1
|
Guerra ML, Singh PJ, Taylor NF. Early mobilization of patients who have had a hip or knee joint replacement reduces length of stay in hospital: a systematic review. Clin Rehabil 2014; 29:844-54. [PMID: 25452634 DOI: 10.1177/0269215514558641] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/12/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To systematically review the effect of early mobilization after hip or knee joint replacement surgery on length of stay in an acute hospital. METHODS Randomized controlled trials were selected from electronic databases based on inclusion criterion requiring an experimental group mobilizing (sitting out of bed/walking) earlier than a comparison group post joint replacement surgery of the hip or knee in an acute hospital. Clinically homogeneous data were analyzed with meta-analysis. RESULTS Five randomized controlled trials (totaling 622 participants) were included for review. A meta-analysis of 5 trials found a reduced length of stay of 1.8 days (95% confidence interval 1.1 to 2.6) in favor of the experimental group. In 4 of the 5 trials the experimental group first sat out of bed within 24 hours post operatively. In 4 of the 5 trials the experimental group first walked within 48 hours post operatively. Individual trials reported benefits in range of motion, muscle strength and health-related quality of life in favor of the experimental group. There were no differences in discharge destinations, incidence of negative outcomes or adverse events attributable to early mobilization when compared to the comparison groups. CONCLUSION Early mobilization post hip or knee joint replacement surgery can result in a reduced length of stay of about 1.8 days. Trials that reported these positive results showed that early mobilization can be achieved within 24 hours of operation. This positive gain was achieved without an increase in negative outcomes.
Collapse
|
Systematic Review |
11 |
165 |
2
|
Olofsson J, Grehk TM, Berlind T, Persson C, Jacobson S, Engqvist H. Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement. BIOMATTER 2014; 2:94-102. [PMID: 23507807 PMCID: PMC3549862 DOI: 10.4161/biom.20710] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many of the failures of total joint replacements are related to tribology, i.e., wear of the cup, head and liner. Accumulation of wear particles at the implants can be linked to osteolysis which leads to bone loss and in the end aseptic implant loosening. Therefore it is highly desirable to reduce the generation of wear particles from the implant surfaces. Silicon nitride (Si(3)N(4)) has shown to be biocompatible and have a low wear rate when sliding against itself and is therefore a good candidate as a hip joint material. Furthermore, wear particles of Si(3)N(4) are predicted to slowly dissolve in polar liquids and they therefore have the potential to be resorbed in vivo, potentially reducing the risk for aseptic loosening. In this study, it was shown that α-Si(3)N(4)-powder dissolves in PBS. Adsorption of blood plasma indicated a good acceptance of Si(3)N(4) in the body with relatively low immune response. Si(3)N(4) sliding against Si(3)N(4) showed low wear rates both in bovine serum and PBS compared with the other tested wear couples. Tribofilms were built up on the Si(3)N(4) surfaces both in PBS and in bovine serum, controlling the friction and wear characteristics.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
47 |
3
|
Brennan SL, Stanford T, Wluka AE, Henry MJ, Page RS, Graves SE, Kotowicz MA, Nicholson GC, Pasco JA. Cross-sectional analysis of association between socioeconomic status and utilization of primary total hip joint replacements 2006-7: Australian Orthopaedic Association National Joint Replacement Registry. BMC Musculoskelet Disord 2012; 13:63. [PMID: 22546041 PMCID: PMC3403966 DOI: 10.1186/1471-2474-13-63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 04/30/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia. METHODS Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006-7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk. RESULTS Females accounted for 46.9% of the 642 primary THR performed during 2006-7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70-79 years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups. CONCLUSIONS Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA.
Collapse
|
research-article |
13 |
19 |
4
|
Soares dos Santos MP, Ferreira JAF, Ramos A, Simões JAO, Morais R, Silva NM, Santos PM, Reis MC, Oliveira T. Instrumented hip joint replacements, femoral replacements and femoral fracture stabilizers. Expert Rev Med Devices 2014; 11:617-35. [PMID: 25234709 DOI: 10.1586/17434440.2014.946695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This paper reviews instrumented hip joint replacements, instrumented femoral replacements and instrumented femoral fracture stabilizers. Examination of the evolution of such implants was carried out, including the detailed analysis of 16 architectures, designed by 8 research teams and implanted in 32 patients. Their power supply, measurement, communication, processing and actuation systems were reviewed, as were the tests carried out to evaluate their performance and safety. These instrumented implants were only designed to measure biomechanical and thermodynamic quantities in vivo, in order to use such data to conduct research projects and optimize rehabilitation processes. The most promising trend is to minimize aseptic loosening and/or infection following hip or femoral replacements or femoral stabilization procedures by using therapeutic actuators inside instrumented implants to apply controlled stimuli in the bone-implant interface.
Collapse
|
Review |
11 |
14 |
5
|
Skjöldebrand C, Schmidt S, Vuong V, Pettersson M, Grandfield K, Högberg H, Engqvist H, Persson C. Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiN x Coatings Aimed for Joint Replacements. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E173. [PMID: 28772532 PMCID: PMC5459168 DOI: 10.3390/ma10020173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/12/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23-48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young's modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young's moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants.
Collapse
|
research-article |
8 |
9 |
6
|
Fouly A, Assaifan AK, Alnaser IA, Hussein OA, Abdo HS. Evaluating the Mechanical and Tribological Properties of 3D Printed Polylactic-Acid (PLA) Green-Composite for Artificial Implant: Hip Joint Case Study. Polymers (Basel) 2022; 14:polym14235299. [PMID: 36501692 PMCID: PMC9738854 DOI: 10.3390/polym14235299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Artificial implants are very essential for the disabled as they are utilized for bone and joint function in orthopedics. However, materials used in such implants suffer from restricted mechanical and tribological properties besides the difficulty of using such materials with complex structures. The current study works on developing a new polymer green composite that can be used for artificial implants and allow design flexibility through its usage with 3D printing technology. Therefore, a natural filler extracted from corn cob (CC) was prepared, mixed homogeneously with the Polylactic-acid (PLA), and passed through a complete process to produce a green composite filament suit 3D printer. The corn cob particles were incorporated with PLA with different weight fractions zero, 5%, 10%, 15%, and 20%. The physical, mechanical, and tribological properties of the PLA-CC composites were evaluated. 3D finite element models were constructed to evaluate the PLA-CC composites performance on a real condition implant, hip joints, and through the frictional process. Incorporating corn cob inside PLA revealed an enhancement in the hardness (10%), stiffness (6%), compression ultimate strength (12%), and wear resistance (150%) of the proposed PLA-CC composite. The finite element results of both models proved an enhancement in the load-carrying capacity of the composite. The finite element results came in line with the experimental results.
Collapse
|
research-article |
3 |
6 |
7
|
Kyomoto M, Moro T, Yamane S, Watanabe K, Hashimoto M, Tanaka S, Ishihara K. Efficacy of hydrated phospholipid polymer interfaces between all-polymer bearings for total hip arthroplasty. J Biomed Mater Res B Appl Biomater 2021; 110:89-102. [PMID: 34128321 DOI: 10.1002/jbm.b.34892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022]
Abstract
Measurements of wear resistance and metal ion release are important for designing bearing couples or interfaces in total hip arthroplasty (THA). In this study, we investigated wear resistance and metal ion release of surface-modified metal-free all-polymer hip bearings, such as poly(ether-ether-ketone), (PEEK) on cross-linked polyethylene (PEEK-on-CLPE), with a hydrated gel-like surface layer, to propose an improved alternative to the conventional materials used to design THA bearings. The PEEK surface resulted in less metal ion release than the cobalt-chromium-molybdenum (Co-Cr-Mo) alloy surface owing to the lack of metal. The PEEK-on-CLPE bearing (6.33 mg/106 cycles) had lower wear (rate) than the bearing with Co-Cr-Mo alloy-on-CLPE (10.47 mg/106 cycles) under controlled laboratory conditions; the wear performance of the all-polymer hip bearings was further improved with hemi- or both-surface modified with a hydrated poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer (3.74 and 3.06 mg/106 cycles, respectively). The PMPC-grafted interface of PEEK-on-CLPE will be especially suitable for THA candidates. This study is of key importance for the design of lifelong THA and a better understanding of the limitations resulting from using PEEK. Further studies are necessary to evaluate the possibility of using this material in artificial hips.
Collapse
|
|
4 |
|
8
|
Kustova OV, Khoziainova SS, Abuseva GR, Makhotkina NN, Ponomarenko GN. [Rehabilitative technologies in patients after total endoprosthesis of lower limbs' major joints: scientometric analysis]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:54-61. [PMID: 38372738 DOI: 10.17116/kurort202410101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dynamically developing sphere of physical and rehabilitative medicine raises an important issue on implementation of technologies with proven effectiveness to recover neuromuscular, skeletal and movement-related functions, activity and partipation of traumatological patients into rehabilitation practice. The aim of this review is the consistent information analysis and synthesis of evidence-based researches of current effective methods in the context of medical rehabilitation after endoprosthesis of lower limbs' major joints, as well as the provision of structured information that helps to influence on decision-making for doctors of physical and rehabilitative medicine and other professionals who take part in multidisciplinary interaction.
Collapse
|
Review |
1 |
|
9
|
Kebbach M, Schulze C, Meyenburg C, Kluess D, Sungu M, Hartmann A, Günther KP, Bader R. Do hip resurfacing and short hip stem arthroplasties differ from conventional hip stem replacement regarding impingement-free range of motion? J Orthop Res 2023; 41:2501-2515. [PMID: 37132090 DOI: 10.1002/jor.25584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Total hip joint replacement (THR) is clinically well-established. In this context, the resulting range of motion (ROM) is crucial for patient satisfaction when performing joint movements. However, the ROM for THR with different bone preserving strategies (short hip stem and hip resurfacing) raises the question of whether the ROM is comparable with conventional hip stems. Therefore, this computer-based study aimed to investigate the ROM and type of impingement for different implant systems. An established framework with computer-aided design 3D models based on magnetic resonance imaging data of 19 patients with hip osteoarthritis was used to analyse the ROM for three different implant systems (conventional hip stem vs. short hip stem vs. hip resurfacing) during typical joint movements. Our results revealed that all three designs led to mean maximum flexion higher than 110°. However, hip resurfacing showed less ROM (-5% against conventional and -6% against short hip stem). No significant differences were observed between the conventional and short hip stem during maximum flexion and internal rotation. Contrarily, a significant difference was detected between the conventional hip stem and hip resurfacing during internal rotation (p = 0.003). The ROM of the hip resurfacing was lower than the conventional and short hip stem during all three movements. Furthermore, hip resurfacing shifted the impingement type to implant-to-bone impingement compared with the other implant designs. The calculated ROMs of the implant systems achieved physiological levels during maximum flexion and internal rotation. However, bone impingement was more likely during internal rotation with increasing bone preservation. Despite the larger head diameter of hip resurfacing, the ROM examined was substantially lower than that of conventional and short hip stem.
Collapse
|
|
2 |
|
10
|
Sara LK, Lewis CL. Rehabilitation Phases, Precautions, and Mobility Goals Following Total Hip Arthroplasty. HSS J 2023; 19:494-500. [PMID: 37937096 PMCID: PMC10626929 DOI: 10.1177/15563316231192980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 11/09/2023]
Abstract
The prevalence of total hip arthroplasty (THA) for advanced hip osteoarthritis (OA) is both increasing and shifting toward a younger average age. However, THA alone does not typically normalize function in these patients. Postoperative rehabilitation is often recommended to optimize joint motion, strength, and function. To date, there are no peer-reviewed clinical practice guidelines for postoperative rehabilitation following THA. Thus, optimal postoperative rehabilitation requires consideration of the existing literature and clinical expertise. This review article summarizes current recommendations for postoperative management of THA, including phases of rehabilitation, postoperative hip precautions, the effect of rehabilitation setting and mode of delivery on postoperative outcomes, and gait mechanics.
Collapse
|
research-article |
2 |
|
11
|
Liu F, Lian C, Feng L, Wang J, Du W. The effect of femoral head size on edge loading in metal-on-metal hip joint replacement under dynamic separation conditions. J Biomed Mater Res B Appl Biomater 2019; 108:1897-1906. [PMID: 31785080 DOI: 10.1002/jbm.b.34531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022]
Abstract
Edge loading that occurs in hip joint replacements due to dynamic separation of the joint bearings has been shown to cause severe wear for meal-on-metal bearings. In the present study, the multibody dynamics model for metal-on-metal (MoM) hip joints with a medial-lateral translational mismatch in the centers of rotation of the cup and head has been developed to predict the dynamic separation and contact force of edge loading under gait loading conditions. The effects of larger head diameters (28-55 mm), in combination with the translational mismatch (0-4 mm) and varied cup inclination angles (45°-65°), on edge loading of MoM bearings have been computationally investigated. For the given translational mismatch, increasing head diameters results in negligible effects on the dynamic separation, contact force and severity of edge loading. Increasing head size also leads to increased offset loading torque which has been found to reach at the level that may cause cup loosening under larger translational mismatch at 4 mm. The result highlights the importance of the cup inclination angle of 45° and a lower translational mismatch to avoid severe edge loading.
Collapse
|
|
6 |
|