1
|
Wang X, Tian Z, Azad MAK, Zhang W, Blachier F, Wang Z, Kong X. Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. J Appl Microbiol 2020; 130:233-246. [PMID: 32654235 DOI: 10.1111/jam.14782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
AIMS This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus, which serves as an alternative of antibiotics on the intestinal ecosystem of weaned piglets. METHODS AND RESULTS We randomly assigned 120 piglets to three groups: a control group (a basal diet), a probiotics group (a basal diet supplemented with 4 × 109 CFU per gram Bacillus licheniformis-Bacillus subtilis mixture; BLS mix), and an antibiotics group (a basal diet supplemented with 0·04 kg t-1 virginiamycin, 0·2 kg t-1 colistin and 3000 mg kg-1 zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21 and 42 of the trial, intestine tissue and digesta samples were collected to determine intestinal morphology, gut microbiota and bacterial metabolite composition, and the expression of genes related to the gut barrier function and inflammatory status. The results showed that the BLS mix decreased the jejunum crypt depth, while increased the ileum villus height and the jejunum and ileum villus height to crypt depth ratio. The BLS mix increased Simpson's diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but decreased the relative abundances of Blautia and Clostridium. Dietary BLS mix supplementation also modified the concentration of several bacterial metabolites compared to the control group. In addition, BLS mix upregulated the expression level of E-cadherin in the colon and pro-inflammatory cytokines and TLR-4 in ileum and colon. Lastly, Spearman's rank-order correlation revealed a potential link between alterations in gut microbiota and health parameters of the weaned piglets. CONCLUSION These findings suggest that dietary BLS mix supplementation modifies the gut ecosystem in weaned piglets. The potential advantages of such modifications in terms of intestinal health are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY Weaning is the most important transition period of piglet growth and development. This study showed that dietary supplementation of a probiotic mixture of Bacillus, an effective alternative of antibiotics, was beneficial in improving the intestinal ecosystem of weaned piglets.
Collapse
|
Journal Article |
5 |
21 |
2
|
2'-fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese Phenotype and Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients 2020; 12:nu12041003. [PMID: 32260563 PMCID: PMC7231103 DOI: 10.3390/nu12041003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022] Open
Abstract
Obesity is characterized by fat accumulation, chronic inflammation and impaired satiety signaling, which may be due in part to gut microbial dysbiosis. Manipulations of the gut microbiota and its metabolites are attractive targets for obesity treatment. The predominant oligosaccharide found in human milk, acts as a prebiotic with beneficial effects on the host. However, little is known about the beneficial effects of 2′-FL in obesity. The aim of this study was to determine the beneficial effects of 2′-FL supplementation on the microbiota-gut-brain axis and the diet-induced obese phenotype in high fat (HF)-fed mice. Male C57/BL6 mice (n = 6/group; six weeks old) were counter-balanced into six weight-matched groups and fed either a low-fat (LF; 10% kcal as fat), HF (45% kcal as fat) or HF diet with 2′-FL (HF_2′-FL) at 1, 2, 5 and 10% (w/v) in drinking water for six weeks. General phenotypes (body weight, energy intake, fat and lean mass), cecal microbiome and metabolites, gut-brain signaling, intestinal permeability and inflammatory and lipid profiles were assessed. Only 10% 2′-FL, but not 1, 2 or 5%, decreased HF diet-induced increases in energy intake, fat mass and body weight gain. A supplementation of 10% 2′-FL changed the composition of cecal microbiota and metabolites compared to LF- and HF-fed mice with an increase in Parabacteroides abundance and lactate and pyruvate, respectively, whose metabolic effects corresponded to our study findings. In particular, 10% 2′-FL significantly reversed the HF diet-induced impairment of cholecystokinin-induced inhibition of food intake. Gene expressions of interleukin (IL)-1β, IL-6, and macrophage chemoattractant protein-1 in the cecum were significantly downregulated by 10% 2′-FL compared to the HF group. Furthermore, 10% 2′-FL suppressed HF diet-induced upregulation of hepatic peroxisome proliferator-activated receptor gamma, a transcription factor for adipogenesis, at the gene level. In conclusion, 10% 2′-FL led to compositional changes in gut microbiota and metabolites associated with improvements in metabolic profiles and gut-brain signaling in HF-fed mice. These findings support the use of 2′-FL for modulating the hyperphagic response to HF diets and improving the microbiota-gut-brain axis.
Collapse
|
Journal Article |
5 |
21 |
3
|
Zhang C, Jia J, Zhang P, Zheng W, Guo X, Ai C, Song S. Fucoidan from Laminaria japonica Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice. Foods 2022; 12:33. [PMID: 36613249 PMCID: PMC9818518 DOI: 10.3390/foods12010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.
Collapse
|
research-article |
3 |
13 |
4
|
Zhang J, Chen Z, Yu H, Lu Y, Yu W, Miao M, Shi H. Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice. Aging (Albany NY) 2021; 13:17880-17900. [PMID: 33878733 PMCID: PMC8312451 DOI: 10.18632/aging.202873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Wushen (WS) is a mixed food containing 55 natural products that is beneficial to human health. This study aimed to reveal the preventive effect of WS on aging via a combined analysis of gut microbiome and metabolome. Senescence-accelerated mouse prone 8 (SAMP8) mice were used as aging model and senescence-accelerated mouse resistant 1 (SAMR1) mice as control. The mice were fed four diet types; control diet (for SAMR1 mice), standard diet (for SAMP8 mice, as SD group), WS diet, and fecal microbiota transplantation (FMT; transplanted from aging-WS mice). Our results showed that the weight, food intake, neurological function, and general physical conditions significantly improved in WS-fed mice compared to those fed with SD. The CA1 hippocampal region in WS-fed aged mice showed fewer shriveled neurons and increased neuronal layers compared to that of the SD group. WS-fed mice showed a decrease in malondialdehyde and an increase in superoxide dismutase levels in the brain; additionally, IL-6 and TNF-α levels significantly decreased, whereas IL-2 levels and the proportion of lymphocytes, CD3+CD8+ T, and CD4+IFNγ+T cells increased in WS-fed mice. After fed with WS, the abundance of Ruminococcus and Butyrivibrio markedly increased, whereas Lachnoclostridium and Ruminiclostridium significantly decreased in the aging mice. In addition, 887 differentially expressed metabolites were identified in fecal samples, among these, Butyrivibrio was positively correlated with D-glucuronic acid and Ruminococcus was positively associated with 5-acetamidovalerate. These findings provide mechanistic insight into the impact of WS on aging, and WS may be a valuable diet for preventing aging.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
8 |
5
|
Chen G, Zhuo R, Ding H, Yang K, Xue J, Zhang S, Chen L, Yin Y, Fang R. Effects of dietary tributyrin and physterol ester supplementation on growth performance, intestinal morphology, microbiota and metabolites in weaned piglets. J Appl Microbiol 2021; 132:2293-2305. [PMID: 34706122 DOI: 10.1111/jam.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
AIM This study was conducted to investigate the effects of dietary tributyrin (TB) and physterol ester (PSE) supplementation on the growth performance and intestinal health of weaned piglets. METHODS AND RESULTS Ninety-six piglets were randomly allocated to one of four groups, including a control group (basal diet), TB group (basal diet + 1500 g t-1 TB), PSE group (basal diet + 300 g t-1 PSE) and TB + PSE group (basal diet + 1500 g t-1 TB + 300 g t-1 PSE). All groups had eight replicates with three piglets per replicate. The experiment lasted for 28 days. The results showed that dietary TB supplementation increased (p < 0.05) average daily feed intake and average daily gain, as well as the acetate and butyrate concentration in ileum, and dietary PSE supplementation decreased (p < 0.05) the ratio of feed to gain (F/G) on days 1-14 of the trial. Dietary TB or PSE alone supplementation improved the ratio of villus height to crypt depth (VH/CD) and the expression level of Occludin in ileum. The linear discriminant analysis effect size analysis identified eight biomarkers in the control group, 18 in the TB + PSE group, two in the PSE group in ileum respectively. Correlation analysis showed that the relative abundances of Enterococcus, and Streptococcus were positively correlated (p < 0.05) with propionate concentration, while the relative abundance of Clostridium_sensu_stricto_1 was negatively correlated (p < 0.05) with acetate concentration in ileum. CONCLUSION These findings suggest that dietary TB or PSE alone supplementation could alter the growth performance, intestinal morphology, microbiota community and metabolites of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY Weaning stress is a major cause of slow growth and increased diarrhoea in piglets. This study demonstrated that dietary TB and PSE presented a beneficial role in growth performance and gut health via regulating intestinal morphology, microbiota composition and metabolites.
Collapse
|
|
4 |
2 |
6
|
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024; 16:2002. [PMID: 38999750 PMCID: PMC11243408 DOI: 10.3390/nu16132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.
Collapse
|
|
1 |
|
7
|
Xiang X, Chen J, Zhu M, Gao H, Liu X, Wang Q. Multiomics Revealed the Multi-Dimensional Effects of Late Sleep on Gut Microbiota and Metabolites in Children in Northwest China. Nutrients 2023; 15:4315. [PMID: 37892391 PMCID: PMC10609417 DOI: 10.3390/nu15204315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023] Open
Abstract
Background Sleep plays a pivotal role in children's mental and physical development and has been linked to the gut microbiota in animals and adults. However, the characteristics of the gut microbiota and metabolites and the relationship to late bedtimes in children remain unclear. Methods In total, 88 eligible children, aged from 3 to 8 years, were recruited and divided into two groups according to the bedtime collected by designed questionnaires (early, before 22:00: n = 48; late, after 22:00, n = 40). Stools and plasma samples were collected to examine the characteristics of the gut microbiota and metabolites by shotgun metagenomics and metabolomics. Results The richness and diversity of the gut microbiota in children with early bedtime were significantly increased compared with the late ones. Coprococcus, Collinsella, Akkermansia muciniphila, and Bifidobacterium adolescentis were significantly more abundant in children with early bedtime, while Bacteroides and Clostridium sp. CAG-253 were obviously enriched in the late ones. A total of 106 metabolic pathways, including biosynthesis of ribonucleotide, peptidoglycan, and amino acids, and starch degradation were enriched in children with early bedtime, while 42 pathways were abundant in those with late bedtime. Notably, more gut microbial metabolites were observed in children with late bedtime, which included aldehyde, ketones, esters, amino acids and their metabolites, benzene and substituted derivatives, bile acids, heterocyclic compounds, nucleotide and metabolites, organic acid and derivatives, sugars and acyl carnitine. In plasma, fatty amides, lipids, amino acids, metabolites, hormones, and related compounds were enriched in children with early bedtime, while bile acids were higher in children with late bedtime. Association studies revealed that the different microbial species were correlated with metabolites from gut microbiota and plasma. Conclusions The results of our study revealed that the gut microbiota diversity and richness, and metabolic pathways were significantly extensive in children with early bedtime, whereas the gut microbial metabolites were significantly decreased, which might be related to gut microbial differences.
Collapse
|
research-article |
2 |
|
8
|
Li S, Wang L, Han M, Fan H, Tang H, Gao H, Li G, Xu Z, Zhou Z, Du J, Peng C, Peng F. Combination of Sodium Butyrate and Immunotherapy in Glioma: regulation of immunologically hot and cold tumors via gut microbiota and metabolites. Front Immunol 2025; 16:1532528. [PMID: 40297576 PMCID: PMC12035444 DOI: 10.3389/fimmu.2025.1532528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Recent studies have highlighted the importance of cross-talk along the gut-brain axis in regulating inflammatory nociception, inflammatory responses, and immune homeostasis. The gut microbiota, particularly its bacterial composition, plays a crucial role in the development and function of the immune system. Moreover, metabolites produced by the gut microbiota can significantly impact both systemic immune responses and central nervous system (CNS) immunity. Sodium butyrate is a key metabolite produced by the gut microbiota and, as a histone deacetylase inhibitor, can enhance the anti-tumor immunity of cytotoxic CD8+ T cells. However, it remains unclear whether sodium butyrate treatment can enhance the efficacy of PD-1 blockade in glioma therapy. In this research, the effect and underlying mechanism of combination of gut microbiota metabolites and anti-mouse PD-1 mAb on glioma has been investigated. Methods RNA-seq assay in glioma cell and biomedical databases, including ONCOMINE, GEPIA and TCGA were incorporated. Subsequently, the inhibitory effect of sodium butyrate on glioma cells and its related mechanisms were assessed through Counting Kit-8 (CCK-8), Flow Cytometry, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments. In vitro, an orthotopic mouse glioma model was established. MRI imaging, Immunohistochemistry, and Immune cell flow cytometry were used to investigate the therapeutic effects of combined sodium butyrate and PD-1 inhibitor treatment on glioma-bearing mice. Results We discovered that deacetylation-associated gene expression is significantly increased in glioma patients and affects patient survival time. Moreover, we found sodium butyrate promoted glioma cell apoptosis, disrupted the cell cycle, and inhibited tumor growth. Additionally, sodium butyrate may upregulate PD-L1 expression in glioma cells by modulating the PI3K/AKT pathway. The experimental results demonstrated that this combination therapy significantly reduced tumor volume and prolonged survival in an orthotopic murine glioma model. Moreover, combination therapy led to an increase in the proportion of probiotic bacteria in the mouse gut microbiota, resulting in elevated levels of antitumor metabolites and a decrease in metabolites that affect immune cell function.
Collapse
|
research-article |
1 |
|