Levi EE, Jeppesen E, Nejstgaard JC, Davidson TA. Chlorophyll-a determinations in mesocosms under varying nutrient and temperature treatments: in-situ fluorescence sensors versus in-vitro measurements.
OPEN RESEARCH EUROPE 2025;
4:69. [PMID:
38915372 PMCID:
PMC11195624 DOI:
10.12688/openreseurope.17146.1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 06/26/2024]
Abstract
Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent-Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching (i.e. light-induced decrease in fluorescence intensity). The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >10%. Another exception was the low Chla concentration tanks (r 2 < 0.5). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings. Nevertheless, corroborating these data with in-vitro Chla assessments would provide additional validation for the early warnings provided by sensor data.
Collapse