1
|
Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT, Dohrenwend P, Robbins G, Phillips R, Klenerman P, Walker BD. Analysis of successful immune responses in persons infected with hepatitis C virus. J Exp Med 2000; 191:1499-512. [PMID: 10790425 PMCID: PMC2213430 DOI: 10.1084/jem.191.9.1499] [Citation(s) in RCA: 998] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1999] [Accepted: 03/06/2000] [Indexed: 12/13/2022] Open
Abstract
Although hepatitis C virus (HCV) infection is very common, identification of patients during acute infection is rare. Consequently, little is known about the immune response during this critical stage of the disease. We analyzed the T lymphocyte response during and after acute resolving HCV infection in three persons, using interferon (IFN)-gamma enzyme-linked immunospot (ELISPOT) and human histocompatibility leukocyte antigen (HLA) peptide tetramer assays. Acute infection was associated with a broadly directed T helper and cytotoxic T lymphocyte (CTL) response, which persisted after resolution of clinical hepatitis and clearance of viremia. At the earliest time point studied, highly activated CTL populations were observed that temporarily failed to secrete IFN-gamma, a "stunned" phenotype, from which they recovered as viremia declined. In long-term HCV-seropositive persons, CTL responses were more common in persons who had cleared viremia compared with those with persistent viremia, although the frequencies of HCV-specific CTLs were lower than those found in persons during and after resolution of acute HCV infection. These studies demonstrate a strong and persistent CTL response in resolving acute HCV infection, and provide rationale to explore immune augmentation as a therapeutic intervention in chronic HCV infection.
Collapse
|
Comparative Study |
25 |
998 |
2
|
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94. [PMID: 23567086 DOI: 10.1016/j.jhep.2013.03.033] [Citation(s) in RCA: 726] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes.
Collapse
|
Review |
12 |
726 |
3
|
Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk HD, Meisel A. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 2003; 198:725-36. [PMID: 12939340 PMCID: PMC2194193 DOI: 10.1084/jem.20021098] [Citation(s) in RCA: 704] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infections are a leading cause of death in stroke patients. In a mouse model of focal cerebral ischemia, we tested the hypothesis that a stroke-induced immunodeficiency increases the susceptibility to bacterial infections. 3 d after ischemia, all animals developed spontaneous septicemia and pneumonia. Stroke induced an extensive apoptotic loss of lymphocytes and a shift from T helper cell (Th)1 to Th2 cytokine production. Adoptive transfer of T and natural killer cells from wild-type mice, but not from interferon (IFN)-gamma-deficient mice, or administration of IFN-gamma at day 1 after stroke greatly decreased the bacterial burden. Importantly, the defective IFN-gamma response and the occurrence of bacterial infections were prevented by blocking the sympathetic nervous system but not the hypothalamo-pituitary-adrenal axis. Furthermore, administration of the beta-adrenoreceptor blocker propranolol drastically reduced mortality after stroke. These data suggest that a catecholamine-mediated defect in early lymphocyte activation is the key factor in the impaired antibacterial immune response after stroke.
Collapse
|
research-article |
22 |
704 |
4
|
Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, Shalabi A, Shin T, Pardoll DM, Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001; 193:839-46. [PMID: 11283156 PMCID: PMC2193370 DOI: 10.1084/jem.193.7.839] [Citation(s) in RCA: 681] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs), unique antigen-presenting cells (APCs) with potent T cell stimulatory capacity, direct the activation and differentiation of T cells by providing costimulatory signals. As such, they are critical regulators of both natural and vaccine-induced immune responses. A new B7 family member, B7-DC, whose expression is highly restricted to DCs, was identified among a library of genes differentially expressed between DCs and activated macrophages. B7-DC fails to bind the B7.1/2 receptors CD28 and cytotoxic T lymphocyte-associated antigen (CTLA)-4, but does bind PD-1, a receptor for B7-H1/PD-L1. B7-DC costimulates T cell proliferation more efficiently than B7.1 and induces a distinct pattern of lymphokine secretion. In particular, B7-DC strongly costimulates interferon gamma but not interleukin (IL)-4 or IL-10 production from isolated naive T cells. These properties of B7-DC may account for some of the unique activity of DCs, such as their ability to initiate potent T helper cell type 1 responses.
Collapse
|
research-article |
24 |
681 |
5
|
Marrack P, Kappler J, Mitchell T. Type I interferons keep activated T cells alive. J Exp Med 1999; 189:521-30. [PMID: 9927514 PMCID: PMC2192920 DOI: 10.1084/jem.189.3.521] [Citation(s) in RCA: 593] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Revised: 10/14/1998] [Indexed: 01/04/2023] Open
Abstract
Antigen injection into animals causes antigen-specific T cells to become activated and, rapidly thereafter, die. This antigen-induced death is inhibited by inflammation. To find out how inflammation has this effect, various cytokines were tested for their ability to interfere with the rapid death of activated T cells. T cells were activated in vivo, isolated, and cultured with the test reagents. Two groups of cytokines were active, members of the interleukin 2 family and the interferons (IFNs) alpha and beta. This activity of IFN-alpha/beta has not been described previously. It was due to direct effects of the IFNs on the T cells and was not mediated by induction of a second cytokine such as interleukin 15. IFN-gamma did not slow the death of activated T cells, and therefore the activity of IFN-alpha/beta was not mediated only by activation of Stat 1, a protein that is affected by both classes of IFN. IFN-alpha/beta did not raise the levels of Bcl-2 or Bcl-XL in T cells. Therefore, their activity was distinct from that of members of the interleukin 2 family or CD28 engagement. Since IFN-alpha/beta are very efficiently generated in response to viral and bacterial infections, these molecules may be among the signals that the immune system uses to prevent activated T cell death during infections.
Collapse
|
research-article |
26 |
593 |
6
|
Munder M, Mallo M, Eichmann K, Modolell M. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation. J Exp Med 1998; 187:2103-8. [PMID: 9625771 PMCID: PMC2212367 DOI: 10.1084/jem.187.12.2103] [Citation(s) in RCA: 452] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interferon (IFN)-gamma, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow- derived macrophages (BMMPhi) secrete large amounts of IFN-gamma upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-gamma mRNA transcripts, the combined stimulation of BMMPhi with both cytokines leads to the efficient production of IFN-gamma protein. The macrophage-derived IFN-gamma is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-gamma but also a potent IFN-gamma-producing cell.
Collapse
|
research-article |
27 |
452 |
7
|
Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 2001; 193:271-80. [PMID: 11157048 PMCID: PMC2195922 DOI: 10.1084/jem.193.3.271] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 12/07/2000] [Indexed: 11/04/2022] Open
Abstract
Wild-type (WT) and targeted-mutant mice incapable of making alphabeta T cells, gammadelta T cells, class I major histocompatibility complex (MHC), class II MHC, interferon (IFN)-gamma, or inducible nitric oxide synthase (NOS2), were infected with Mycobacterium tuberculosis (Mtb) by aerosol, and monitored over time for their ability to (a) control infection, (b) develop histopathology at sites of infection, and (c) survive. WT mice acquired the ability to control and to hold infection at a stationary level from day 20 on. This was associated with the development of a macrophage-dominated alveolitis at sites of infection, with increased synthesis of IFN-gamma and NOS2 mRNA, and with an median survival time (MST) of 258.5 d. In the absence of alphabeta T cells, Mtb grew progressively and rapidly to induce a necrotic, neutrophil-dominated lung pathology that killed mice with an MST of 48 d. In the absence of CD4-mediated immunity (class II(-/-) mice), progressive bacterial growth continued in the lungs and in other organs beyond day 20, resulting in an MST of 77 d. By contrast, in the absence of CD8 T cell-mediated immunity, lung infection was controlled at a 1 log higher stationary level that induced a similar histopathologic response to that of WT mice, and resulted in an MST of 232 d.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lung/immunology
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/immunology
- Nitric Oxide Synthase Type II
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Tuberculosis/pathology
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
Collapse
|
research-article |
24 |
410 |
8
|
Abstract
Initially described as an interferon (IFN)γ‐inducing factor, interleukin (IL)‐18 is indeed involved in Th1 and NK cell activation, but also in Th2, IL‐17‐producing γδ T cells and macrophage activation. IL‐18, a member of the IL‐1 family, is similar to IL‐1β for being processed by caspase 1 to an 18 kDa‐biologically active mature form. IL‐18 binds to its specific receptor (IL‐18Rα, also known as IL‐1R7) forming a low affinity ligand chain. This is followed by recruitment of the IL‐18Rβ chain. IL‐18 then uses the same signaling pathway as IL‐1 to activate NF‐kB and induce inflammatory mediators such as adhesion molecules, chemokines and Fas ligand. IL‐18 also binds to the circulating high affinity IL‐18 binding protein (BP), such as only unbound free IL‐18 is active. IL‐18Rα may also bind IL‐37, another member of the IL‐1 family, but in association with the negative signaling chain termed IL‐1R8, which transduces an anti‐inflammatory signal. IL‐18BP also binds IL‐37 and this acts as a sink for the anti‐inflammatory properties of IL‐37. There is now ample evidence for a role of IL‐18 in various infectious, metabolic or inflammatory diseases such as influenza virus infection, atheroma, myocardial infarction, chronic obstructive pulmonary disease, or Crohn's disease. However, IL‐18 plays a very specific role in the pathogenesis of hemophagocytic syndromes (HS) also termed Macrophage Activation Syndrome. In children affected by NLRC4 gain‐of‐function mutations, IL‐18 circulates in the range of tens of nanograms/mL. HS is treated with the IL‐1 Receptor antagonist (anakinra) but also specifically with IL‐18BP. Systemic juvenile idiopathic arthritis or adult‐onset Still's disease are also characterized by high serum IL‐18 concentrations and are treated by IL‐18BP.
Collapse
|
Review |
7 |
401 |
9
|
Puren AJ, Fantuzzi G, Dinarello CA. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci U S A 1999; 96:2256-61. [PMID: 10051628 PMCID: PMC26770 DOI: 10.1073/pnas.96.5.2256] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-18, formerly called interferon gamma (IFN-gamma)-inducing factor, is biologically and structurally related to IL-1beta. A comparison of gene expression, synthesis, and processing of IL-18 with that of IL-1beta was made in human peripheral blood mononuclear cells (PBMCs) and in human whole blood. Similar to IL-1beta, the precursor for IL-18 requires processing by caspase 1. In PBMCs, mature but not precursor IL-18 induces IFN-gamma; in whole human blood stimulated with endotoxin, inhibition of caspase 1 reduces IFN-gamma production by an IL-1beta-independent mechanism. Unlike the precursor for IL-1beta, precursor for IL-18 was expressed constitutively in PBMCs and in fresh whole blood from healthy human donors. Western blotting of endotoxin-stimulated PBMCs revealed processed IL-1beta in the supernatants via an caspase 1-dependent pathway. However, in the same supernatants, only unprocessed precursor IL-18 was found. Unexpectedly, precursor IL-18 was found in freshly obtained PBMCs and constitutive IL-18 gene expression was present in whole blood of healthy donors, whereas constitutive IL-1beta gene expression is absent. Similar to human PBMCs, mouse spleen cells also constitutively contained the preformed precursor for IL-18 and expressed steady-state IL-18 mRNA, but there was no IL-1beta protein and no spontaneous gene expression for IL-1beta in these same preparations. We conclude that although IL-18 and IL-1beta are likely members of the same family, constitutive gene expression, synthesis, and processing are different for the two cytokines.
Collapse
|
research-article |
26 |
303 |
10
|
Hochrein H, O'Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, Shortman K. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 2000; 192:823-33. [PMID: 10993913 PMCID: PMC2193283 DOI: 10.1084/jem.192.6.823] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Interleukin (IL)-12 may be secreted as a bioactive T helper type 1 (Th1) cell-inducing heterodimer, as a monomer, or as an antagonistic homodimer. We analyzed the IL-12 produced by mouse splenic dendritic cells (DCs), human thymic DCs, and cultured human monocyte-derived DCs. IL-12 production required both a microbial or T cell-derived stimulus and an appropriate cytokine milieu. The different IL-12 forms were differentially regulated by the cytokines present rather than the stimulus used. IL-4 alone or together with granulocyte/macrophage colony-stimulating factor or interferon gamma effectively enhanced the production of the bioactive heterodimer and selectively reduced the antagonistic homodimer of IL-12. Therefore, IL-4, the major Th2-driving cytokine, provides a negative feedback causing DCs to produce the major Th1-inducing cytokine, bioactive IL-12.
Collapse
|
research-article |
25 |
281 |
11
|
Cousens LP, Peterson R, Hsu S, Dorner A, Altman JD, Ahmed R, Biron CA. Two roads diverged: interferon alpha/beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J Exp Med 1999; 189:1315-28. [PMID: 10209048 PMCID: PMC2193028 DOI: 10.1084/jem.189.8.1315] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1998] [Revised: 02/22/1999] [Indexed: 11/25/2022] Open
Abstract
Viral infections induce CD8 T cell expansion and interferon (IFN)-gamma production for defense, but the innate cytokines shaping these responses have not been identified. Although interleukin (IL)-12 has the potential to contribute, IL-12-dependent T cell IFN-gamma has not been detected during viral infections. Moreover, certain viruses fail to induce IL-12, and elicit high levels of IFN-alpha/beta to negatively regulate it. The endogenous factors promoting virus-induced T cell IFN-gamma production were defined in studies evaluating CD8 T cell responses during lymphocytic choriomeningitis virus infections of mice. Two divergent supporting pathways were characterized. Under normal conditions of infections, the CD8 T cell IFN-gamma response was dependent on endogenous IFN-alpha/beta effects, but was IL-12 independent. In contrast, in the absence of IFN-alpha/beta functions, an IL-12 response was revealed and substituted an alternative pathway to IFN-gamma. IFN-alpha/beta-mediated effects resulted in enhanced, but the alternative pathway also promoted, resistance to infection. These observations define uniquely important IFN-alpha/beta-controlled pathways shaping T cell responses during viral infections, and demonstrate plasticity of immune responses in accessing divergent innate mechanisms to achieve similar ultimate goals.
Collapse
|
research-article |
26 |
244 |
12
|
Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 1999; 189:103-10. [PMID: 9874567 PMCID: PMC1887692 DOI: 10.1084/jem.189.1.103] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although recent studies have indicated that the major histocompatibility complex-like, beta2-microglobulin-associated CD1 molecules might function to present a novel chemical class of antigens, lipids and glycolipids, to alpha/beta T cells, little is known about the T cell subsets that interact with CD1. A subset of CD1d-autoreactive, natural killer (NK)1.1 receptor-expressing alpha/beta T cells has recently been identified. These cells, which include both CD4(-)CD8(-) and CD4(+) T cells, preferentially use an invariant Valpha14-Jalpha281 T cell receptor (TCR) alpha chain paired with a Vbeta8 TCR beta chain in mice, or the homologous Valpha24-JalphaQ/Vbeta11 in humans. This cell subset can explosively release key cytokines such as interleukin (IL)-4 and interferon (IFN)-gamma upon TCR engagement and may regulate a variety of infectious and autoimmune conditions. Here, we report the existence of a second subset of CD1d-restricted CD4(+) T cells that do not express the NK1.1 receptor or the Valpha14 TCR. Like the Valpha14(+) NK1.1(+) T cells, these T cells exhibit a high frequency of autoreactivity to CD1d, use a restricted albeit distinct set of TCR gene families, and contribute to the early burst of IL-4 and IFN-gamma induced by intravenous injection of anti-CD3. However, the Valpha14(+) NK1.1(+) and Valpha14(-) NK1.1(-) T cells differ markedly in their requirements for self-antigen presentation. Antigen presentation to the Valpha14(+) NK1.1(+) cells requires endosomal targeting of CD1d through a tail-encoded tyrosine-based motif, whereas antigen presentation to the Valpha14(-) NK1.1(-) cells does not. These experiments suggest the existence of two phenotypically different subsets of CD1d-restricted T cells that survey self-antigens loaded in distinct cellular compartments.
Collapse
|
research-article |
26 |
232 |
13
|
Fieschi C, Dupuis S, Catherinot E, Feinberg J, Bustamante J, Breiman A, Altare F, Baretto R, Le Deist F, Kayal S, Koch H, Richter D, Brezina M, Aksu G, Wood P, Al-Jumaah S, Raspall M, Da Silva Duarte AJ, Tuerlinckx D, Virelizier JL, Fischer A, Enright A, Bernhöft J, Cleary AM, Vermylen C, Rodriguez-Gallego C, Davies G, Blütters-Sawatzki R, Siegrist CA, Ehlayel MS, Novelli V, Haas WH, Levy J, Freihorst J, Al-Hajjar S, Nadal D, De Moraes Vasconcelos D, Jeppsson O, Kutukculer N, Frecerova K, Caragol I, Lammas D, Kumararatne DS, Abel L, Casanova JL. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. J Exp Med 2003; 197:527-35. [PMID: 12591909 PMCID: PMC2193866 DOI: 10.1084/jem.20021769] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The clinical phenotype of interleukin 12 receptor beta1 chain (IL-12Rbeta1) deficiency and the function of human IL-12 in host defense remain largely unknown, due to the small number of patients reported. We now report 41 patients with complete IL-12Rbeta1 deficiency from 17 countries. The only opportunistic infections observed, in 34 patients, were of childhood onset and caused by weakly virulent Salmonella or Mycobacteria (Bacille Calmette-Guérin -BCG- and environmental Mycobacteria). Three patients had clinical tuberculosis, one of whom also had salmonellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and BCG disease were both effective against subsequent environmental mycobacteriosis, but not against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood, and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12Rbeta1 deficiency should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy siblings of probands and selected cases of tuberculosis should also be investigated. The overall prognosis is good due to broad resistance to infection and the low penetrance and favorable outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity against most microorganisms other than Mycobacteria and Salmonella. Moreover, IL-12 is redundant for primary immunity to Mycobacteria and Salmonella in many individuals and for secondary immunity to Mycobacteria but not to Salmonella in most.
Collapse
|
research-article |
22 |
220 |
14
|
Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJH, Schreiber S, Gregor M, Ludwiczek O, Rutgeerts P, Gasche C, Koningsberger JC, Abreu L, Kuhn I, Cohard M, LeBeaut A, Grint P, Weiss G. Treatment of Crohn's disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 2002; 50:191-5. [PMID: 11788558 PMCID: PMC1773093 DOI: 10.1136/gut.50.2.191] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interleukin 10 (IL-10) exerts anti-inflammatory actions by counteracting many biological effects of interferon gamma (IFN-gamma). AIMS To investigate this in humans, we studied the effects of human recombinant IL-10 administration on IFN-gamma production by patient leucocytes. Furthermore, we assessed the IFN-gamma inducible molecule neopterin and nitrite/nitrate serum levels, which are indicative of endogenous nitric oxide formation. METHODS As part of two placebo controlled double blind studies, we analysed patients with chronic active Crohn's disease (CACD) who received either subcutaneous recombinant human IL-10 (n=44) or placebo (n=10) daily for 28 days, and patients with mild to moderate Crohn's disease (MCD) treated with either subcutaneous IL-10 (n=52) or placebo (n=16) daily for 28 days. Neopterin and nitrite/nitrate concentrations were measured in serum, and ex vivo IFN-gamma formation by lipopolysaccharide or phytohaemagglutinin (PHA) stimulated whole blood cells were investigated before, during, and after IL-10 therapy. RESULTS In patients with CACD, the highest dose of 20 microg/kg IL-10 caused a significant increase in serum neopterin on days +15 and +29 of therapy compared with pretreatment levels. No changes were observed for nitrite/nitrate levels under either condition. In MCD, treatment with 20 microg/kg IL-10 resulted in a significant increase in PHA induced IFN-gamma production. CONCLUSIONS High doses of IL-10 upregulate the production of IFN-gamma and neopterin. This phenomenon may be responsible for the lack of efficacy of high doses of IL-10 in the treatment of CACD and MCD.
Collapse
|
research-article |
23 |
188 |
15
|
Yap GS, Sher A. Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-gamma- and tumor necrosis factor (TNF)-alpha-dependent host resistance to the intracellular pathogen, Toxoplasma gondii. J Exp Med 1999; 189:1083-92. [PMID: 10190899 PMCID: PMC2192999 DOI: 10.1084/jem.189.7.1083] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Revised: 12/29/1998] [Indexed: 01/12/2023] Open
Abstract
Although interferon (IFN)-gamma-activated, mononuclear phagocytes are considered to be the major effectors of resistance to intracellular pathogens, it is unclear how they control the growth of microorganisms that reside in nonhemopoietic cells. Pathogens within such cells may be killed by metabolites secreted by activated macrophages or, alternatively, directly controlled by cytokine-induced microbicidal mechanisms triggered within infected nonphagocytic cells. To distinguish between these two basic mechanisms of cell-mediated immunity, reciprocal bone marrow chimeras were constructed between wild-type and IFN-gamma receptor-deficient mice and their survival assessed following infection with Toxoplasma gondii, a protozoan parasite that invades both hemopoietic and nonhemopoietic cell lineages. Resistance to acute and persistent infection was displayed only by animals in which IFN-gamma receptors were expressed in both cellular compartments. Parallel chimera experiments performed with tumor necrosis factor (TNF) receptor-deficient mice also indicated a codependence on hemopoietic and nonhemopoietic lineages for optimal control of the parasite. In contrast, in mice chimeric for inducible nitric oxide synthase (iNOS), an enzyme associated with IFN-gamma-induced macrophage microbicidal activity, expression by cells of hemopoietic origin was sufficient for host resistance. Together, these findings suggest that, in concert with bone marrow-derived effectors, nonhemopoietic cells can directly mediate, in the absence of endogenous iNOS, IFN-gamma- and TNF-alpha-dependent host resistance to intracellular infection.
Collapse
MESH Headings
- Acute Disease
- Animals
- Astrocytes/parasitology
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Lineage
- Cells/parasitology
- Chronic Disease
- Epithelial Cells/parasitology
- Female
- Immunity, Cellular
- Immunity, Innate
- Interferon-gamma/physiology
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Listeriosis/pathology
- Macrophages/parasitology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/parasitology
- Male
- Mice
- Mice, Knockout
- Models, Immunological
- Neurons/parasitology
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Radiation Chimera
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/pathology
- Tumor Necrosis Factor-alpha/physiology
- Interferon gamma Receptor
Collapse
|
research-article |
26 |
184 |
16
|
Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, Kindler V, Tschopp J, Ricciardi-Castagnoli P. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 2000; 192:1661-8. [PMID: 11104808 PMCID: PMC2193091 DOI: 10.1084/jem.192.11.1661] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ligation of the Fas (CD95) receptor leads to an apoptotic death signal in T cells, B cells, and macrophages. However, human CD34(+)-derived dendritic cells (DCs) and mouse DCs, regardless of their maturation state, are not susceptible to Fas-induced cell death. This resistance correlates with the constitutive expression of the Fas-associated death domain-like IL-1beta-converting enzyme (FLICE)-inhibitory protein (FLIP) ligand. We demonstrate a new role of Fas in DC physiology. Engagement of Fas on immature DCs by Fas ligand (FasL) or by anti-Fas antibodies induces the phenotypical and functional maturation of primary DCs. Fas-activated DCs upregulate the expression of the major histocompatibility complex class II, B7, and DC-lysosome-associated membrane protein (DC-LAMP) molecules and secrete proinflammatory cytokines, in particular interleukin (IL)-1beta and tumor necrosis factor alpha. Mature DCs, if exposed to FasL, produce even higher amounts of IL-1beta. Importantly, it is possible to reduce the production of IL-1beta and interferon (IFN)-gamma during DC-T cell interaction by blocking the coupling of Fas-FasL with a Fas competitor. Finally, during cognate DC-T cell recognition, IL-12 (p70) could not be detected at early or late time points, indicating that Fas-induced, IFN-gamma secretion is independent of IL-12.
Collapse
|
research-article |
25 |
176 |
17
|
Villoslada P, Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 2000; 191:1799-806. [PMID: 10811872 PMCID: PMC2193155 DOI: 10.1084/jem.191.10.1799] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Accepted: 02/23/2000] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis is a demyelinating disorder of the central nervous system (CNS), in which an immune attack directed against myelin constituents causes myelin destruction and death of oligodendrocytes, the myelin-producing cells. Here, the efficacy of nerve growth factor (NGF), a growth factor for neurons and oligodendrocytes, in promoting myelin repair was evaluated using the demyelinating model of experimental allergic encephalomyelitis (EAE) in the common marmoset. Surprisingly, we found that NGF delayed the onset of clinical EAE and, pathologically, prevented the full development of EAE lesions. We demonstrate by immunocytochemistry that NGF exerts its antiinflammatory effect by downregulating the production of interferon gamma by T cells infiltrating the CNS, and upregulating the production of interleukin 10 by glial cells in both inflammatory lesions of EAE and normal-appearing CNS white matter. Thus, NGF, currently under investigation in human clinical trials as a neuronal trophic factor, may be an attractive candidate for therapy of autoimmune demyelinating disorders.
Collapse
|
research-article |
25 |
174 |
18
|
Presti RM, Pollock JL, Dal Canto AJ, O'Guin AK, Virgin HW. Interferon gamma regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J Exp Med 1998; 188:577-88. [PMID: 9687534 PMCID: PMC2212470 DOI: 10.1084/jem.188.3.577] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Revised: 06/01/1998] [Indexed: 11/04/2022] Open
Abstract
To define immune mechanisms that regulate chronic and latent herpesvirus infection, we analyzed the role of interferon gamma (IFN-gamma) during murine cytomegalovirus (MCMV) infection. Lethality studies demonstrated a net protective role for IFN-gamma, independent of IFN-alpha/beta, during acute MCMV infection. Mice lacking the IFN-gamma receptor (IFN-gammaR-/-) developed and maintained striking chronic aortic inflammation. Arteritis was associated with inclusion bodies and MCMV antigen in the aortic media. To understand how lack of IFN-gamma responses could lead to chronic vascular disease, we evaluated the role of IFN-gamma in MCMV latency. MCMV-infected IFN-gammaR-/- mice shed preformed infectious MCMV in spleen, peritoneal exudate cells, and salivary gland for up to 6 mo after infection, whereas the majority of congenic control animals cleared chronic productive infection. However, the IFN-gammaR was not required for establishment of latency. Using an in vitro explant reactivation model, we showed that IFN-gamma reversibly inhibited MCMV reactivation from latency. This was at least partly explained by IFN-gamma- mediated blockade of growth of low levels of MCMV in tissue explants. These in vivo and in vitro data suggest that IFN-gamma regulation of reactivation from latency contributes to control of chronic vascular disease caused by MCMV. These studies are the first to demonstrate that a component of the immune system (IFN-gamma) is necessary to regulate MCMV-associated elastic arteritis and latency in vivo and reactivation of a herpesvirus from latency in vitro. This provides a new model for analysis of the interrelationships among herpesvirus latency, the immune system, and chronic disease of the great vessels.
Collapse
|
research-article |
27 |
172 |
19
|
Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994. [PMID: 25941578 DOI: 10.4161/21624011.2014.957994] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Indoleamine 2,3-dioxigenase 1 (IDO1) is the main enzyme that catalyzes the first, rate-limiting step of the so-called "kynurenine pathway", i.e., the metabolic cascade that converts the essential amino acid L-tryptophan (Trp) into L-kynurenine (Kyn). IDO1, which is expressed constitutively by some tissues and in an inducible manner by specific subsets of antigen-presenting cells, has been shown to play a role in the establishment and maintenance of peripheral tolerance. At least in part, this reflects the capacity of IDO1 to restrict the microenvironmental availability of Trp and to favor the accumulation of Kyn and some of its derivatives. Also, several neoplastic lesions express IDO1, providing them with a means to evade anticancer immunosurveillance. This consideration has driven the development of several IDO1 inhibitors, some of which (including 1-methyltryptophan) have nowadays entered clinical evaluation. In animal tumor models, the inhibition of IDO1 by chemical or genetic interventions is indeed associated with the (re)activation of therapeutically relevant anticancer immune responses. This said, several immunotherapeutic regimens exert robust clinical activity in spite of their ability to promote the expression of IDO1. Moreover, 1-methyltryptophan has recently been shown to exert IDO1-independent immunostimulatory effects. Here, we summarize the preclinical and clinical studies testing the antineoplastic activity of IDO1-targeting interventions.
Collapse
Key Words
- 1-methyl-D-tryptophan
- AHR, aryl hydrocarbon receptor
- BIN1, bridging integrator 1
- CTLA4, cytotoxic T lymphocyte associated protein 4
- DC, dendritic cell
- FDA, Food and Drug Administration
- GCN2, general control non-derepressible 2
- HCC, hepatocellular carcinoma
- IDO, indoleamine 2,3-dioxigenase
- IFNγ, interferon γ
- INCB024360
- Kyn, L-kynurenine
- NK, natural killer
- NLG919
- ODN, oligodeoxynucleotide
- TDO2, tryptophan 2,3-dioxigenase
- TLR, Toll-like receptor
- Treg, regulatory T cell
- Trp, L-tryptophan
- indoximod
- interferon γ
- peptide-based anticancer vaccines
Collapse
|
Review |
11 |
171 |
20
|
Hommes DW, Mikhajlova TL, Stoinov S, Stimac D, Vucelic B, Lonovics J, Zákuciová M, D'Haens G, Van Assche G, Ba S, Lee S, Pearce T. Fontolizumab, a humanised anti-interferon gamma antibody, demonstrates safety and clinical activity in patients with moderate to severe Crohn's disease. Gut 2006; 55:1131-7. [PMID: 16507585 PMCID: PMC1856291 DOI: 10.1136/gut.2005.079392] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interferon gamma is a potent proinflammatory cytokine implicated in the inflammation of Crohn's disease (CD). We evaluated the safety and efficacy of fontolizumab, a humanised anti-interferon gamma antibody, in patients with moderate to severe CD. METHODS A total of 133 patients with Crohn's disease activity index (CDAI) scores between 250 and 450, inclusive, were randomised to receive placebo or fontolizumab 4 or 10 mg/kg. Forty two patients received one dose and 91 patients received two doses on days 0 and 28. Investigators and patients were unaware of assignment. Study end points were safety, clinical response (decrease in CDAI of 100 points or more), and remission (CDAI < or =150). RESULTS There was no statistically significant difference in the primary end point of the study (clinical response) between the fontolizumab and placebo groups after a single dose at day 28. However, patients receiving two doses of fontolizumab demonstrated doubling in response rate at day 56 compared with placebo: 32% (9/28) versus 69% (22/32, p = 0.02) and 67% (21/31, p = 0.03) for the placebo, and 4 and 10 mg/kg fontolizumab groups, respectively. Stratification according to elevated baseline C reactive protein levels resulted in a decreased placebo response and pronounced differences in clinical benefit. Two grade 3 adverse events were reported and were considered to be related to CD. One death (during sleep) and one serious adverse event (an elective hospitalisation) occurred, both considered unrelated. CONCLUSION Treating active CD with fontolizumab was well tolerated and resulted in increased rates of clinical response and remission compared with placebo.
Collapse
|
research-article |
19 |
156 |
21
|
Moskophidis D, Kioussis D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J Exp Med 1998; 188:223-32. [PMID: 9670035 PMCID: PMC2212460 DOI: 10.1084/jem.188.2.223] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of influenza virus to evade immune surveillance by neutralizing antibodies (Abs) directed against its variable surface antigens provides a challenge to the development of effective vaccines. CD8+ cytotoxic T lymphocytes (CTLs) restricted by class I major histocompatibility complex molecules are important in establishing immunity to influenza virus because they recognize internal viral proteins which are conserved between multiple viral strains. In contrast, protective Abs are strain-specific. However, the precise role of effector CD8+ CTLs in protection from influenza virus infection, critical for understanding disease pathogenesis, has not been well defined. In transgenic mice with a very high frequency of antiinfluenza CTL precursors, but without protective Abs, CD8+ CTLs conferred protection against low dose viral challenge, but exacerbated viral pathology and caused mortality at high viral dose. The data suggest a dual role for CD8+ CTLs against influenza, which may present a challenge to the development of effective CTL vaccines. Effector mechanisms used by CD8+ CTLs in orchestrating clearance of virus and recovery from experimental influenza infection, or potentiation of lethal pathology, are discussed.
Collapse
|
research-article |
27 |
155 |
22
|
Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD. Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 1998; 188:1541-6. [PMID: 9782132 PMCID: PMC2213404 DOI: 10.1084/jem.188.8.1541] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viral infection often activates the interferon (IFN)-gamma-inducible gene, nitric oxide synthase 2 (NOS2). Expression of NOS2 can limit viral growth but may also suppress the immune system and damage tissue. This study assessed each of these effects in genetically deficient NOS2(-/-) mice after infection with influenza A, a virus against which IFN-gamma has no known activity. At inocula sufficient to cause consolidating pneumonitis and death in wild-type control mice, NOS2(-/-) hosts survived with little histopathologic evidence of pneumonitis. Moreover, they cleared influenza A virus from their lungs by an IFN-gamma-dependent mechanism that was not evident in wild-type mice. Even when the IFN-gamma-mediated antiviral activity was blocked in NOS2(-/-) mice with anti-IFN-gamma mAb, such mice failed to succumb to disease. Further evidence that this protection was independent of viral load was provided by treating NOS2(+/+) mice with the NOS inhibitor, Nomega-methyl-L-arginine (L-NMA). L-NMA prevented mortality without affecting viral growth. Thus, host NOS2 seems to contribute more significantly to the development of influenza pneumonitis in mice than the cytopathic effects of viral replication. Although NOS2 mediates some antiviral effects of IFN-gamma, during influenza infection it can suppress another IFN-gamma-dependent antiviral mechanism. This mechanism was observed only in the complete absence of NOS2 activity and appeared sufficient to control influenza A virus growth in the absence of changes in cytotoxic T lymphocyte activity.
Collapse
|
research-article |
27 |
150 |
23
|
Lewinsohn DM, Alderson MR, Briden AL, Riddell SR, Reed SG, Grabstein KH. Characterization of human CD8+ T cells reactive with Mycobacterium tuberculosis-infected antigen-presenting cells. J Exp Med 1998; 187:1633-40. [PMID: 9584141 PMCID: PMC2212289 DOI: 10.1084/jem.187.10.1633] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1997] [Revised: 03/19/1998] [Indexed: 11/04/2022] Open
Abstract
Previous studies in murine models, including those using the beta2 microglobulin knockout mouse, have suggested an important role for CD8+ T cells in host defense to Mycobacterium tuberculosis (Mtb). At present, little is understood about these cells in the human immune response to tuberculosis. This report demonstrates the existence of human Mtb-reactive CD8+ T cells. These cells are present preferentially in persons infected with Mtb and produce interferon gamma in response to stimulation with Mtb-infected target cells. Recognition of Mtb-infected cells by these CD8+ T cells is restricted neither by the major histocompatibility complex (MHC) class I A, B, or C alleles nor by CD1, although it is inhibited by anti-MHC class I antibody. The Mtb-specific CD8+ T cells recognize an antigen which is generated in the proteasome, but which does not require transport through the Golgi-ER. The data suggest the possible use of nonpolymorphic MHC class Ib antigen presenting structures other than CD1.
Collapse
|
research-article |
27 |
143 |
24
|
Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-beta1 plasmid: TGF-beta1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor beta2 chain downregulation. J Exp Med 2000; 192:41-52. [PMID: 10880525 PMCID: PMC1887715 DOI: 10.1084/jem.192.1.41] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we show that a single intranasal dose of a plasmid encoding active transforming growth factor beta1 (pCMV-TGF-beta1) prevents the development of T helper cell type 1 (Th1)-mediated experimental colitis induced by the haptenating reagent, 2,4, 6-trinitrobenzene sulfonic acid (TNBS). In addition, such plasmid administration abrogates TNBS colitis after it has been established, whereas, in contrast, intraperitoneal administration of rTGF-beta1 protein does not have this effect. Intranasal pCMV-TGF-beta1 administration leads to the expression of TGF-beta1 mRNA in the intestinal lamina propria and spleen for 2 wk, as well as the appearance of TGF-beta1-producing T cells and macrophages in these tissues, and is not associated with the appearances of fibrosis. These cells cause marked suppression of interleukin (IL)-12 and interferon (IFN)-gamma production and enhancement of IL-10 production; in addition, they inhibit IL-12 receptor beta2 (IL-12Rbeta2) chain expression. Coadministration of anti-IL-10 at the time of pCMV-TGF-beta1 administration prevents the enhancement of IL-10 production and reverses the suppression of IL-12 but not IFN-gamma secretion. However, anti-IL-10 leads to increased tumor necrosis factor alpha production, especially in established colitis. Taken together, these studies show that TGF-beta1 inhibition of a Th1-mediated colitis is due to: (a) suppression of IL-12 secretion by IL-10 induction and (b) inhibition of IL-12 signaling via downregulation of IL-12Rbeta2 chain expression. In addition, TGF-beta1 may also have an inhibitory effect on IFN-gamma transcription.
Collapse
|
research-article |
25 |
141 |
25
|
Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H. NAD + Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab 2021; 33:110-127.e5. [PMID: 33171124 DOI: 10.1016/j.cmet.2020.10.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
NAD+ metabolism is implicated in aging and cancer. However, its role in immune checkpoint regulation and immune evasion remains unclear. Here, we find nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ biogenesis, drives interferon γ (IFNγ)-induced PD-L1 expression in multiple types of tumors and governs tumor immune evasion in a CD8+ T cell-dependent manner. Mechanistically, NAD+ metabolism maintains activity and expression of methylcytosine dioxygenase Tet1 via α-ketoglutarate (α-KG). IFNγ-activated Stat1 facilitates Tet1 binding to Irf1 to regulate Irf1 demethylation, leading to downstream PD-L1 expression on tumors. Importantly, high NAMPT-expressing tumors are more sensitive to anti-PD-L1 treatment and NAD+ augmentation enhances the efficacy of anti-PD-L1 antibody in immunotherapy-resistant tumors. Collectively, these data delineate an NAD+ metabolism-dependent epigenetic mechanism contributing to tumor immune evasion, and NAD+ replenishment combined with PD-(L)1 antibody provides a promising therapeutic strategy for immunotherapy-resistant tumors.
Collapse
|
|
4 |
140 |