Abstract
The magnetic-field scale at which superconducting vortices persist in underdoped cuprate superconductors has remained a controversial subject. Here we present an electrical transport study on three distinctly different cuprate families, at temperatures down to 0.32 K and magnetic fields up to 45 T. We reveal the presence of an anomalous vortex liquid state with a highly nonohmic resistivity in all three materials, irrespective of the level of disorder or structural details. The doping and field regime over which this anomalous vortex state persists suggests its occurrence is tied to the presence of long-range charge order under high magnetic field. Our results demonstrate that the intricate interplay between charge order and superconductivity can lead to an exotic vortex state.
The interplay between charge order and d-wave superconductivity in high-Tc cuprates remains an open question. While mounting evidence from spectroscopic probes indicates that charge order competes with superconductivity, to date little is known about the impact of charge order on charge transport in the mixed state, when vortices are present. Here we study the low-temperature electrical resistivity of three distinctly different cuprate families under intense magnetic fields, over a broad range of hole doping and current excitations. We find that the electronic transport in the doping regime where long-range charge order is known to be present is characterized by a nonohmic resistivity, the identifying feature of an anomalous vortex liquid. The field and temperature range in which this nonohmic behavior occurs indicates that the presence of long-range charge order is closely related to the emergence of this anomalous vortex liquid, near a vortex solid boundary that is defined by the excitation current in the T→ 0 limit. Our findings further suggest that this anomalous vortex liquid, a manifestation of fragile superconductivity with a suppressed critical current density, is ubiquitous in the high-field state of charge-ordered cuprates.
Collapse