 45% kcal fat). Male C57BL/6J mice were acclimated for a period of 2 weeks and then randomly separated into five groups depending on whether they received a normal diet (ND group), an HFD (HFD group), an HFD with L. plantarum (PMO group), an HFD with L. plantarum combined with chia seeds (PMOChia group), or an HFD with chia seeds (Chia group). Serum lipid profiles and related markers (cholesterol metabolism-related gene expression) were measured. Intestinal barrier integrity was assessed by measuring occludin mRNA expression of tight junction proteins. Mucosal bacteria were checked with quantitative reverse transcript polymerase chain reaction (qRT-PCR). After 16 weeks of feeding, the PMO group showed significantly lower serum total cholesterol, low-density lipoprotein cholesterol levels, atherogenic index, and cardiac risk factors compared to the HFD group. Moreover, the hepatic mRNA expression of SREBP2 (sterol regulatory element binding protein 2), a protein related to cholesterol metabolism, was significantly downregulated in the PMO group. We also found a positive synergistic effect in the PMOChia group, as manifested by the hepatic mRNA expression of hepatic CYP7A1 (cholesterol 7α-hydroxylase), strengthening of the gut barrier function, and the promotion of more L. plantarum in the colonic mucosa than in either the HFD or PMO group. In conclusion, our results indicate that PMO 08 may protect against metabolic syndrome by exerting effects on the regulation of lipid metabolism. Although the effects of chia seeds alone remain uncertain based on this experiment, its combination with PMO 08 was demonstrated to improve multiple beneficial effects of PMO 08 in obese mice fed HFD, which is a promising possibility for future research.
Collapse
|
Journal Article |
6 |
21 |
23
|
Mao X, Xiao X, Chen D, Yu B, He J, Chen H, Xiao X, Luo J, Luo Y, Tian G, Wang J. Dietary apple pectic oligosaccharide improves gut barrier function of rotavirus-challenged weaned pigs by increasing antioxidant capacity of enterocytes. Oncotarget 2017; 8:92420-92430. [PMID: 29190927 PMCID: PMC5696193 DOI: 10.18632/oncotarget.21367] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023] Open
Abstract
Rotavirus can lead to decreasing gut barrier function and diarrhea of children and young animals. Apple pectic oligosaccharide treatment reduced diarrhea in rotavirus-infected piglets. This study was conducted to explore whether apple pectic oligosaccharide administration could protect gut barrier function of piglets against rotavirus infection. A total of 28 crossbred weaned barrows were allotted into 2 treatments fed the diets supplementing 0 and 200 mg/kg apple pectic oligosaccharide. Half of pigs in each diet treatment were challenged by rotavirus on d 15. The whole duration of this experiment is 18 days. Rotavirus challenge increased average diarrhea index, and impaired microbiota in cecal digesta, and histology, expressions of tight-junction proteins, mucins and glucagon like peptide-2 concentrations, antioxidant capacity, endoplasmic reticulum stress, autophagy and apoptosis in jejunal mucosa of piglets. However, dietary apple pectic oligosaccharide supplementation relieved effects of rotavirus challenge on diarrhea, gut health, and antioxidant capacity, endoplasmic reticulum stress, autophagy and apoptosis of jejunal mucosa in piglets. These results suggest that apple pectic oligosaccharide administration can prevent diarrhea and damage of gut barrier function via improving antioxidant capacity that might reduce endoplasmic reticulum stress, autophagy and apoptosis of intestinal epithelial cells in rotavirus-infected piglets.
Collapse
|
Journal Article |
8 |
20 |
24
|
Satessa GD, Tamez-Hidalgo P, Hui Y, Cieplak T, Krych L, Kjærulff S, Brunsgaard G, Nielsen DS, Nielsen MO. Impact of Dietary Supplementation of Lactic Acid Bacteria Fermented Rapeseed with or without Macroalgae on Performance and Health of Piglets Following Omission of Medicinal Zinc from Weaner Diets. Animals (Basel) 2020; 10:E137. [PMID: 31952154 PMCID: PMC7023219 DOI: 10.3390/ani10010137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/24/2022] Open
Abstract
The feeding of medicinal zinc oxide (ZnO) to weaner piglets will be phased out after 2022 in Europe, leaving pig producers without options to manage post-weaning disorders. This study assessed whether rapeseed meal, fermented alone (FRM) or co-fermented with a single (Ascophylum nodosum; FRMA), or two (A. nodossum and Saccharina latissima; FRMAS) brown macroalagae species, could improve weaner piglet performance and stimulate intestinal development as well as maturation of gut microbiota in the absence of in-feed zinc. Weaned piglets (n = 1240) were fed, during 28-85 days of age, a basal diet with no additives (negative control; NC), 2500 ppm in-feed ZnO (positive control; PC), FRM, FRMA or FRMAS. Piglets fed FRM and FRMA had a similar or numerically improved, respectively, production performance compared to PC piglets. Jejunal villus development was stimulated over NC in PC, FRM and FRMAS (gender-specific). FRM enhanced colon mucosal development and reduced signs of intestinal inflammation. All fermented feeds and PC induced similar changes in the composition and diversity of colon microbiota compared to NC. In conclusion, piglet performance, intestinal development and health indicators were sustained or numerically improved when in-feed zinc was replaced by FRM.
Collapse
|
research-article |
5 |
17 |
25
|
Ott B, Skurk T, Lagkouvardos L, Fischer S, Büttner J, Lichtenegger M, Clavel T, Lechner A, Rychlik M, Haller D, Hauner H. Short-Term Overfeeding with Dairy Cream Does Not Modify Gut Permeability, the Fecal Microbiota, or Glucose Metabolism in Young Healthy Men. J Nutr 2018; 148:77-85. [PMID: 29378051 DOI: 10.1093/jn/nxx020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Background High-fat diets (HFDs) have been linked to low-grade inflammation and insulin resistance. Objective The main purpose of the present study was to assess whether acute overfeeding with an HFD affects insulin sensitivity, gut barrier function, and fecal microbiota in humans. Methods In a prospective intervention study, 24 healthy men [mean ± SD: age 23.0 ± 2.8 y, body mass index (in kg/m2) 23.0 ± 2.1] received an HFD (48% of energy from fat) with an additional 1000 kcal/d (as whipping cream) above their calculated energy expenditure for 7 d. Insulin sensitivity (hyperinsulinemic euglycemic clamp), gut permeability (sugar and polyethylene glycol absorption tests, plasma zonulin), and gut microbiota profiles (high-throughput 16S rRNA gene sequencing) were assessed before and after overfeeding, and 14 d after intervention. Additionally, inflammation markers such as high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, leptin, high-molecular-weight adiponectin, calprotectin, regulated on activation normal, T cell expressed and secreted (RANTES), and monocyte chemoattractant protein-1 were measured in plasma by ELISA. Finally, lipid parameters were analyzed in serum by a laboratory service. Results Although participants gained 0.9 ± 0.6 kg (P < 0.001) body weight, overnutrition was not associated with a significant change in insulin sensitivity (M value and glucose disposal). Overfeeding for 7 d resulted in elevated serum total (10.2%), LDL (14.6%) and HDL (14.8%) cholesterol concentrations (P < 0.01). In contrast, fasting plasma triglyceride significantly declined (29.3%) during overfeeding (P < 0.001). In addition, there were no significant changes in inflammatory markers. Urine excretion of 4 sugars and polyethylene glycol, used as a proxy for gut permeability, and plasma concentration of zonulin, a marker of paracellular gut permeability, were unchanged. Moreover, overfeeding was not associated with consistent changes in gut microbiota profiles, but marked alterations were observed in a subgroup of 6 individuals. Conclusions Our findings suggest that short-term overfeeding with an HFD does not significantly impair insulin sensitivity and gut permeability in normal-weight healthy men, and that changes in dominant communities of fecal bacteria occur only in certain individuals. The study was registered in the German Clinical Trial Register as DRKS00006211.
Collapse
|
|
7 |
15 |