1
|
van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J Mol Biol 2015; 428:720-725. [PMID: 26410586 DOI: 10.1016/j.jmb.2015.09.014] [Citation(s) in RCA: 1959] [Impact Index Per Article: 195.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022]
Abstract
The prediction of the quaternary structure of biomolecular macromolecules is of paramount importance for fundamental understanding of cellular processes and drug design. In the era of integrative structural biology, one way of increasing the accuracy of modeling methods used to predict the structure of biomolecular complexes is to include as much experimental or predictive information as possible in the process. This has been at the core of our information-driven docking approach HADDOCK. We present here the updated version 2.2 of the HADDOCK portal, which offers new features such as support for mixed molecule types, additional experimental restraints and improved protocols, all of this in a user-friendly interface. With well over 6000 registered users and 108,000 jobs served, an increasing fraction of which on grid resources, we hope that this timely upgrade will help the community to solve important biological questions and further advance the field. The HADDOCK2.2 Web server is freely accessible to non-profit users at http://haddock.science.uu.nl/services/HADDOCK2.2.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
1959 |
2
|
Merkley ED, Rysavy S, Kahraman A, Hafen RP, Daggett V, Adkins JN. Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances. Protein Sci 2014; 23:747-59. [PMID: 24639379 DOI: 10.1002/pro.2458] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/24/2022]
Abstract
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS(3) ) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine-lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS(3), a distance constraint of 26-30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
225 |
3
|
Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AMJJ, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünewald K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Johnson G, Lawson CL, Meiler J, Marti-Renom MA, Montelione GT, Nilges M, Nussinov R, Patwardhan A, Rappsilber J, Read RJ, Saibil H, Schröder GF, Schwieters CD, Seidel CAM, Svergun D, Topf M, Ulrich EL, Velankar S, Westbrook JD. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure 2015; 23:1156-67. [PMID: 26095030 PMCID: PMC4933300 DOI: 10.1016/j.str.2015.05.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models?
Collapse
|
Research Support, N.I.H., Extramural |
10 |
145 |
4
|
Webb B, Viswanath S, Bonomi M, Pellarin R, Greenberg CH, Saltzberg D, Sali A. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci 2017; 27:245-258. [PMID: 28960548 DOI: 10.1002/pro.3311] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 11/06/2022]
Abstract
Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
77 |
5
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
|
Review |
7 |
53 |
6
|
Kim OD, Rocha M, Maia P. A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering. Front Microbiol 2018; 9:1690. [PMID: 30108559 PMCID: PMC6079213 DOI: 10.3389/fmicb.2018.01690] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/06/2018] [Indexed: 12/03/2022] Open
Abstract
Mathematical modeling is a key process to describe the behavior of biological networks. One of the most difficult challenges is to build models that allow quantitative predictions of the cells' states along time. Recently, this issue started to be tackled through novel in silico approaches, such as the reconstruction of dynamic models, the use of phenotype prediction methods, and pathway design via efficient strain optimization algorithms. The use of dynamic models, which include detailed kinetic information of the biological systems, potentially increases the scope of the applications and the accuracy of the phenotype predictions. New efforts in metabolic engineering aim at bridging the gap between this approach and other different paradigms of mathematical modeling, as constraint-based approaches. These strategies take advantage of the best features of each method, and deal with the most remarkable limitation—the lack of available experimental information—which affects the accuracy and feasibility of solutions. Parameter estimation helps to solve this problem, but adding more computational cost to the overall process. Moreover, the existing approaches include limitations such as their scalability, flexibility, convergence time of the simulations, among others. The aim is to establish a trade-off between the size of the model and the level of accuracy of the solutions. In this work, we review the state of the art of dynamic modeling and related methods used for metabolic engineering applications, including approaches based on hybrid modeling. We describe approaches developed to undertake issues regarding the mathematical formulation and the underlying optimization algorithms, and that address the phenotype prediction by including available kinetic rate laws of metabolic processes. Then, we discuss how these have been used and combined as the basis to build computational strain optimization methods for metabolic engineering purposes, how they lead to bi-level schemes that can be used in the industry, including a consideration of their limitations.
Collapse
|
Review |
7 |
46 |
7
|
Trabuco LG, Schreiner E, Gumbart J, Hsin J, Villa E, Schulten K. Applications of the molecular dynamics flexible fitting method. J Struct Biol 2011; 173:420-7. [PMID: 20932910 PMCID: PMC3032011 DOI: 10.1016/j.jsb.2010.09.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/19/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex.
Collapse
|
Evaluation Study |
14 |
38 |
8
|
Casteleiro-Roca JL, Gómez-González JF, Calvo-Rolle JL, Jove E, Quintián H, Gonzalez Diaz B, Mendez Perez JA. Short-Term Energy Demand Forecast in Hotels Using Hybrid Intelligent Modeling. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2485. [PMID: 31151324 PMCID: PMC6603914 DOI: 10.3390/s19112485] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/02/2023]
Abstract
The hotel industry is an important energy consumer that needs efficient energy management methods to guarantee its performance and sustainability. The new role of hotels as prosumers increases the difficulty in the design of these methods. Also, the scenery is more complex as renewable energy systems are present in the hotel energy mix. The performance of energy management systems greatly depends on the use of reliable predictions for energy load. This paper presents a new methodology to predict energy load in a hotel based on intelligent techniques. The model proposed is based on a hybrid intelligent topology implemented with a combination of clustering techniques and intelligent regression methods (Artificial Neural Network and Support Vector Regression). The model includes its own energy demand information, occupancy rate, and temperature as inputs. The validation was done using real hotel data and compared with time-series models. Forecasts obtained were satisfactory, showing a promising potential for its use in energy management systems in hotel resorts.
Collapse
|
research-article |
6 |
32 |
9
|
Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN. An assembly model of rift valley Fever virus. Front Microbiol 2012; 3:254. [PMID: 22837754 PMCID: PMC3400131 DOI: 10.3389/fmicb.2012.00254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/29/2012] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals.
Collapse
|
Journal Article |
13 |
29 |
10
|
Nieß A, Löffler M, Simen JD, Takors R. Repetitive Short-Term Stimuli Imposed in Poor Mixing Zones Induce Long-Term Adaptation of E. coli Cultures in Large-Scale Bioreactors: Experimental Evidence and Mathematical Model. Front Microbiol 2017; 8:1195. [PMID: 28702020 PMCID: PMC5487534 DOI: 10.3389/fmicb.2017.01195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Rapidly changing concentrations of substrates frequently occur during large-scale microbial cultivations. These changing conditions, caused by large mixing times, result in a heterogeneous population distribution. Here, we present a powerful and efficient modeling approach to predict the influence of varying substrate levels on the transcriptional and translational response of the cell. This approach consists of two parts, a single-cell model to describe transcription and translation for an exemplary operon (trp operon) and a second part to characterize cell distribution during the experimental setup. Combination of both models enables prediction of transcriptional patterns for the whole population. In summary, the resulting model is not only able to anticipate the experimentally observed short-term and long-term transcriptional response, it further allows envision of altered protein levels. Our model shows that locally induced stress responses propagate throughout the bioreactor, resulting in temporal, and spatial population heterogeneity. Stress induced transcriptional response leads to a new population steady-state shortly after imposing fluctuating substrate conditions. In contrast, the protein levels take more than 10 h to achieve steady-state conditions.
Collapse
|
Journal Article |
8 |
22 |
11
|
Simutis R, Lübbert A. Hybrid Approach to State Estimation for Bioprocess Control. Bioengineering (Basel) 2017; 4:bioengineering4010021. [PMID: 28952500 PMCID: PMC5590450 DOI: 10.3390/bioengineering4010021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022] Open
Abstract
An improved state estimation technique for bioprocess control applications is proposed where a hybrid version of the Unscented Kalman Filter (UKF) is employed. The underlying dynamic system model is formulated as a conventional system of ordinary differential equations based on the mass balances of the state variables biomass, substrate, and product, while the observation model, describing the less established relationship between the state variables and the measurement quantities, is formulated in a data driven way. The latter is formulated by means of a support vector regression (SVR) model. The UKF is applied to a recombinant therapeutic protein production process using Escherichia coli bacteria. Additionally, the state vector was extended by the specific biomass growth rate µ in order to allow for the estimation of this key variable which is crucial for the implementation of innovative control algorithms in recombinant therapeutic protein production processes. The state estimates depict a sufficiently low noise level which goes perfectly with different advanced bioprocess control applications.
Collapse
|
Journal Article |
8 |
19 |
12
|
Vega-Ramon F, Zhu X, Savage TR, Petsagkourakis P, Jing K, Zhang D. Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty. Biotechnol Bioeng 2021; 118:4854-4866. [PMID: 34612511 DOI: 10.1002/bit.27950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
Astaxanthin is a high-value compound commercially synthesized through Xanthophyllomyces dendrorhous fermentation. Using mixed sugars decomposed from biowastes for yeast fermentation provides a promising option to improve process sustainability. However, little effort has been made to investigate the effects of multiple sugars on X. dendrorhous biomass growth and astaxanthin production. Furthermore, the construction of a high-fidelity model is challenging due to the system's variability, also known as batch-to-batch variation. Two innovations are proposed in this study to address these challenges. First, a kinetic model was developed to compare process kinetics between the single sugar (glucose) based and the mixed sugar (glucose and sucrose) based fermentation methods. Then, the kinetic model parameters were modeled themselves as Gaussian processes, a probabilistic machine learning technique, to improve the accuracy and robustness of model predictions. We conclude that although the presence of sucrose does not affect the biomass growth kinetics, it introduces a competitive inhibitory mechanism that enhances astaxanthin accumulation by inducing adverse environmental conditions such as osmotic gradients. Moreover, the hybrid model was able to greatly reduce model simulation error and was particularly robust to uncertainty propagation. This study suggests the advantage of mixed sugar-based fermentation and provides a novel approach for bioprocess dynamic modeling.
Collapse
|
|
4 |
14 |
13
|
Benchaib MA, Bouchnita A, Volpert V, Makhoute A. Mathematical Modeling Reveals That the Administration of EGF Can Promote the Elimination of Lymph Node Metastases by PD-1/PD-L1 Blockade. Front Bioeng Biotechnol 2019; 7:104. [PMID: 31157216 PMCID: PMC6528618 DOI: 10.3389/fbioe.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/24/2019] [Indexed: 01/29/2023] Open
Abstract
In the advanced stages of cancers like melanoma, some of the malignant cells leave the primary tumor and infiltrate the neighboring lymph nodes (LNs). The interaction between secondary cancer and the immune response in the lymph node represents a complex process that needs to be fully understood in order to develop more effective immunotherapeutic strategies. In this process, antigen-presenting cells (APCs) approach the tumor and initiate the adaptive immune response for the corresponding antigen. They stimulate the naive CD4+ and CD8+ T lymphocytes which subsequently generate a population of helper and effector cells. On one hand, immune cells can eliminate tumor cells using cell-cell contact and by secreting apoptosis inducing cytokines. They are also able to induce their dormancy. On the other hand, the tumor cells are able to escape the immune surveillance using their immunosuppressive abilities. To study the interplay between tumor progression and the immune response, we develop two new models describing the interaction between cancer and immune cells in the lymph node. The first model consists of partial differential equations (PDEs) describing the populations of the different types of cells. The second one is a hybrid discrete-continuous model integrating the mechanical and biochemical mechanisms that define the tumor-immune interplay in the lymph node. We use the continuous model to determine the conditions of the regimes of tumor-immune interaction in the lymph node. While we use the hybrid model to elucidate the mechanisms that contribute to the development of each regime at the cellular and tissue levels. We study the dynamics of tumor growth in the absence of immune cells. Then, we consider the immune response and we quantify the effects of immunosuppression and local EGF concentration on the fate of the tumor. Numerical simulations of the two models show the existence of three possible outcomes of the tumor-immune interactions in the lymph node that coincide with the main phases of the immunoediting process: tumor elimination, equilibrium, and tumor evasion. Both models predict that the administration of EGF can promote the elimination of the secondary tumor by PD-1/PD-L1 blockade.
Collapse
|
research-article |
6 |
13 |
14
|
Jain HV, Jackson TL. A hybrid model of the role of VEGF binding in endothelial cell migration and capillary formation. Front Oncol 2013; 3:102. [PMID: 23675570 PMCID: PMC3650479 DOI: 10.3389/fonc.2013.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/11/2013] [Indexed: 01/15/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is the most studied family of soluble, secreted mediators of endothelial cell migration, survival, and proliferation. VEGF exerts its function by binding to specific tyrosine kinase receptors on the cell surface and transducing the effect through downstream signaling. In order to study the influence of VEGF binding on endothelial cell motion, we develop a hybrid model of VEGF-induced angiogenesis, based on the theory of reinforced random walks. The model includes the chemotactic response of endothelial cells to angiogenic factors bound to cell-surface receptors, rather than approximating this as a function of extracellular chemical concentrations. This allows us to capture biologically observed phenomena such as activation and polarization of endothelial cells in response to VEGF gradients across their lengths, as opposed to extracellular gradients throughout the tissue. We also propose a novel and more biologically reasonable functional form for the chemotactic sensitivity of endothelial cells, which is also governed by activated cell-surface receptors. This model is able to predict the threshold level of VEGF required to activate a cell to move in a directed fashion as well as an optimal VEGF concentration for motion. Model validation is achieved by comparison of simulation results directly with experimental data.
Collapse
|
Journal Article |
12 |
12 |
15
|
Walsh I, Myint M, Nguyen-Khuong T, Ho YS, Ng SK, Lakshmanan M. Harnessing the potential of machine learning for advancing "Quality by Design" in biomanufacturing. MAbs 2022; 14:2013593. [PMID: 35000555 PMCID: PMC8744891 DOI: 10.1080/19420862.2021.2013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ensuring consistent high yields and product quality are key challenges in biomanufacturing. Even minor deviations in critical process parameters (CPPs) such as media and feed compositions can significantly affect product critical quality attributes (CQAs). To identify CPPs and their interdependencies with product yield and CQAs, design of experiments, and multivariate statistical approaches are typically used in industry. Although these models can predict the effect of CPPs on product yield, there is room to improve CQA prediction performance by capturing the complex relationships in high-dimensional data. In this regard, machine learning (ML) approaches offer immense potential in handling non-linear datasets and thus are able to identify new CPPs that could effectively predict the CQAs. ML techniques can also be synergized with mechanistic models as a ‘hybrid ML’ or ‘white box ML’ to identify how CPPs affect the product yield and quality mechanistically, thus enabling rational design and control of the bioprocess. In this review, we describe the role of statistical modeling in Quality by Design (QbD) for biomanufacturing, and provide a generic outline on how relevant ML can be used to meaningfully analyze bioprocessing datasets. We then offer our perspectives on how relevant use of ML can accelerate the implementation of systematic QbD within the biopharma 4.0 paradigm.
Collapse
|
|
3 |
11 |
16
|
Infectio: a Generic Framework for Computational Simulation of Virus Transmission between Cells. mSphere 2016; 1:mSphere00078-15. [PMID: 27303704 PMCID: PMC4863613 DOI: 10.1128/msphere.00078-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022] Open
Abstract
Infectio presents a generalized platform to analyze virus infection spread between cells. It allows the simulation of plaque phenotypes from image-based assays. Viral plaques are the result of virus spreading from primary infected cells to neighboring cells. This is a complex process and involves neighborhood effects at cell-cell contact sites or fluid dynamics in the extracellular medium. Infectio differentiates between two major modes of virus transmission between cells, allowing in silico testing of hypotheses about spreading mechanisms of any virus which can be grown in cell cultures, based on experimentally measured parameters, such as infection intensity or cell killing. The results of these tests can be compared with experimental data and allow interpretations with regard to biophysical mechanisms. Infectio also facilitates characterizations of the mode of action of therapeutic agents, such as oncolytic viruses or other infectious or cytotoxic agents. Viruses spread between cells, tissues, and organisms by cell-free and cell-cell mechanisms, depending on the cell type, the nature of the virus, or the phase of the infection cycle. The mode of viral transmission has a large impact on disease development, the outcome of antiviral therapies or the efficacy of gene therapy protocols. The transmission mode of viruses can be addressed in tissue culture systems using live-cell imaging. Yet even in relatively simple cell cultures, the mechanisms of viral transmission are difficult to distinguish. Here we present a cross-platform software framework called “Infectio,” which is capable of simulating transmission phenotypes in tissue culture of virtually any virus. Infectio can estimate interdependent biological parameters, for example for vaccinia virus infection, and differentiate between cell-cell and cell-free virus spreading. Infectio assists in elucidating virus transmission mechanisms, a feature useful for designing strategies of perturbing or enhancing viral transmission. The complexity of the Infectio software is low compared to that of other software commonly used to quantitate features of cell biological images, which yields stable and relatively error-free output from Infectio. The software is open source (GPLv3 license), and operates on the major platforms (Windows, Mac, and Linux). The complete source code can be downloaded from http://infectio.github.io/index.html. IMPORTANCE Infectio presents a generalized platform to analyze virus infection spread between cells. It allows the simulation of plaque phenotypes from image-based assays. Viral plaques are the result of virus spreading from primary infected cells to neighboring cells. This is a complex process and involves neighborhood effects at cell-cell contact sites or fluid dynamics in the extracellular medium. Infectio differentiates between two major modes of virus transmission between cells, allowing in silico testing of hypotheses about spreading mechanisms of any virus which can be grown in cell cultures, based on experimentally measured parameters, such as infection intensity or cell killing. The results of these tests can be compared with experimental data and allow interpretations with regard to biophysical mechanisms. Infectio also facilitates characterizations of the mode of action of therapeutic agents, such as oncolytic viruses or other infectious or cytotoxic agents.
Collapse
|
Journal Article |
9 |
8 |
17
|
Behaegel J, Comet JP, Bernot G, Cornillon E, Delaunay F. A hybrid model of cell cycle in mammals. J Bioinform Comput Biol 2015; 14:1640001. [PMID: 26708052 DOI: 10.1142/s0219720016400011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
6 |
18
|
Li Y, Cai R, Yan B, Zainal Abidin IM, Jing H, Wang Y. A Capsule-Type Electromagnetic Acoustic Transducer for Fast Screening of External Corrosion in Nonmagnetic Pipes. SENSORS 2018; 18:s18061733. [PMID: 29843390 PMCID: PMC6021855 DOI: 10.3390/s18061733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022]
Abstract
For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.
Collapse
|
|
7 |
6 |
19
|
Sun Y, Goll DS, Huang Y, Ciais P, Wang YP, Bastrikov V, Wang Y. Machine learning for accelerating process-based computation of land biogeochemical cycles. GLOBAL CHANGE BIOLOGY 2023; 29:3221-3234. [PMID: 36762511 DOI: 10.1111/gcb.16623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 05/03/2023]
Abstract
Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.
Collapse
|
|
2 |
5 |
20
|
Mowbray MR, Wu C, Rogers AW, Rio-Chanona EAD, Zhang D. A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification. Biotechnol Bioeng 2023; 120:154-168. [PMID: 36225098 PMCID: PMC10092184 DOI: 10.1002/bit.28262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/18/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
Constructing predictive models to simulate complex bioprocess dynamics, particularly time-varying (i.e., parameters varying over time) and history-dependent (i.e., current kinetics dependent on historical culture conditions) behavior, has been a longstanding research challenge. Current advances in hybrid modeling offer a solution to this by integrating kinetic models with data-driven techniques. This article proposes a novel two-step framework: first (i) speculate and combine several possible kinetic model structures sourced from process and phenomenological knowledge, then (ii) identify the most likely kinetic model structure and its parameter values using model-free Reinforcement Learning (RL). Specifically, Step 1 collates feasible history-dependent model structures, then Step 2 uses RL to simultaneously identify the correct model structure and the time-varying parameter trajectories. To demonstrate the performance of this framework, a range of in-silico case studies were carried out. The results show that the proposed framework can efficiently construct high-fidelity models to quantify both time-varying and history-dependent kinetic behaviors while minimizing the risks of over-parametrization and over-fitting. Finally, the primary advantages of the proposed framework and its limitation were thoroughly discussed in comparison to other existing hybrid modeling and model structure identification techniques, highlighting the potential of this framework for general bioprocess modeling.
Collapse
|
|
2 |
3 |
21
|
Kaliński KJ, Galewski MA, Mazur MR, Stawicka-Morawska N. An Experimentally Aided Operational Virtual Prototyping to Obtain the Best Spindle Speed during Face Milling of Large-Size Structures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6562. [PMID: 34772080 PMCID: PMC8585192 DOI: 10.3390/ma14216562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The paper presents an original method concerning the problem of vibration reduction in the general case while milling large-size and geometrically complex details with the use of an innovative approach to the selection of spindle speed. A computational model is obtained by applying the so-called operational approach to identify the parameters of the workpiece modal model. Thanks to the experimental modal analysis results, modal subsystem identification was performed and reliable process data for simulation studies were obtained. Next, simulations of the milling process, for successive values of the spindle speed, are repeated until the best vibration state of the workpiece is obtained. For this purpose, the root mean square values of the time plots of vibration displacements are examined. The effectiveness of the approach proposed for reducing vibrations in the process of face milling is verified on the basis of the results of appropriate experimental investigations. The economic profitability of the implementation of the operational technique in the production practice of enterprises dealing with mechanical processing is demonstrated as well.
Collapse
|
research-article |
4 |
2 |
22
|
Linka K, Cavinato C, Humphrey JD, Cyron CJ. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomater 2022; 147:63-72. [PMID: 35643194 DOI: 10.1016/j.actbio.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 01/15/2023]
Abstract
Microstructural features and mechanical properties are closely related in all soft biological tissues. Both yet exhibit considerable inter-individual differences and are affected by factors such as aging and disease and its progression. Histological analysis, modern in situ imaging, and biomechanical testing have deepened our understanding of these complex interrelations, yet two key questions remain: (1) Given the specific microstructure, can one predict the macroscopic mechanical properties without mechanical testing? (2) Can one quantify individual contributions of the different microstructural features to the macroscopic mechanical properties in an automated, systematic and largely unbiased way? Here we propose a bidirectional deep learning architecture to address these two questions. Our architecture uses data from standard histological analyses, two-photon microscopy and biaxial biomechanical testing. Its capabilities are demonstrated by predicting with high accuracy (R2=0.92) the evolving mechanical properties of the murine aorta during maturation and aging. Moreover, our architecture reveals that the extracellular matrix composition and organization are the most prominent factors governing the macroscopic mechanical properties of the tissues studied herein. STATEMENT OF SIGNIFICANCE: .
Collapse
|
|
3 |
2 |
23
|
Sheikh IA, Ahmad J, Magnin M, Roux O. Incorporating Time Delays in Process Hitting Framework for Dynamical Modeling of Large Biological Regulatory Networks. Front Physiol 2019; 10:90. [PMID: 30828302 PMCID: PMC6385622 DOI: 10.3389/fphys.2019.00090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
Modeling and simulation of molecular systems helps in understanding the behavioral mechanism of biological regulation. Time delays in production and degradation of expressions are important parameters in biological regulation. Constraints on time delays provide insight into the dynamical behavior of a Biological Regulatory Network (BRN). A recently introduced Process Hitting (PH) Framework has been found efficient in static analysis of large BRNs, however, it lacks the inference of time delays and thus determination of their constraints associated with the evolution of the expression levels of biological entities of BRN is not possible. In this paper we propose a Hybrid Process Hitting scheme for introducing time delays in Process Hitting Framework for dynamical modeling and analysis of Large Biological Regulatory Networks. It provides valuable insights into the time delays corresponding to the changes in the expression levels of biological entities thus possibly helping in identification of therapeutic targets. The proposed framework is applied to a well-known BRNs of Bacteriophage λ and ERBB Receptor-regulated G1/S transition involved in the breast cancer to demonstrate the viability of our approach. Using the proposed approach, we are able to perform goal-oriented reduction of the BRN and also determine the constraints on time delays characterizing the evolution (dynamics) of the reduced BRN.
Collapse
|
|
6 |
2 |
24
|
Sigg A, Klimacek M, Nidetzky B. Three-level hybrid modeling for systematic optimization of biocatalytic synthesis: α-glucosyl glycerol production by enzymatic trans-glycosylation from sucrose. Biotechnol Bioeng 2021; 118:4028-4040. [PMID: 34232503 PMCID: PMC8518044 DOI: 10.1002/bit.27878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/07/2022]
Abstract
Mechanism-based kinetic models are rigorous tools to analyze enzymatic reactions, but their extension to actual conditions of the biocatalytic synthesis can be difficult. Here, we demonstrate (mechanistic-empirical) hybrid modeling for systematic optimization of the sucrose phosphorylase-catalyzed glycosylation of glycerol from sucrose, to synthesize the cosmetic ingredient α-glucosyl glycerol (GG). The empirical model part was developed to capture nonspecific effects of high sucrose concentrations (up to 1.5 M) on microscopic steps of the enzymatic trans-glycosylation mechanism. Based on verified predictions of the enzyme performance under initial rate conditions (Level 1), the hybrid model was expanded by microscopic terms of the reverse reaction to account for the full-time course of GG synthesis (Level 2). Lastly (Level 3), the application of the hybrid model for comprehensive window-of-operation analysis and constrained optimization of the GG production (~250 g/L) was demonstrated. Using two candidate sucrose phosphorylases (from Leuconostoc mesenteroides and Bifidobacterium adolescentis), we reveal the hybrid model as a powerful tool of "process decision making" to guide rational selection of the best-suited enzyme catalyst. Our study exemplifies a closing of the gap between enzyme kinetic models considered for mechanistic research and applicable in technologically relevant reaction conditions; and it highlights the important benefit thus realizable for biocatalytic process development.
Collapse
|
Journal Article |
4 |
2 |
25
|
Debevec V, Stanić Ljubin T, Jeraj Ž, Rozman Peterka T, Bratuž B, Gašperlin D, Srčič S, Horvat M. Step-wise approach to developing a scale-independent design space for functional tablet coating process. Drug Dev Ind Pharm 2020; 46:566-575. [PMID: 32233693 DOI: 10.1080/03639045.2020.1742140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study is to present a practical example of a scale-independent design space development using a step-wise approach. A detailed description of the development process with a systematic outline of the main steps is provided. Design space is developed for film coating of tablets with moisture protective polyvinyl alcohol (PVA) based coating. The impact of scale-independent coating process parameters on the properties of film-coated tablets (FCT), i.e. water activity and film coating protection ability, and consequently on product long-term stability is explored. The main finding is that with model simplifications, a step-wise approach and rational development of scale-independent design space for the coating process, it is possible to efficiently predict, control, and optimize the long-term stability of a moisture sensitive product. However, the PVA moisture protective coating itself is recognized as having conflicting effects on product stability.
Collapse
|
Journal Article |
5 |
2 |