1
|
Su K, Tan L, Liu X, Cui Z, Zheng Y, Li B, Han Y, Li Z, Zhu S, Liang Y, Feng X, Wang X, Wu S. Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS NANO 2020; 14:2077-2089. [PMID: 31990179 DOI: 10.1021/acsnano.9b08686] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Periprosthetic infection is considered the main cause of implant failure, which is expected to be solved by fabricating an antibacterial coating on the surface of the implant. Nevertheless, systemic antibiotic treatment still represents the mainstream method for preventing infection, and few antibacterial coatings are applied clinically. This is because the externally introduced traditional antibacterial coatings suffer from the risk of invalidation and tissue toxicity induced by the consumption of antibacterial agents, degradation, and shedding. In this work, we proposed a rapid photo-sonotherapy by creating an oxygen deficiency on a titanium (Ti) implant through sulfur (S)-doping (Ti-S-TiO2-x), which endowed the implants with great sonodynamic and photothermal ability. Without introducing an external antibacterial coating, it reached a high antibacterial efficiency of 99.995% against Staphylococcus aureus under 15 min near-infrared light and ultrasound treatments. Furthermore, bone infection was successfully treated after combination treatments, and improved osseointegration was observed. Importantly, the S-doped Ti implant immersed in water for 6 months showed an unchanged structure and properties, suggesting that the Ti implant with intrinsic modification showed stable antibacterial performance under exogenous stimuli with a high antibacterial performance in vivo. This photo-sonotherapy based on sulfur doping is also promising for cancer therapy with biosafety.
Collapse
|
|
5 |
145 |
2
|
Yang M, Qiu S, Coy E, Li S, Załęski K, Zhang Y, Pan H, Wang G. NIR-Responsive TiO 2 Biometasurfaces: Toward In Situ Photodynamic Antibacterial Therapy for Biomedical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106314. [PMID: 34847272 DOI: 10.1002/adma.202106314] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Implant-related microbial infection is a challenging clinical problem, and its treatment requires efficient eradication of the biofilm from the implant surface. Near-infrared (NIR)-responsive strategies are proposed as an emerging efficient antibacterial therapy. However, the utilization of photosensitizers or photocatalytic/photothermal nanomaterials in the available approach likely induces high potential risks of interfacial deterioration and biosafety compromise. Herein, a TiO2 /TiO2- x metasurface with potent NIR-responsive antibacterial activity is produced on a Ti alloy implant by a newly invented topochemical conversion-based alkaline-acid bidirectional hydrothermal method (aaBH). Electromagnetic simulations prove that NIR absorption and near-field distribution of the metasurface can be tuned by the dimension and arrangement of the nanostructural unit. Promising antibacterial efficacy is proved by both in vitro and in vivo tests, with low-power NIR irradiation for 10 min. Besides, the designed nanostructure in the metasurface itself also shows excellence in enhancing the adhesion-related gene expression of human gingival fibroblasts that are exposed to 10 min of NIR irradiation, proving the potent nanostructure-induced biological effects. This work provides a biosafe and upscalable metasurfacing approach with extraordinary capacity of manipulating light adsorption, photocatalysis, and biological properties.
Collapse
|
|
3 |
60 |
3
|
Post V, Wahl P, Richards RG, Moriarty TF. Vancomycin displays time-dependent eradication of mature Staphylococcus aureus biofilms. J Orthop Res 2017; 35:381-388. [PMID: 27175462 DOI: 10.1002/jor.23291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/29/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED This study was carried out to determine the time and concentration profile required to achieve vancomycin-mediated eradication of Staphylococcus aureus biofilm. This information is critical for the identification of performance targets for local antibiotic delivery vehicles that target biofilm infections. S. aureus UAMS-1 biofilms were grown for 7 days on titanium-aluminium-niobium discs in Mueller Hinton broth. After 7 days, the discs were then incubated in Mueller Hinton broth containing vancomycin at concentrations of 100, 200, 500, 1,000, and 2,000 mg/L. Biofilm eradication was assessed under both static and shaking conditions. Samples were retrieved at regular intervals for up to 28 days for quantification of residual biofilm. One additional disc was processed per time point for scanning electron microscopy. Progressive and significant reduction of viable bacteria was observed over time at all concentrations compared to unexposed controls. After 28 days under static conditions, the S. aureus biofilm was completely eradicated at 200 mg/L vancomycin and higher concentrations, but not at 100 mg/L. In contrast, bacterial biofilm could not be eradicated under shaking conditions at any concentration. CLINICAL SIGNIFICANCE The present study shows that it is possible to eradicate mature S. aureus biofilm from metal implants by vancomycin alone although the time concentration profile required cannot be achieved by systemic administration or any of the local delivery vehicles currently available. Identifying targets for antibiotic delivery is the first step in developing fit for purpose local antibiotic delivery vehicles that will successfully and predictably treat established biofilm infection. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:381-388, 2017.
Collapse
|
|
8 |
49 |
4
|
Doll K, Fadeeva E, Schaeske J, Ehmke T, Winkel A, Heisterkamp A, Chichkov BN, Stiesch M, Stumpp NS. Development of Laser-Structured Liquid-Infused Titanium with Strong Biofilm-Repellent Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9359-9368. [PMID: 28229593 DOI: 10.1021/acsami.6b16159] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Medical implants are commonly used in modern medicine but still harbor the risk of microbial infections caused by bacterial biofilms. As their retrospective treatment is difficult, there is a need for biomedical materials that inhibit bacterial colonization from the start without using antibacterial agents, as these can promote resistance development. The promising concept of slippery liquid-infused porous surfaces (SLIPS) possesses enormous potential for this purpose. In the present study, this principle was applied to titanium, a common material in implantology, and its biofilm-repellent properties were demonstrated. To simplify prospective approval of the medical device and to avoid chemical contamination, surface structuring was performed by ultrashort pulsed laser ablation. Four different structures (hierarchical micro- and nanosized spikes, microsized grooves, nanosized ripples, and unstructured surfaces) and five infusing perfluoropolyethers of different viscosities were screened; the best results were obtained with the biomimetic, hierarchical spike structure combined with lubricants of medium viscosities (20-60 cSt at 37 °C, 143 AZ, and GPL 104). The surfaces exhibited extremely low contact angle hysteresis, as is typical for liquid-infused materials and a reliable 100-fold reduction of human oral pathogen Streptococcus oralis biofilms. This characteristic was maintained after exposure to shear forces and gravity. The titanium SLIPS also inhibited adherence of human fibroblasts and osteoblasts. Toxicity tests supported the explanation that solely the surface's repellent properties are responsible for the vigorous prevention of the adhesion of bacteria and cells. This use of physically structured and liquid-infused titanium to avoid bioadhesion should support the prevention of bacterial implant-associated infections without the use of antibacterial agents.
Collapse
|
|
8 |
46 |
5
|
Dworsky EEMD, Hegde VVH, Loftin AAHL, Richman SSR, Hu YYH, Lord EEL, Francis KPKPF, Miller LLSM, Wang JJCW, Scaduto AAS, Bernthal NMNMB. Novel in vivo mouse model of implant related spine infection. J Orthop Res 2017; 35:193-199. [PMID: 27116085 PMCID: PMC5268448 DOI: 10.1002/jor.23273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/25/2016] [Indexed: 02/04/2023]
Abstract
Post-operative spine infections are a challenge, as hardware must often be retained to prevent destabilization of the spine, and bacteria form biofilm on implants, rendering them inaccessible to antibiotic therapy, and immune cells. A model of posterior-approach spinal surgery was created in which a stainless steel k-wire was transfixed into the L4 spinous process of 12-week-old C57BL/six mice. Mice were then randomized to receive either one of three concentrations (1 × 102 , 1 × 103 , and 1 × 104 colony forming units (CFU)) of a bioluminescent strain of Staphylococcus aureus or normal saline at surgery. The mice were then longitudinally imaged for bacterial bioluminescence to quantify infection. The 1 × 102 CFU group had a decrease in signal down to control levels by POD 25, while the 1 × 103 and 1 × 104 CFU groups maintained a 10-fold higher signal through POD 35. Bacteria were then harvested from the pin and surrounding tissue for confirmatory CFU counts. All mice in the 1 × 104 CFU group experienced wound breakdown, while no mice in the other groups had this complication. Once an optimal bacterial concentration was determined, mice expressing enhanced green fluorescent protein in their myeloid cells (Lys-EGFP) were utilized to contemporaneously quantify bacterial burden, and immune response. Neutrophil fluorescence peaked for both groups on POD 3, and then declined. The infected group continued to have a response above the control group through POD 35. This study, establishes a noninvasive in vivo mouse model of spine implant infection that can quantify bacterial burden and host inflammation longitudinally in real time without requiring animal sacrifice. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:193-199, 2017.
Collapse
|
research-article |
8 |
31 |
6
|
Ooi AS, Song DH. Reducing infection risk in implant-based breast-reconstruction surgery: challenges and solutions. BREAST CANCER-TARGETS AND THERAPY 2016; 8:161-72. [PMID: 27621667 PMCID: PMC5012596 DOI: 10.2147/bctt.s97764] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Implant-based procedures are the most commonly performed method for postmastectomy breast reconstruction. While donor-site morbidity is low, these procedures are associated with a higher risk of reconstructive loss. Many of these are related to infection of the implant, which can lead to prolonged antibiotic treatment, undesired additional surgical procedures, and unsatisfactory results. This review combines a summary of the recent literature regarding implant-related breast-reconstruction infections and combines this with a practical approach to the patient and surgery aimed at reducing this risk. Prevention of infection begins with appropriate reconstructive choice based on an assessment and optimization of risk factors. These include patient and disease characteristics, such as smoking, obesity, large breast size, and immediate reconstructive procedures, as well as adjuvant therapy, such as radiotherapy and chemotherapy. For implant-based breast reconstruction, preoperative planning and organization is key to reducing infection. A logical and consistent intraoperative and postoperative surgical protocol, including appropriate antibiotic choice, mastectomy-pocket creation, implant handling, and considered acellular dermal matrix use contribute toward the reduction of breast-implant infections.
Collapse
|
Review |
9 |
30 |
7
|
Ferguson KB, Bharadwaj R, MacDonald A, Syme B, Bal AM. Pasteurella multocida infected total knee arthroplasty: a case report and review of the literature. Ann R Coll Surg Engl 2014; 96:e1-4. [PMID: 24780653 PMCID: PMC4474269 DOI: 10.1308/003588414x13814021676710] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2013] [Indexed: 11/22/2022] Open
Abstract
Pasteurella multocida is a rare cause of prosthetic joint infection. This infection generally follows significant animal contact, usually licks and scratches. We report a case of P multocida infection that was treated with linezolid with salvage of the implant. Linezolid is generally active against Gram-positive organisms only with the exception of Pasteurella, which is Gram-negative. We extensively review the previous reported cases of implant infection with P multocida.
Collapse
|
Case Reports |
11 |
17 |
8
|
Selan L, Papa R, Ermocida A, Cellini A, Ettorre E, Vrenna G, Campoccia D, Montanaro L, Arciola CR, Artini M. Serratiopeptidase reduces the invasion of osteoblasts by Staphylococcus aureus. Int J Immunopathol Pharmacol 2017; 30:423-428. [PMID: 29212390 PMCID: PMC5806802 DOI: 10.1177/0394632017745762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding new strategies to counteract periprosthetic infection and implant failure is a main target in orthopedics. Staphylococcus aureus, the leading etiologic agent of orthopedic implant infections, is able to enter and kill osteoblasts, to stimulate pro-inflammatory chemokine secretion, to recruit osteoclasts, and to cause inflammatory osteolysis. Moreover, by entering eukaryotic cells, staphylococci hide from the host immune defenses and shelter from the extracellular antibiotics. Thus, infection persists, inflammation thrives, and a highly destructive osteomyelitis occurs around the implant. The ability of serratiopeptidase (SPEP), a metalloprotease by Serratia marcescens, to control S. aureus invasion of osteoblastic MG-63 cells and pro-inflammatory chemokine MCP-1 secretion was evaluated. Human osteoblast cells were infected with staphylococcal strains in the presence and in the absence of SPEP. Cell proliferation and cell viability were also evaluated. The release of pro-inflammatory chemokine MCP-1 was evaluated after the exposure of the osteoblast cells to staphylococcal strains. The significance of the differences in the results of each test and the relative control values was determined with Student's t-test. SPEP impairs their invasiveness into osteoblasts, without affecting the viability and proliferation of bone cells, and tones down their production of MCP-1. We recognize SPEP as a potential tool against S. aureus bone infection and destruction.
Collapse
|
Journal Article |
8 |
15 |
9
|
Yang K, Dong H, Xiu W, Yuwen L, Mou Y, Yin Z, Liang B, Wang L. Self-Adaptive Antibiofilm Effect and Immune Regulation by Hollow Cu 2MoS 4 Nanospheres for Treatment of Implant Infections. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18720-18733. [PMID: 37018422 DOI: 10.1021/acsami.3c01928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Implant infections are difficult to cure by traditional antibiotic therapy due to bacterial biofilm-induced antibiotic tolerance and impaired immune responses. To efficiently treat implant infections, therapeutic agents need to kill bacteria and regulate the inflammatory response of immune cells during the biofilm elimination process. Herein, multifunctional smart hollow Cu2MoS4 nanospheres (H-CMS NSs) with pH-responsive enzyme-like activities were prepared for self-adaptively eliminating biofilms and regulating the inflammation of macrophages in implant infections. During biofilm infection, the tissue microenvironment around implants is acidic. H-CMS NSs with oxidase (OXD)/peroxidase (POD)-like activities can catalyze reactive oxidative species (ROS) generation for directly killing bacteria and polarizing macrophages to a proinflammatory phenotype. Moreover, the POD-like activity and antibacterial property of H-CMS NSs can be further enhanced under ultrasound (US) irradiation. After the elimination of biofilms, the tissue microenvironment around implants shifts from acidic to neutral. H-CMS NSs show catalase (CAT)-like activity and eliminate excessive ROS, which polarizes macrophages to anti-inflammatory phenotype and promotes healing of infected tissue. This work provides a smart nanozyme with self-adaptive regulation of the antibiofilm activity and immune response by regulating ROS generation/elimination according to the different pathological microenvironments in implant infections during the different therapeutic stages.
Collapse
|
|
2 |
14 |
10
|
Yang K, Liu D, Teng R, Li C, Fan Z, Du J. An Antibacterial Polypeptide Coating Prepared by In Situ Enzymatic Polymerization for Preventing Delayed Infection of Implants. ACS Biomater Sci Eng 2023; 9:1900-1908. [PMID: 36877006 DOI: 10.1021/acsbiomaterials.3c00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Delayed implant-associated infection is an important challenge, as the treatment involves a high risk of implant replacement. Mussel-inspired antimicrobial coatings can be applied to coat a variety of implants in a facile way, but the adhesive 3,4-dihydroxyphenylalanine (DOPA) group is prone to oxidation. Therefore, an antibacterial polypeptide copolymer poly(Phe7-stat-Lys10)-b-polyTyr3 was designed to prepare the implant coating upon tyrosinase-induced enzymatic polymerization for preventing implant-associated infections. Both poly(Phe7-stat-Lys10) and polyTyr3 blocks have specific functions: the former provides intrinsic antibacterial activity with a low risk to induce antimicrobial resistance, and the latter is attachable to the surface of implants to rapidly generate an antibacterial coating by in situ injection of polypeptide copolymer since tyrosine could be oxidized to DOPA under catalyzation of skin tyrosinase. This polypeptide coating with excellent antibacterial effect and desirable biofilm inhibition activity is promising for broad applications in a multitude of biomedical materials to combat delayed infections.
Collapse
|
|
2 |
10 |
11
|
Jeyanathan A, Ramalhete R, Blunn G, Gibbs H, Pumilia CA, Meckmongkol T, Lovejoy J, Coathup MJ. Lactobacillus cell-free supernatant as a novel bioagent and biosurfactant against Pseudomonas aeruginosa in the prevention and treatment of orthopedic implant infection. J Biomed Mater Res B Appl Biomater 2021; 109:1634-1643. [PMID: 33634961 DOI: 10.1002/jbm.b.34821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/13/2021] [Accepted: 02/14/2021] [Indexed: 01/09/2023]
Abstract
The hypothesis was that probiotic Lactobacillus species (spp.) or their cell-free supernatant (CFS) are effective in inhibiting (a) planktonic growth of Pseudomonas aeruginosa (PA), (b) its adhesion to a Ti6Al4V-alloy surface, and (c) in dispersing biofilm once formed. (a) A planktonic co-culture containing PA(104 colony-forming unit [CFU]/ml) was combined with either Lactobacillus acidophilus, Lactobacillus plantarum (LP), or Lactobacillus fermentum (LF) at a suspension of 104 (1:1) or 108 CFU/ml (1:2). Lactobacillus and PA CFUs were then quantified. (b) Ti-6Al-4V discs were inoculated with PA followed by supplementation with CFS and adherent PA quantified. (c) Biofilm covered discs were supplemented with Lactobacillus CFS and remaining PA activity quantified. Results showed that whole-cell cultures were ineffective in preventing PA growth; however, the addition of CFS resulted in a 99.99 ± 0.003% reduction in adherent PA in all Lactobacillus groups (p < .05 in all groups) with no viable PA growth measured in the LF and LP groups. Following PA biofilm formation, CFS resulted in a significant reduction in PA activity in all Lactobacillus groups (p ≤ .05 in all groups) with a 29.75 ± 15.98% increase measured in control samples. Supplementation with CFS demonstrated antiadhesive, antibiofilm, and toxic properties to PA.
Collapse
|
Journal Article |
4 |
10 |
12
|
Brooks BD, Sinclair KD, Davidoff SN, Lawson S, Williams AG, Coats B, Grainger DW, Brooks AE. Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics. J Biomed Mater Res B Appl Biomater 2013; 102:1074-83. [PMID: 24376164 DOI: 10.1002/jbm.b.33089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/02/2013] [Accepted: 11/16/2013] [Indexed: 12/24/2022]
Abstract
Infection remains a significant problem associated with biomedical implants and orthopedic surgeries, especially in revision total joint replacements. Recent advances in antibiotic-releasing bone void fillers (BVF) provide new opportunities to address these types of device-related orthopedic infections that often lead to substantial economic burdens and reduced quality of life. We report improvements made in fabrication and scalability of an antibiotic-releasing polycaprolactone-calcium carbonate/phosphate ceramic composite BVF using a new solvent-free, molten-cast fabrication process. This strategy provides the ability to tailor drug release kinetics from the BVF composite based on modifications of the inorganic substrate and/or the polymeric component, allowing extended tobramycin release at bactericidal concentrations. The mechanical properties of the new BVF composite are comparable to many reported BVFs and validate the relative homogeneity of fabrication. Most importantly, fabrication quality controls are correlated with favorable drug release kinetics, providing bactericidal activity to 10 weeks in vitro when the polycaprolactone component exceeds 98% w/w of the total polymer fraction. Furthermore, in a time kill study, tobramycin-releasing composite fragments inhibited S. aureus growth over 48 h at inoculums as high as 10(9) CFU/mL. This customizable antibiotic-releasing BVF polymer-inorganic biomaterial should provide osseointegrative and osteoconductive properties while contributing antimicrobial protection to orthopedic sites requiring the use of bone void fillers.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
10 |
13
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
|
Review |
3 |
10 |
14
|
Choe H, Tatro JM, Hausman BS, Hujer KM, Marshall SH, Akkus O, Rather PN, Lee Z, Bonomo RA, Greenfield EM. Staphylococcus aureus and Acinetobacter baumannii Inhibit Osseointegration of Orthopedic Implants. Infect Immun 2022; 90:e0066921. [PMID: 35099267 PMCID: PMC8929340 DOI: 10.1128/iai.00669-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacterial infections routinely cause inflammation and thereby impair osseointegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to those of Staphylococcus aureus in a murine implant infection model. Sterile implants and implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, levels of proinflammatory cytokines, and osseointegration were measured. All infections were localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2 increased the levels of proinflammatory cytokines and the chemokine CCL2 in the surrounding femurs, inhibited bone formation around the implant, and caused loss of the surrounding cortical bone, leading to decreases in both histomorphometric and biomechanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not alter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointegration of orthopedic implants in mice, and the murine model developed for this study will be useful for future efforts to clarify the mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
8 |
15
|
Eger M, Liron T, Hiram-Bab S, Awida Z, Giladi E, Dangoor D, Fridkin M, Kohavi D, Gozes I, Gabet Y. Therapeutic Potential of Vasoactive Intestinal Peptide and its Derivative Stearyl-Norleucine-VIP in Inflammation-Induced Osteolysis. Front Pharmacol 2021; 12:638128. [PMID: 34025407 PMCID: PMC8131842 DOI: 10.3389/fphar.2021.638128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
The common use of dental and orthopedic implants calls for special attention to the immune response leading to peri-prosthetic bone loss and implant failure. In addition to the well-established microbial etiology for oral implant failure, wear debris and in particular titanium (Ti) particles (TiP) in the implant vicinity are an important trigger of inflammation and activation of bone resorption around oral and orthopedic implants, presenting an unmet medical need. Here, we employed bacterial-derived lipopolysaccharides (LPS) to model infection and TiP to model aseptic inflammation and osteolysis. We assessed inflammation in vitro by measuring IL1β, IL6 and TNFα mRNA expression in primary macrophages, osteoclastogenesis in RANKL-induced bone marrow derived pre-osteoclasts and osteolysis in vivo in a mouse calvarial model. We also assessed the trans-epithelial penetrability and safety of the tested compound in rats. Our results show that a lipophilic super-active derivative of vasoactive intestinal peptide (VIP), namely stearyl-norleucine-VIP (SNV) presented superior anti-inflammatory and anti-osteoclastogenic effects compared to VIP in vitro. In the bacterial infection model (LPS), SNV significantly reduced IL1β expression, while VIP increased IL6 expression. In the aseptic models of osteolysis, SNV showed greater suppression of in vitro osteoclastogenesis than VIP, and significantly inhibited inflammation-induced osteolysis in vivo. We also observed that expression levels of the VIP receptor VPAC-2, but not that of VPAC-1, dramatically decreased during osteoclast differentiation. Importantly, SNV previously shown to have an increased stability compared to VIP, showed here significant trans-epithelial penetration and a clean toxicological profile, presenting a novel drug candidate that could be applied topically to counter both aseptic and infection-related bone destruction.
Collapse
|
Journal Article |
4 |
6 |
16
|
Detection of Clinical Cutibacterium acnes Isolates in Different Becton Dickinson Blood Culture Vials. J Clin Microbiol 2017; 56:JCM.01486-17. [PMID: 29093107 DOI: 10.1128/jcm.01486-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
Letter |
8 |
6 |
17
|
Moon PK, Qian ZJ, Ahmad IN, Stankovic KM, Chang KW, Cheng AG. Infectious Complications Following Cochlear Implant: Risk Factors, Natural History, and Management Patterns. Otolaryngol Head Neck Surg 2022; 167:745-752. [PMID: 35192408 DOI: 10.1177/01945998221082530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To describe the natural history, detail the treatment patterns, and identify the risk factors for cochlear implant (CI) infections in a large US cohort. STUDY DESIGN Retrospective study based on insurance claims. SETTING Optum Data Mart database: 6101 patients who received CIs from 2003 to 2019. METHODS Infections, treatments patterns, and timelines were described. A multivariable logistic regression model was used to assess the association between postoperative oral antibiotics and CI infection. RESULTS The cohort includes 4736 (77.6%) adults and 1365 (22.4%) children. Between adult and pediatric patients, rates of CI infection (5.1% vs 4.5%, P = .18) and explantation (1.2% vs 0.8%, P = .11) were not significantly different. Infections typically occurred within 5 months of surgery. Children were diagnosed with CI infection earlier than adults (median difference, -1.5 months; P = .001). Postoperative oral antibiotic supply was not associated with lower risk of CI infection in either children or adults. However, among adults, otitis media was associated with higher odds of CI infection (odds ratio, 1.41; P < .001), while higher income was associated with lower odds of CI infection (odds ratio, 0.71; P = .03). CONCLUSIONS Postoperative oral antibiotics were not associated with lower risk of infection or interventions. Otitis media episodes and lower income were associated with increased risk of infection among adults as well as intervention overall. Infection typically presented within the first 6 months after surgery, with children presenting earlier than adults. Overall, our findings serve as a resource for providers to consider in their care of patients with CIs.
Collapse
|
|
3 |
4 |
18
|
Bratschitsch G, Puchwein P, Zollner-Schwetz I, Sadoghi P, Radl R, Leithner A, Leitner L. Spinal Surgery Site Infection Leading to Implant Loosening Is Influenced by the Number of Prior Operations. Global Spine J 2022; 12:458-463. [PMID: 32954814 PMCID: PMC9121164 DOI: 10.1177/2192568220957268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Retrospective Cohort Study. OBJECTIVES Spinal surgery site infection and chronic implant infection are possible causes for ongoing pain, implant loosening, and failed back surgery syndrome. Evidence of chronic infection was found in 29.1% of revision cases but is also found in a considerable number of degenerative cases without prior surgery. Infection mechanisms and possible clinical correlations are unclear. METHODS Retrospective analysis of standardized surgery site screening (swab, tissue samples, implant sonication) in 181 cases without clinical evidence of preoperative surgery site infection. RESULTS Screening results of cases without prior spinal surgery (n = 49, 10.2% positive) were compared to cases with prior spine surgery without implant placement (e.g. micro discectomy) (n = 21, 23.8% positive), revision cases following singular spinal fusion (n = 73, 23.2% positive), and cases with multiple revisions (n = 38, 50.0% positive). Propionibacterium spp. detection rate increased to 80% in positive cases with multiple revisions. Implants in place during revision surgery had a significantly higher infection rate (32.4%) compared to no implant (14.2%, p = 0.007). Positive cases had a significantly higher pain level prior to surgery compared to negative cases (p = 0.019). Laboratory parameters had no predictive value. Logistic regression revealed that previous spinal surgeries (odds ratio [OR] 1.38 per operation, p < 0.001) and male sex (OR 1.15, p = 0.028) were independent predictive factors for infection. CONCLUSIONS Previous spinal surgery is a risk factor for chronic surgery site infection, leading to chronic pain, implant loosening, and revision. The presence of Propionibacterium spp. was correlated with chronic implant loosening and was more likely with cumulative surgeries.
Collapse
|
research-article |
3 |
3 |
19
|
Yao C, Zhu M, Han X, Xu Q, Dai M, Nie T, Liu X. A Bone-Targeting Enoxacin Delivery System to Eradicate Staphylococcus Aureus-Related Implantation Infections and Bone Loss. Front Bioeng Biotechnol 2021; 9:749910. [PMID: 34869262 PMCID: PMC8635194 DOI: 10.3389/fbioe.2021.749910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Post-operative infections in orthopaedic implants are severe complications that require urgent solutions. Although conventional antibiotics limit bacterial biofilm formation, they ignore the bone loss caused by osteoclast formation during post-operative orthopaedic implant-related infections. Fortunately, enoxacin exerts both antibacterial and osteoclast inhibitory effects, playing a role in limiting infection and preventing bone loss. However, enoxacin lacks specificity in bone tissue and low bioavailability-related adverse effects, which hinders translational practice. Here, we developed a nanosystem (Eno@MSN-D) based on enoxacin (Eno)-loaded mesoporous silica nanoparticles (MSN), decorated with the eight repeating sequences of aspartate (D-Asp8), and coated with polyethylene glycol The release results suggested that Eno@MSN-D exhibits a high sensitivity to acidic environment. Moreover, this Eno@MSN-D delivery nanosystem exhibited both antibacterial and anti-osteoclast properties in vitro. The cytotoxicity assay revealed no cytotoxicity at the low concentration (20 μg/ml) and Eno@MSN-D inhibited RANKL-induced osteoclast differentiation. Importantly, Eno@MSN-D allowed the targeted release of enoxacin in infected bone tissue. Bone morphometric analysis and histopathology assays demonstrated that Eno@MSN-D has antibacterial and antiosteoclastic effects in vivo, thereby preventing implant-related infections and bone loss. Overall, our study highlights the significance of novel biomaterials that offer new alternatives to treat and prevent orthopaedic Staphylococcus aureus-related implantation infections and bone loss.
Collapse
|
research-article |
4 |
3 |
20
|
Bara GA, Thissen J. Cervical epidural abscess due to implantation of a spinal cord stimulation lead. Clin Case Rep 2022; 10:e05931. [PMID: 35662778 PMCID: PMC9163478 DOI: 10.1002/ccr3.5931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/31/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Spinal cord stimulation (SCS) for intractable pain syndromes has become a pillar of modern pain management. Common complications include lead migration, implant infection, cerebral spinal fluid leak, and lead fracture. Spinal epidural abscess due to spinal cord stimulator implantation is a very rare occurrence with only two cases reported in the literature so far. We present an illustrative case and discuss the pathophysiology and best clinical management for this very rate entity.
Collapse
|
Case Reports |
3 |
3 |
21
|
Gui JL, Lin KY. The Evolution of Breast Implant Infections: Serratia marcescens Is an Emerging Pathogen in Implant-Based Breast Reconstruction. Plast Surg (Oakv) 2019; 27:182-188. [PMID: 31106178 PMCID: PMC6505359 DOI: 10.1177/2292550319826098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The flora of implant-based breast infections has changed over the last decade, including at our institution. A 10-year retrospective chart review was performed on 561 implant-based breast reconstructions in 378 patients performed by a single surgeon in an academic university hospital setting. Thirty-two breast infections requiring explantation of the implants occurred during those 10 years. During that time frame, a new pre- and peri-operative protocol was implemented in an effort to diminish infections. We believe that this protocol played a major role in the evolution of changing breast periprosthetic infection flora, from nearly one-third being gram-negative infections to 100% being gram-negative infections. Gram-negative antibiotic coverage should be considered in light of these evolving trends to prevent infections particularly with Serratia marcescens. This may be especially important in patients with BRCA1/2 or ATM mutations. Diabetic patients are more likely to develop Methicillin-resistant Staphylococcus aureus (MRSA) infections and preoperative MRSA decolonization is essential in these patients. Many patients have late-onset breast periprosthetic infection, the majority of which occurred after 30 days. Regular follow-up and patient education is important to provide timely treatment.
Collapse
|
research-article |
6 |
2 |
22
|
McKee K, Easton J, Mullis B, Hadad I. Chitosan Sponges Are Associated With Higher Rates of Wound Complications Compared to Calcium Sulfate Beads. Cureus 2023; 15:e38490. [PMID: 37273303 PMCID: PMC10237341 DOI: 10.7759/cureus.38490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 06/06/2023] Open
Abstract
Background In this study, we aimed to determine if there is a difference in the rates of wound dehiscence, delayed union, nonunion, and unanticipated surgery after the use of bioabsorbable local antibiotic-delivery systems (LADS), specifically comparing antibiotic-impregnated calcium sulfate pellets (Osteoset-T, Wright Medical Technology Inc., Arlington, TN, USA, hereafter referred to as beads) and chitosan sponge (Sentrex BioSponge, Bionova Medical, Germantown, TN, USA, hereafter referred to as sponges) in the management of acute and chronic extremity wounds. Methodology We conducted a retrospective comparative cohort study in the setting of a level 1 trauma center. All patients who received either beads or sponges as an adjunct to surgical debridement from January 2010 to December 2017 were included, and 136 patients met the inclusion criteria. The intervention studied was extremity wounds that were treated with bioabsorbable LADS, either beads or sponges. The main outcome measurement was wound dehiscence and the need for unanticipated surgery. Results Of the 136 patients in the study cohort, 78% (106/136) were treated with beads, and 22% (30/136) were treated with sponges. Of the 136 patients, 50 (37%) experienced wound dehiscence, and 49 patients required unanticipated surgery. Overall, 62% (31/50) of patients with wound dehiscence and 67.4% (33/49) of patients requiring unanticipated surgery were seen in the bead cohort (p = 0.0001 and 0.025, respectively). However, in multivariable analyses, we found that the odds of having wound dehiscence and undergoing unanticipated surgery were, respectively, 4.9 (p = 0.001) and 2.8 (p = 0.021) times more likely to occur in the sponge than in the bead group. Conclusions Sentrex sponges appear to be associated with higher rates of wound dehiscence and the need for unanticipated surgery compared to Osteoset beads.
Collapse
|
research-article |
2 |
1 |
23
|
Güzel Y, Elmadag M, Uzer G, Yıldız F, Bilsel K, Tuncay İ. Cytotoxicity of a new antimicrobial coating for surgical screws: an in vivo study. Singapore Med J 2016; 58:46-49. [PMID: 26805670 DOI: 10.11622/smedj.2016021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The risk of surgery-related infection is a persistent problem in orthopaedics and infections involving implants are particularly difficult to treat. This study explored the responses of bone and soft tissue to antimicrobial-coated screws. We investigated whether such screws, which have never been used to fix bony tissues, would result in a cytotoxic effect. We hypothesised that the coated screws would not be toxic to the bone and that the likelihood of infection would be reduced since bacteria are not able to grow on these screws. METHODS Titanium screws were inserted into the left supracondylar femoral regions of 16 rabbits. The screws were either uncoated (control group, n = 8) or coated with a polyvinylpyrrolidone-polyurethane interpolymer with tertiary amine functional groups (experimental group, n = 8). At Week 6, histological samples were obtained and examined. The presence of necrosis, fibrosis and inflammation in the bony tissue and the tissue surrounding the screws was recorded. RESULTS Live, cellular bone marrow was present in all the rabbits from the experimental group, but was replaced with connective tissue in four rabbits from the control group. Eight rabbits from the control group and two rabbits from the experimental group had necrosis in fatty bone marrow. Inflammation was observed in one rabbit from the experimental group and five rabbits from the control group. CONCLUSION Titanium surgical screws coated with polyvinylpyrrolidone-polyurethane interpolymer were associated with less necrosis than standard uncoated screws. The coated screws were also not associated with any cytotoxic side effect.
Collapse
|
|
9 |
1 |
24
|
Dai T, Ma C, Zhang F, Wang H, Ma Z, Wang H, Wen Y, Chen L. The Efficacy and Safety of an Intra-articular Dual-Acting Antibacterial Agent (TNP-2092) for Implant Infection-Associated Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2024; 229:1658-1668. [PMID: 38147364 DOI: 10.1093/infdis/jiad588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.
Collapse
|
|
1 |
|
25
|
Franchelli S, Rossin A, Pesce M, Marchese A, De Maria A. Environmental factors associated with etiology of microbiologically confirmed reconstructive breast implant infections: impact on clinical management and treatment. THE NEW MICROBIOLOGICA 2020; 43:78-81. [PMID: 32310300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Even if wide differences exist in the incidence of Gram-negative infections following breast cancer implant reconstructions (2-20%), its occurrence needs to be considered to optimize antibiotic therapy, which is usually directed towards Gram-positive cocci. There is a general notion on the possible source of Gram-negative microorganisms during outdoor activities. For this reason, we administered a specific questionnaire to infected patients to investigate this aspect. In 450 consecutive implant reconstructions between January 1, 2016 and March 31, 2018, 27 patients (6%) developed proven infection. For each patient, we collected age, tumor stage and recurrence, chemo/radiotherapy, infecting microorganism, fate of implant, type and duration of antibiotic treatment, and administered a questionnaire on exposure to contaminated environments. Twenty patients (74%) had Gram-positive and 7 (26%) had implants infected by Gram-negative agents. The two groups were homogeneous as regards age and no statistically significant difference was observed for other parameters. A significant difference was detected with regard to environmental risk factors in the Gram-negative group (p=0,049). Length of antibiotic therapy was longer in the Gram-negative patients (17.4 vs 11.05 days) and antibiotic treatment was ineffective in 43% of the Gram-negative group. Environmental factors may be an element to evaluate in order to improve patient management. Surveys on larger cohorts are warranted.
Collapse
|
|
5 |
|