1
|
Abstract
Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury, which leads to portal hypertension and end-stage liver disease. Recent advances in the understanding of the natural history and pathophysiology of cirrhosis, and in treatment of its complications, have resulted in improved management, quality of life, and life expectancy of patients. Liver transplantation remains the only curative option for a selected group of patients, but pharmacological treatments that can halt progression to decompensated cirrhosis or even reverse cirrhosis are currently being developed. This Seminar focuses on the diagnosis, complications, and management of cirrhosis, and new clinical and scientific developments.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
1554 |
2
|
Abstract
Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is one of the most deadly human cancers. The pathogenesis of HCC is frequently linked with continuous hepatocyte death, inflammatory cell infiltration and compensatory liver regeneration. Understanding the molecular signaling pathways driving or mediating these processes during liver tumorigenesis is important for the identification of novel therapeutic targets for this dreadful disease. The classical IKKβ-dependent NF-κB signaling pathway has been shown to promote hepatocyte survival in both developing and adult livers. In addition, it also plays a crucial role in liver inflammatory responses by controlling the expression of an array of growth factors and cytokines. One of these cytokines is IL-6, which is best known for its role in the liver acute phase response. IL-6 exerts many of its functions via activation of STAT3, a transcription factor found to be important for HCC development. This review will focus on recent studies on the roles of NF-κB and STAT3 in liver cancer. Interactions between the two pathways and their potential as therapeutic targets will also be discussed.
Collapse
|
Review |
14 |
944 |
3
|
Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res 2010; 70:10202-12. [PMID: 21159642 PMCID: PMC3064515 DOI: 10.1158/0008-5472.can-10-2607] [Citation(s) in RCA: 777] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis-related recurrence often occurs in hepatocellular carcinoma (HCC) patients who receive curative therapies. At present, it is challenging to identify patients with high risk of recurrence, which would warrant additional therapies. In this study, we sought to analyze a recently developed metastasis-related gene signature for its utility in predicting HCC survival, using 2 independent cohorts consisting of a total of 386 patients who received radical resection. Cohort 1 contained 247 predominantly HBV-positive cases analyzed with an Affymetrix platform, whereas cohort 2 contained 139 cases with mixed etiology analyzed with the NCI Oligo Set microarray platform. We employed a survival risk prediction algorithm with training, test, and independent cross-validation strategies and found that the gene signature is predictive of overall and disease-free survival. Importantly, risk was significantly predicted independently of clinical characteristics and microarray platform. In addition, survival prediction was successful in patients with early disease, such as small (<5 cm in diameter) and solitary tumors, and the signature predicted particularly well for early recurrence risk (<2 years), especially when combined with serum alpha fetoprotein or tumor staging. In conclusion, we have shown in 2 independent cohorts with mixed etiologies and ethnicity that the metastasis gene signature is a useful tool to predict HCC outcome, suggesting the general utility of this classifier. We recommend the use of this classifier as a molecular diagnostic test to assess the risk that an HCC patient will develop tumor relapse within 2 years after surgical resection, particularly for those with early-stage tumors and solitary presentation.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
777 |
4
|
Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 2006; 3:47-52. [PMID: 16614742 PMCID: PMC1415841 DOI: 10.7150/ijms.3.47] [Citation(s) in RCA: 515] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/06/2006] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma, as well as the most common indication for liver transplantation in many countries. Although the incidence of hepatitis C infection has dramatically decreased during the past decade, the worldwide reservoir of chronically infected persons is estimated at 170 million, or 3% of the global population. There is much controversy surrounding the natural history of hepatitis C infection. The rate of chronic HCV infection is affected by a person's age, gender, race, and viral immune response. Approximately 75%-85% of HCV-infected persons will progress to chronic HCV infection, and are at risk for the development of extrahepatic manifestations, compensated and decompensated cirrhosis, and hepatocellular carcinoma (HCC). The rate of progression to cirrhosis is highly variable, and is influenced by several factors, including the amount of alcohol consumption, age of initial HCV infection, degree of inflammation and fibrosis on liver biopsy, HIV and HBV coinfection, and comordid conditions. An estimated 10%-15% of HCV-infected persons will advance to cirrhosis within the first 20 years. Persons with cirrhosis are at increased risk of developing HCC. An understanding of the natural history of hepatitis C is essential to effectively manage, treat, and counsel individuals with HCV infection.
Collapse
|
review-article |
19 |
515 |
5
|
Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma: two growing epidemics with a potential link. Cancer 2009; 115:5651-61. [PMID: 19834957 PMCID: PMC3397779 DOI: 10.1002/cncr.24687] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most rapidly increasing cause of cancer death in the United States. Although many risk factors for HCC are well defined, including hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol, most series have indicated that 5% to 30% of patients with HCC lack a readily identifiable risk factor for their cancer. The majority of "cryptogenic" HCC in the United States is attributed to nonalcoholic fatty liver disease (NAFLD), a hepatic manifestation of the metabolic syndrome. The metabolic syndrome is a constellation of problems that includes insulin resistance, obesity, hypertension, and hyperlipidemia. Increasingly, components of the metabolic syndrome are being linked to various forms of cancer with respect to both increased risk of disease and worsened outcome. In this review, the authors focused on the relation between metabolic syndrome and HCC. They investigated the increased risks of HCC among individuals with features of metabolic syndrome, potentially worsened cancer outcomes in these patients, possible pathogenic mechanisms to explain these relations, and treatment options for those with NAFLD and its progressive counterpart, nonalcoholic steatohepatitis. It is predicted that metabolic syndrome will lead to large increases in the incidence of HCC over the next decades. A better understanding of the relation between these 2 diseases ultimately should lead to improved screening and treatment options for patients with HCC.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
301 |
6
|
Shang S, Plymoth A, Ge S, Feng Z, Rosen HR, Sangrajrang S, Hainaut P, Marrero JA, Beretta L. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology 2012; 55:483-90. [PMID: 21953299 PMCID: PMC3914762 DOI: 10.1002/hep.24703] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED The aim of this study was to identify a biomarker that could improve alpha-fetoprotein (AFP) performance in hepatocellular carcinoma (HCC) surveillance among patients with cirrhosis. We performed proteomic profiling of plasma from patients with cirrhosis or HCC and validated selected candidate HCC biomarkers in two geographically distinct cohorts to include HCC of different etiologies. Mass spectrometry profiling of highly fractionated plasma from 18 cirrhosis and 17 HCC patients identified osteopontin (OPN) as significantly up-regulated in HCC cases, compared to cirrhosis controls. OPN levels were subsequently measured in 312 plasma samples collected from 131 HCC patients, 76 cirrhosis patients, 52 chronic hepatitis C (CHC) and B (CHB) patients, and 53 healthy controls in two independent cohorts. OPN plasma levels were significantly elevated in HCC patients, compared to cirrhosis, CHC, CHB, or healthy controls, in both cohorts. OPN alone or in combination with AFP had significantly better area under the receiver operating characteristic curve, compared to AFP, in comparing cirrhosis and HCC in both cohorts. OPN overall performance remained higher than AFP in comparing cirrhosis and the following HCC groups: HCV-related HCC, HBV-associated HCC, and early HCC. OPN also had a good sensitivity in AFP-negative HCC. In a pilot prospective study including 22 patients who developed HCC during follow-up, OPN was already elevated 1 year before diagnosis. CONCLUSION OPN was more sensitive than AFP for the diagnosis of HCC in all studied HCC groups. In addition, OPN performance remained intact in samples collected 1 year before diagnosis.
Collapse
|
research-article |
13 |
247 |
7
|
Hassan MM, Curley SA, Li D, Kaseb A, Davila M, Abdalla EK, Javle M, Moghazy DM, Lozano RD, Abbruzzese JL, Vauthey JN. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer 2010; 116:1938-46. [PMID: 20166205 PMCID: PMC4123320 DOI: 10.1002/cncr.24982] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the observed association between diabetes mellitus and hepatocellular carcinoma (HCC), little is known about the effect of diabetes duration before HCC diagnosis and whether some diabetes medications reduced the risk of HCC development. This objective of the current study was to determine the association between HCC risk and diabetes duration and type of diabetes treatment. METHODS A total of 420 patients with HCC and 1104 healthy controls were enrolled in an ongoing hospital-based case-control study. Multivariate logistic regression models were used to adjust for HCC risk factors. RESULTS The prevalence of diabetes mellitus was 33.3% in patients with HCC and 10.4% in the control group, yielding an adjusted odds ratio (AOR) of 4.2 (95% confidence interval [95% CI], 3.0-5.9). In 87% of cases, diabetes was present before the diagnosis of HCC, yielding an AOR of 4.4 (95% CI, 3.0-6.3). Compared with patients with a diabetes duration of 2 to 5 years, the estimated AORs for those with a diabetes duration of 6 to 10 years and those with a diabetes duration >10 years were 1.8 (95% CI, 0.8-4.1) and 2.2 (95% CI, 1.2-4.8), respectively. With respect to diabetes treatment, the AORs were 0.3 (95% CI, 0.2-0.6), 0.3 (95% CI, 0.1-0.7), 7.1 (95% CI, 2.9-16.9), 1.9 (95% CI, 0.8-4.6), and 7.8 (95% CI, 1.5-40.0) for those treated with biguanides, thiazolidinediones, sulfonylureas, insulin, and dietary control, respectively. CONCLUSIONS Diabetes appears to increase the risk of HCC, and such risk is correlated with a long duration of diabetes. Relying on dietary control and treatment with sulfonylureas or insulin were found to confer the highest magnitude of HCC risk, whereas treatment with biguanides or thiazolidinediones was associated with a 70% HCC risk reduction among diabetics.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
241 |
8
|
Cleary SP, Jeck WR, Zhao X, Chen K, Selitsky SR, Savich GL, Tan TX, Wu MC, Getz G, Lawrence MS, Parker JS, Li J, Powers S, Kim H, Fischer S, Guindi M, Ghanekar A, Chiang DY. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 2013; 58:1693-702. [PMID: 23728943 PMCID: PMC3830584 DOI: 10.1002/hep.26540] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 05/10/2013] [Indexed: 12/15/2022]
Abstract
UNLABELLED Genetic alterations in specific driver genes lead to disruption of cellular pathways and are critical events in the instigation and progression of hepatocellular carcinoma (HCC). As a prerequisite for individualized cancer treatment, we sought to characterize the landscape of recurrent somatic mutations in HCC. We performed whole-exome sequencing on 87 HCCs and matched normal adjacent tissues to an average coverage of 59×. The overall mutation rate was roughly two mutations per Mb, with a median of 45 nonsynonymous mutations that altered the amino acid sequence (range, 2-381). We found recurrent mutations in several genes with high transcript levels: TP53 (18%); CTNNB1 (10%); KEAP1 (8%); C16orf62 (8%); MLL4 (7%); and RAC2 (5%). Significantly affected gene families include the nucleotide-binding domain and leucine-rich repeat-containing family, calcium channel subunits, and histone methyltransferases. In particular, the MLL family of methyltransferases for histone H3 lysine 4 were mutated in 20% of tumors. CONCLUSION The NFE2L2-KEAP1 and MLL pathways are recurrently mutated in multiple cohorts of HCC.
Collapse
|
research-article |
12 |
240 |
9
|
Fisher RA, Kulik LM, Freise CE, Lok ASF, Shearon TH, Brown RS, Ghobrial RM, Fair JH, Olthoff KM, Kam I, Berg CL, the A2ALL Study Group. Hepatocellular carcinoma recurrence and death following living and deceased donor liver transplantation. Am J Transplant 2007; 7:1601-8. [PMID: 17511683 PMCID: PMC3176596 DOI: 10.1111/j.1600-6143.2007.01802.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined mortality and recurrence of hepatocellular carcinoma (HCC) among 106 transplant candidates with cirrhosis and HCC who had a potential living donor evaluated between January 1998 and February 2003 at the nine centers participating in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study (A2ALL). Cox regression models were fitted to compare time from donor evaluation and time from transplant to death or HCC recurrence between 58 living donor liver transplant (LDLT) and 34 deceased donor liver transplant (DDLT) recipients. Mean age and calculated Model for End-Stage Liver Disease (MELD) scores at transplant were similar between LDLT and DDLT recipients (age: 55 vs. 52 years, p = 0.21; MELD: 13 vs. 15, p = 0.08). Relative to DDLT recipients, LDLT recipients had a shorter time from listing to transplant (mean 160 vs. 469 days, p < 0.0001) and a higher rate of HCC recurrence within 3 years than DDLT recipients (29% vs. 0%, p = 0.002), but there was no difference in mortality or the combined outcome of mortality or recurrence. LDLT recipients had lower relative mortality risk than patients who did not undergo LDLT after the center had more experience (p = 0.03). Enthusiasm for LDLT as HCC treatment is dampened by higher HCC recurrence compared to DDLT.
Collapse
|
research-article |
18 |
207 |
10
|
Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, Poon RT, Zender L, Lowe SW, Hong W, Luk JM. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 2011; 30:1229-40. [PMID: 21076472 PMCID: PMC3330262 DOI: 10.1038/onc.2010.504] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 08/05/2010] [Accepted: 09/09/2010] [Indexed: 12/15/2022]
Abstract
Yes-associated protein (YAP) is a downstream effector of the Hippo signaling pathway, which controls organ expansion and tissue development. We have recently defined the tumorigenic potential and clinical significance of the YAP1 oncogene in human hepatocellular carcinoma (HCC). The present study aims to define the tumorigenic properties of YAP in HCC and elucidate the related downstream signaling mechanism. In a gain-of-function study, we demonstrated that ectopic increased expression of YAP in the immortalized non-tumorigenic hepatocyte cell line MIHA confers tumorigenic and metastatic potentials, as evidenced by (1) enhanced aptitudes in cell viability, anchorage-independent growth, migration and invasion; (2) tumor formation in a xenograft mouse model; and (3) induction of HCC biomarker α-fetoprotein and activation of mitogen-activated protein kinase. Furthermore, we have identified AXL, a receptor tyrosine kinase, as a key downstream target that drives YAP-dependent oncogenic functions. RNAi-mediated knockdown of AXL expression decreased the ability of YAP-expressing MIHA cells and of the primary HCC cell line to proliferate and invade. These results indicate that AXL is a mediator of YAP-dependent oncogenic activities and implicates it as a potential therapeutic target for HCC.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
195 |
11
|
Lee CW, Wong LLY, Tse EYT, Liu HF, Leong VYL, Man-Fong J, Hardie DG, Ng IOL, Ching YP. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res 2012; 72:4394-404. [PMID: 22728651 PMCID: PMC3433393 DOI: 10.1158/0008-5472.can-12-0429] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AMP-activated protein kinase (AMPK), a biologic sensor for cellular energy status, has been shown to act upstream and downstream of known tumor suppressors. However, whether AMPK itself plays a tumor suppressor role in cancer remains unclear. Here, we found that the α2 catalytic subunit isoform of AMPK is significantly downregulated in hepatocellular carcinoma (HCC). Clinicopathologic analysis revealed that underexpression of AMPK-α2 was statistically associated with an undifferentiated cellular phenotype and poor patient prognosis. Loss of AMPK-α2 in HCC cells rendered them more tumorigenic than control cells both in vitro and in vivo. Mechanistically, ectopic expression of AMPK enhanced the acetylation and stability of p53 in HCC cells. The p53 deacetylase, SIRT1, was phosphorylated and inactivated by AMPK at Thr344, promoting p53 acetylation and apoptosis of HCC cells. Taken together, our findings suggest that underexpression of AMPK is frequently observed in HCC, and that inactivation of AMPK promotes hepatocarcinogenesis by destabilizing p53 in a SIRT1-dependent manner.
Collapse
|
research-article |
13 |
173 |
12
|
Sharma D, Wang J, Fu PP, Sharma S, Nagalingam A, Mells J, Handy J, Page AJ, Cohen C, Anania FA, Saxena NK. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology 2010; 52:1713-22. [PMID: 20941777 PMCID: PMC2967627 DOI: 10.1002/hep.23892] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Obesity is rapidly becoming a pandemic and is associated with increased carcinogenesis. Obese populations have higher circulating levels of leptin in contrast to low concentrations of adiponectin. Hence, it is important to evaluate the dynamic role between adiponectin and leptin in obesity-related carcinogenesis. Recently, we reported the oncogenic role of leptin including its potential to increase tumor invasiveness and migration of hepatocellular carcinoma (HCC) cells. In the present study we investigated whether adiponectin could antagonize the oncogenic actions of leptin in HCC. We employed HCC cell lines HepG2 and Huh7, the nude mice-xenograft model of HCC, and immunohistochemistry data from tissue-microarray to demonstrate the antagonistic role of adiponectin on the oncogenic actions of leptin. Adiponectin treatment inhibited leptin-induced cell proliferation of HCC cells. Using scratch-migration and electric cell-substrate impedance-sensing-based migration assays, we found that adiponectin inhibited leptin-induced migration of HCC cells. Adiponectin treatment effectively blocked leptin-induced invasion of HCC cells in Matrigel invasion assays. Although leptin inhibited apoptosis in HCC cells, we found that adiponectin treatment induced apoptosis even in the presence of leptin. Analysis of the underlying molecular mechanisms revealed that adiponectin treatment reduced leptin-induced Stat3 and Akt phosphorylation. Adiponectin also increased suppressor of cytokine signaling (SOCS3), a physiologic negative regulator of leptin signal transduction. Importantly, adiponectin significantly reduced leptin-induced tumor burden in nude mice. In HCC samples, leptin expression significantly correlated with HCC proliferation as evaluated by Ki-67, whereas adiponectin expression correlated significantly with increased disease-free survival and inversely with tumor size and local recurrence. CONCLUSION Collectively, these data demonstrate that adiponectin has the molecular potential to inhibit the oncogenic actions of leptin by blocking downstream effector molecules.
Collapse
|
research-article |
15 |
143 |
13
|
Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G. Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 2012; 3:236-60. [PMID: 22470194 PMCID: PMC3359882 DOI: 10.18632/oncotarget.466] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/31/2012] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies. Although the clinical diagnosis and management of early-stage HCC has improved significantly, HCC prognosis is still extremely poor. Furthermore, advanced HCC is a highly aggressive tumor with a poor or no response to common therapies. Therefore, new effective and well-tolerated therapy strategies are urgently needed. Targeted therapies have entered the field of anti-neoplastic treatment and are being used on their own or in combination with conventional chemotherapy drugs. Molecular-targeted therapy holds great promise in the treatment of HCC. A new therapeutic opportunity for advanced HCC is the use of sorafenib (Nexavar). On the basis of the recent large randomized phase III study, the Sorafenib HCC Assessment Randomized Protocol (SHARP), sorafenib has been approved by the FDA for the treatment of advanced HCC. Sorafenib showed to be able to significantly increase survival in patients with advanced HCC, establishing a new standard of care. Despite this promising breakthrough, patients with HCC still have a dismal prognosis, as it is currently the major cause of death in cirrhotic patients. Nevertheless, the successful results of the SHARP trial underscore the need for a comprehensive understanding of the molecular pathogenesis of this devastating disease. In this review we summarize the most important studies on the signaling pathways implicated in the pathogenesis of HCC, as well as the newest emerging drugs and their potential use in HCC management.
Collapse
|
Review |
13 |
143 |
14
|
Holczbauer Á, Factor VM, Andersen JB, Marquardt JU, Kleiner DE, Raggi C, Kitade M, Seo D, Akita H, Durkin ME, Thorgeirsson SS. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 2013; 145:221-231. [PMID: 23523670 PMCID: PMC3913051 DOI: 10.1053/j.gastro.2013.03.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/20/2013] [Accepted: 03/12/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Human primary liver cancer is classified into biologically distinct subgroups based on cellular origin. Liver cancer stem cells (CSCs) have been recently described. We investigated the ability of distinct lineages of hepatic cells to become liver CSCs and the phenotypic and genetic heterogeneity of primary liver cancer. METHODS We transduced mouse primary hepatic progenitor cells, lineage-committed hepatoblasts, and differentiated adult hepatocytes with transgenes encoding oncogenic H-Ras and SV40LT. The CSC properties of transduced cells and their ability to form tumors were tested by standard in vitro and in vivo assays and transcriptome profiling. RESULTS Irrespective of origin, all transduced cells acquired markers of CSC/progenitor cells, side populations, and self-renewal capacity in vitro. They also formed a broad spectrum of liver tumors, ranging from cholangiocarcinoma to hepatocellular carcinoma, which resembled human liver tumors, based on genomic and histologic analyses. The tumor cells coexpressed hepatocyte (hepatocyte nuclear factor 4α), progenitor/biliary (keratin 19, epithelial cell adhesion molecule, A6), and mesenchymal (vimentin) markers and showed dysregulation of genes that control the epithelial-mesenchymal transition. Gene expression analyses could distinguish tumors of different cellular origin, indicating the contribution of lineage stage-dependent genetic changes to malignant transformation. Activation of c-Myc and its target genes was required to reprogram adult hepatocytes into CSCs and for tumors to develop. Stable knockdown of c-Myc in transformed adult hepatocytes reduced their CSC properties in vitro and suppressed growth of tumors in immunodeficient mice. CONCLUSIONS Any cell type in the mouse hepatic lineage can undergo oncogenic reprogramming into a CSC by activating different cell type-specific pathways. Identification of common and cell of origin-specific phenotypic and genetic changes could provide new therapeutic targets for liver cancer.
Collapse
|
Research Support, N.I.H., Intramural |
12 |
140 |
15
|
Henry JC, Park JK, Jiang J, Kim JH, Roberts LR, Banerjee S, Schmittgen TD. miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 2010; 403:120-5. [PMID: 21055388 PMCID: PMC3039123 DOI: 10.1016/j.bbrc.2010.10.130] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 12/25/2022]
Abstract
Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
127 |
16
|
Calvisi DF, Ladu S, Conner EA, Seo D, Hsieh JT, Factor VM, Thorgeirsson SS. Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J Hepatol 2011; 54:311-9. [PMID: 21067840 PMCID: PMC3031080 DOI: 10.1016/j.jhep.2010.06.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Aberrant activation of the RAS pathway is ubiquitous in human hepatocarcinogenesis, but the molecular mechanisms leading to RAS induction in the absence of RAS mutations remain under-investigated. We defined the role of Ras GTPase activating proteins (GAPs) in the constitutive activity of Ras signaling during human hepatocarcinogenesis. METHODS The mutation status of RAS genes and RAS effectors was assessed in a collection of human hepatocellular carcinomas (HCC). Levels of RAS GAPs (RASA1-4, RASAL1, nGAP, SYNGAP1, DAB2IP, and NF1) and the RASAL1 upstream inducer PITX1 were determined by real-time RT-PCR and immunoblotting. The promoter and genomic status of RASAL1, DAB2IP, NF1, and PITX1 were assessed by methylation assays and microsatellite analysis. Effects of RASAL1, DAB2IP, and PITX1 on HCC growth were evaluated by transfection and siRNA analyses of HCC cell lines. RESULTS In the absence of Ras mutations, downregulation of at least one RAS GAP (RASAL1, DAB2IP, or NF1) was found in all HCC samples. Low levels of DAB2IP and PITX1 were detected mostly in a HCC subclass from patients with poor survival, indicating that these proteins control tumor aggressiveness. In HCC cells, reactivation of RASAL1, DAB2IP, and PITX1 inhibited proliferation and induced apoptosis, whereas their silencing increased proliferation and resistance to apoptosis. CONCLUSIONS Selective suppression of RASAL1, DAB2IP, or NF1 RAS GAPs results in unrestrained activation of Ras signaling in the presence of wild-type RAS in HCC.
Collapse
|
Research Support, N.I.H., Intramural |
14 |
125 |
17
|
Li P, Du Q, Cao Z, Guo Z, Evankovich J, Yan W, Chang Y, Shao L, Stolz DB, Tsung A, Geller DA. Interferon-γ induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma ( HCC) cells through interferon-regulatory factor-1 (IRF-1). Cancer Lett 2012; 314:213-22. [PMID: 22056812 PMCID: PMC3487386 DOI: 10.1016/j.canlet.2011.09.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/04/2011] [Accepted: 09/25/2011] [Indexed: 12/19/2022]
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine with immunomodulatory, anti-viral, and anti-proliferative effects. In this study, we examined the effects of IFN-γ on autophagy and cell growth in human hepatocellular carcinoma (HCC) cells. IFN-γ inhibited cell growth of Huh7 cells with non-apoptotic cell death. IFN-γ induced autophagosome formation and conversion/turnover of microtubule associated protein 1 light chain 3 (LC3) protein. Furthermore, overexpression of IRF-1 also induced autophagy in Huh7 cells. Silencing IRF-1 expression with target small hairpin RNA blocked autophagy induced by IFN-γ. Silencing of the autophagy signals Beclin-1 or Atg5 attenuated the inhibitory effect of IFN-γ on Huh7 cells with decreased cell death. Additionally, IFN-γ activated autophagy in freshly cultured human HCC cells. Together, these findings show that IFN-γ induces autophagy through IRF-1 signaling pathway and the induction of autophagy contributes to the growth-inhibitory effect of IFN-γ with cell death in human liver cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
123 |
18
|
Lee D, Xu IMJ, Chiu DKC, Leibold J, Tse APW, Bao MHR, Yuen VWH, Chan CYK, Lai RKH, Chin DWC, Chan DFF, Cheung TT, Chok SH, Wong CM, Lowe SW, Ng IOL, Wong CCL. Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology 2019; 69:1768-1786. [PMID: 30561826 PMCID: PMC8690574 DOI: 10.1002/hep.30467] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide which lacks effective treatment. Cancer cells experience high levels of oxidative stress due to increased generation of reactive oxygen species (ROS). Increased antioxidant-producing capacity is therefore found in cancer cells to counteract oxidative stress. The thioredoxin system is a ubiquitous mammalian antioxidant system which scavenges ROS, and we demonstrate that it is vital for HCC growth as it maintains intracellular reduction-oxidation (redox) homeostasis. Transcriptome sequencing in human HCC samples revealed significant overexpression of thioredoxin reductase 1 (TXNRD1), the cytosolic subunit and key enzyme of the thioredoxin system, with significant correlations to poorer clinicopathological features and patient survival. Driven by the transcriptional activation of nuclear factor (erythroid-derived 2)-like 2, the master protector against oxidative stress, TXNRD1 counteracts intracellular ROS produced in human HCC. Inhibition of TXNRD1 through genetic inhibition hindered the proliferation of HCC cells and induced apoptosis in vitro. Administration of the pharmacological TXNRD1 inhibitor auranofin (AUR) effectively suppressed the growth of HCC tumors induced using the hydrodynamic tail vein injection and orthotopic implantation models in vivo. Furthermore, AUR sensitized HCC cells toward the conventional therapeutic sorafenib. Conclusion: Our study highlights the reliance of HCC cells on antioxidants for redox homeostasis and growth advantage; targeting TXNRD1 resulted in dramatic accumulation of ROS, which was found to be an effective approach for the suppression of HCC tumor growth.
Collapse
|
research-article |
6 |
117 |
19
|
Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Mo W, Xu L, Guo C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 2017; 117:1518-1528. [PMID: 28926527 PMCID: PMC5680469 DOI: 10.1038/bjc.2017.323] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/23/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-inducible factor 1 α (HIF-1α) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer progression, and resistance to therapy. However, the effect of genistein on HIF-1α and glycolysis in hepatocellular carcinoma (HCC) is still unclear. METHODS Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1α were used to test the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its combination with sorafenib. RESULTS Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1α reversed the effect of genistein, genistein no longer has effects on HIF-1α siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice. CONCLUSIONS Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1α, therefore inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis may help identify effective treatments for HCC patients at advanced stages.
Collapse
|
research-article |
8 |
113 |
20
|
Park YY, Sohn BH, Johnson RL, Kang MH, Kim SB, Shim JJ, Mangala LS, Kim JH, Yoo JE, Rodriguez-Aguayo C, Pradeep S, Hwang JE, Jang HJ, Lee HS, Rupaimoole R, Lopez-Berestein G, Jeong W, Park IS, Park YN, Sood AK, Mills GB, Lee JS. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 2016; 63:159-72. [PMID: 26389641 PMCID: PMC4881866 DOI: 10.1002/hep.28223] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/13/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. CONCLUSION YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets.
Collapse
|
research-article |
9 |
111 |
21
|
Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB, Ranganathan S, Apte U. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int 2012; 32:38-47. [PMID: 22098159 PMCID: PMC4175712 DOI: 10.1111/j.1478-3231.2011.02646.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/18/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and hepatoblastoma (HB) are the main hepatic malignancies with limited treatment options and high mortality. Recent studies have implicated Hippo kinase pathway in cancer development, but detailed analysis of Hippo kinase signalling in human hepatic malignancies, especially CC and HB, is lacking. METHODS We investigated Hippo kinase signalling in HCC, CC and HB using cells and patient samples. RESULTS Increased expression of yes-associated protein (Yap), the downstream effector of the Hippo kinase pathway, was observed in HCC cells, and siRNA-mediated knockdown of Yap resulted in decreased survival of HCC cells. The density-dependent activation of Hippo kinase pathway characteristic of normal cells was not observed in HCC cells and CCLP cells, a cholangiocarcinoma cell line. Immunohistochemistry of Yap in HCC, CC and HB tissues indicated extensive nuclear localization of Yap in majority of tissues. Western blot analysis performed using total cell extracts from patient samples and normal livers showed extensive activation of Yap. Marked induction of Glypican-3, CTGF and Survivin, the three Yap target genes was observed in the tumour samples. Further analysis revealed significant decrease in expression and activity of Lats kinase, the main upstream regulator of Yap. However, no change in activation of Mst-2 kinase, the upstream regulator of Lats kinase was observed. CONCLUSIONS These data show that Yap induction mediated by inactivation of Lats is observed in hepatic malignancies. These studies highlight Hippo kinase pathway as a novel therapeutic target for hepatic malignancies.
Collapse
|
research-article |
13 |
110 |
22
|
Song K, Han C, Zhang J, Lu D, Dash S, Feitelson M, Lim K, Wu T. Epigenetic regulation of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis b virus X protein in hepatocellular carcinoma cells. Hepatology 2013; 58:1681-92. [PMID: 23703729 PMCID: PMC3773012 DOI: 10.1002/hep.26514] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 03/12/2013] [Accepted: 05/02/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED MicroRNA-122 (miR-122), a pivotal liver-specific miRNA, has been implicated in several liver diseases including hepatocellular carcinoma (HCC) and hepatitis C and B viral infection. This study aimed to explore epigenetic regulation of miR-122 in human HCC cells and to examine the effect of hepatitis C virus (HCV) and hepatitis B virus (HBV). We performed microRNA microarray analysis and identified miR-122 as the most up-regulated miRNA (6-fold) in human HCC cells treated with 5'aza-2'deoxycytidine (5-Aza-CdR, DNA methylation inhibitor) and 4-phenylbutyric acid (PBA, histone deacetylation inhibitor). Real-time polymerase chain reaction (PCR) analysis verified significant up-regulation of miR-122 by 5'aza and PBA in HCC cells, and to a lesser extent in primary hepatocytes. Peroxisome proliferator activated receptor-gamma (PPARγ) and retinoid X receptor alpha (RXRα) complex was found to be associated with the DR1 and DR2 consensus site in the miR-122 gene promoter which enhanced miR-122 gene transcription. 5-Aza-CdR and PBA treatment increased the association of PPARγ/RXRα, but decreased the association of its corepressors (N-CoR and SMRT), with the miR-122 DR1 and DR2 motifs. The aforementioned DNA-protein complex also contains SUV39H1, an H3K9 histone methyl transferase, which down-regulates miR-122 expression. CONCLUSIONS These findings establish a novel role of the PPARγ binding complex for epigenetic regulation of miR-122 in human HCC cells. Moreover, we show that hepatitis B virus X protein binds PPARγ and inhibits the transcription of miR-122, whereas hepatitis C viral particles exhibited no significant effect; these findings provide mechanistic insight into reduction of miR-122 in patients with HBV but not with HCV infection.
Collapse
|
research-article |
12 |
109 |
23
|
Chuang SC, Lee YCA, Hashibe M, Dai M, Zheng T, Boffetta P. Interaction between cigarette smoking and hepatitis B and C virus infection on the risk of liver cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2010; 19:1261-8. [PMID: 20447919 PMCID: PMC4170071 DOI: 10.1158/1055-9965.epi-09-1297] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Chronic infection with hepatitis B (HBV) and C viruses (HCV) as well as cigarette smoking are established risk factors of hepatocellular carcinoma (HCC), but it is unclear whether an interaction exists between these factors in causing hepatocellular carcinogenesis. We conducted a meta-analysis to evaluate the interaction of HBV and HCV infection and cigarette smoking on the risk of HCC. METHODS We systematically searched the PUBMED and the China National Knowledge Infrastructure databases. A total of 16 eligible publications were identified. Cigarette smoking and chronic HBV and HCV infections were dichotomized into present or absent. Additive (S) and multiplicative interaction indexes (V) between smoking and each of the two infections and their 95% confidence intervals (95% CI) were calculated for each study and then combined in a meta-analysis. RESULTS We found a more than additive interaction between HBV infection and cigarette smoking (S=1.44; 95% CI, 1.00-2.06; nine studies) and a more than multiplicative interaction (V=1.60; 95% CI, 1.16-2.20; six studies) between HCV infection and cigarette smoking. No publication bias was detected. CONCLUSION Smoking seems to interact with both HBV and HCV in determining HCC risk. A pooled analysis of individual subject data, with appropriate adjustment with other risk factors, is warranted to confirm these results. IMPACT The results of this study imply the evidence of a synergistic effect between smoking and HBV or HCV infection on the risk of HCC. Thus, chronic carriers of HBV or HCV are recommended to avoid smoking.
Collapse
|
Meta-Analysis |
15 |
109 |
24
|
Chang Q, Zhang Y, Beezhold KJ, Bhatia D, Zhao H, Chen J, Castranova V, Shi X, Chen F. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J Hepatol 2009; 50:323-33. [PMID: 19041150 PMCID: PMC4417500 DOI: 10.1016/j.jhep.2008.07.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/07/2008] [Accepted: 07/23/2008] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Aberrant c-Jun N-terminal kinase (JNK) activation has been linked to hepatocellular carcinoma (HCC) in mouse models. It remains unclear whether JNK activation plays an important role in human HCC and, if so, how JNK signaling contributes to the initiation or progression of HCC. METHODS The JNK activation, global gene expression, and the status of histone H3 methylations were measured in 31 primary human hepatocellular carcinoma (HCC) samples paired with the adjacent non-cancerous (ANC) tissues. RESULTS Enhanced JNK1 activation was noted in 17 out of 31 HCC samples (55%) relative to the corresponding ANC tissues, whereas JNK2 activation was roughly equal between HCC and ANC tissues. This enhancement in JNK1 activation is associated with an increased tumor size and a lack of encapsulation of the tumors. In addition, an association of JNK1 activation with the histone H3 lysines 4 and 9 tri-methylation was observed in the HCC tissues, which leads to an elevated expression of genes regulating cell growth and a decreased expression of the genes for cell differentiation and the p450 family members in HCC. CONCLUSIONS These results, thus, suggest that JNK1 plays important roles in the development of human HCC partially through the epigenetic mechanisms.
Collapse
|
research-article |
16 |
106 |
25
|
Tseng TC, Kao JH. Clinical utility of quantitative HBsAg in natural history and nucleos(t)ide analogue treatment of chronic hepatitis B: new trick of old dog. J Gastroenterol 2013; 48:13-21. [PMID: 23090000 PMCID: PMC3698422 DOI: 10.1007/s00535-012-0668-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/14/2012] [Indexed: 02/08/2023]
Abstract
Using commercial quantitative assays, quantitative hepatitis B surface antigen (qHBsAg) has improved our understanding and management of chronic hepatitis B (CHB). The HBsAg level is highest in the immune tolerance phase, starts to decline during the immune clearance phase, and decreases slowly but progressively after hepatitis B e antigen (HBeAg) seroconversion. The HBsAg level is lowest in individuals with an inactive carrier state but higher in those who develop HBeAg-negative hepatitis. It has been shown that a reduction of HBsAg by 1 log IU/mL or more reflects improved host immune control of HBV infection. A combination of HBsAg <1000 IU/mL and HBV-DNA <2000 IU/mL can identify a 3-year inactive state in a genotype D HBeAg-negative carrier population. In the Asian-Pacific region, where HBV genotypes B and C are dominant, HBsAg levels of ≤10-100 IU/mL predict HBsAg loss over time. As to the prediction of disease progression, low-viremic carriers with HBsAg >1000 IU/mL have been shown to be at higher risks of HBeAg-negative hepatitis, cirrhosis, and hepatocellular carcinoma than those with HBsAg <1000 IU/mL. Although qHBsAg has been widely used in CHB patients receiving pegylated interferon therapy, the HBsAg decline is slow and does not correlate with HBV-DNA levels during nucleos(t)ide analogue (NUC) therapy. However, a rapid HBsAg decline during NUC therapy may identify patients who will finally clear HBsAg. A 6- to 12-monthly assessment of HBsAg level could be considered during NUC therapy. Taking these lines of evidence together, qHBsAg can complement HBV-DNA levels to optimize the management of CHB patients in our daily clinical practice.
Collapse
|
review-article |
12 |
99 |