1
|
Sun T, Zhang W, Shi M, Li D, Sun Q, Cheng M, Tao Z. Intramolecular Hydrogen Bonds Weaken Interaction Between Solvents and Small Organic Molecules Towards Superior Lithium-Organic Batteries. Angew Chem Int Ed Engl 2024:e202416845. [PMID: 39655378 DOI: 10.1002/anie.202416845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
The strong interaction between organic electrode materials (OEMs) and electrolyte components induces a high solubility tendency of OEMs, thus hindering the practical application of lithium-organic batteries. Herein, we propose an efficient strategy for intramolecular hydrogen bonds (HBs) to redistribute the charge of OEMs to weaken the interaction with electrolyte components, thereby suppressing their dissolution. For the designed 2,2',2''-(2,4,6-trihydroxybenzene-1,3,5-triyl) tris (1H-naphtho[2,3-d]imidazole-4,9-dione) (TPNQ) molecule, the intramolecular HBs (O-H⋅⋅⋅N and N-H⋅⋅⋅O) reduce the charge density of active sites and alter the charge distribution on the molecular skeleton. As a result, TPNQ shows significantly reduced solubility in both ether- and ester-based solvents. In situ measurements and theoretical calculations indicate that the O-H⋅⋅⋅N dominated HB interaction strengthening during the discharging process, which can continuously suppress dissolution. Therefore, the TPNQ cathode displays high cycling stability (no capacity fading over 100 cycles at 0.1 A g-1; 88.4 % capacity retention over 1000 cycles at 1 A g-1), fast Li+-storage kinetics (211 mAh g-1 at 2 A g-1), and surprising low-temperature performances (stability cycles 500 times at -60 °C). Our results offer evidence that the intramolecular HBs strategy is promising in developing robust organic electrode materials for rechargeable batteries.
Collapse
|
2
|
Song Z, Liu L, Sun Q, Du J, Guan J, Dou P, Zhang R, Jiang Z, Liu J. Crystalline Porous Organic Cage Membranes Constructed Using Fortified Intermolecular Interactions for Molecular Sieving. Angew Chem Int Ed Engl 2024; 63:e202409296. [PMID: 38923710 DOI: 10.1002/anie.202409296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Among the various types of materials with intrinsic porosity, porous organic cages (POCs) are distinctive as discrete molecules that possess intrinsic cavities and extrinsic channels capable of facilitating molecular sieving. However, the fabrication of POC membranes remains highly challenging due to the weak noncovalent intermolecular interactions and most reported POCs are powders. In this study, we constructed crystalline free-standing porous organic cage membranes by fortifying intermolecular interactions through the induction of intramolecular hydrogen bonds, which was confirmed by single-crystal X-ray analysis. To elucidate the driving forces behind, a series of terephthaldehyde building blocks containing different substitutions were reacted with flexible triamine under different conditions via interfacial polymerization (IP). Furthermore, density functional theory (DFT) calculations suggest that intramolecular hydrogen bonding can significantly boost the intermolecular interactions. The resulting membranes exhibited fast solvent permeance and high rejection of dyes not only in water, but also in organic solvents. In addition, the membrane demonstrated excellent performance in precise molecular sieving in organic solvents. This work opens an avenue to designing and fabricating free-standing membranes composed of porous organic materials for efficient molecular sieving.
Collapse
|
3
|
Sivaev IB. Bis(Dicarbollide) Complexes of Transition Metals: How Substituents in Dicarbollide Ligands Affect the Geometry and Properties of the Complexes. Molecules 2024; 29:3510. [PMID: 39124915 PMCID: PMC11314212 DOI: 10.3390/molecules29153510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The interaction between different types of substituents in dicarbollide ligands and their influence on the stabilization of various rotational conformers (rotamers) of transition metal bis(dicarbollide) complexes [3,3'-M(1,2-C2B9H11)2]- are considered. It has been shown that the formation of intramolecular CH···X hydrogen bonds between dicarbollide ligands is determined by the size of the proton acceptor atom X rather than its electronegativity. Due to the stabilization of rotamers with different dipole moments, intramolecular hydrogen bonds between ligands in transition metal bis(dicarbollide) complexes can have a significant impact on the biological properties of their derivatives. In the presence of external complexing metals, weak intramolecular CH···X hydrogen bonds can be broken to form stronger X->M donor-acceptor bonds. This process is accompanied by the mutual rotation of dicarbollide ligands and can be used in sensors and molecular switches based on transition metal bis(dicarbollide) complexes.
Collapse
|
4
|
Dong Z, Ma X, Yu Y, Gu X, Zhao D. The Effect of Intramolecular Hydrogen Bonds on the Rotational Barriers of the Biaryl C-C Axis. Chemistry 2023; 29:e202302292. [PMID: 37548253 DOI: 10.1002/chem.202302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Axially chiral compounds are attracting more attention recently. Although hydrogen bonds are reported as a vital weak force that influences the properties of compounds, the effect of intramolecular hydrogen bonds on the atropisomerization of the Caryl -Caryl single bonds has not yet been well quantitatively investigated. Here, a series of axially chiral biaryl compounds were synthesized to study the effect of hydrogen bonds on the rotational barriers of the biaryl C-C axis. Experimental studies demonstrated that the rotational barrier of hydrogen bonding biaryl 9 was significantly lower (46.7 kJ mol-1 ) than biaryl 10 without hydrogen bonds. Furthermore, theoretical studies revealed that the intramolecular hydrogen bond stabilized the transition state (TS) of tri-ortho-substituted biaryl 9, relieving the steric repulsion in the TS. We believe that this study will provide chemists with a deeper understanding of the atropisomerization process of axially chiral biaryl compounds.
Collapse
|
5
|
Belosludov RV, Gets KV, Zhdanov RK, Bozhko YY, Belosludov VR, Chen LJ, Kawazoe Y. Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure. Molecules 2023; 28:2960. [PMID: 37049727 PMCID: PMC10095827 DOI: 10.3390/molecules28072960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
Collapse
|
6
|
Abrahams BF, Commons CJ, Hudson TA, Sanchez Arlt R, Ahl R, Carajias ED, Chan JWK, Guo Z, Hill RE, McGinty A, Peters NL, Poon JYP, Qu J, Qu J, Rochette EE, Walkear C, Wang H, Wu H, Xu C, Zhang J. Complexes of 2,4,6-trihydroxybenzoic acid: effects of intramolecular hydrogen bonding on ligand geometry and metal binding modes. Acta Crystallogr C Struct Chem 2022; 78:653-670. [PMID: 36331890 PMCID: PMC9635592 DOI: 10.1107/s2053229622009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
This article describes a series of more than 20 new compounds formed by the combination of 2,4,6-trihydroxybenzoic acid (H4thba) with metal ions in the presence of a base, with structures that include discrete molecular units, chains, and two- and three-dimensional networks. As a result of the presence of two ortho-hydroxy groups, H4thba is a relatively strong acid (pKa1 = 1.68). The carboxylate group in H3thba- is therefore considerably less basic than most carboxylates with intramolecular hydrogen bonds, conferring a rigid planar geometry upon the anion. These characteristics of H3thba- significantly impact upon the way it interacts with metal ions. In s-block metal compounds, where the interaction of the metal centres with the carboxylate O atoms is essentially ionic, the anion bonds to up to three metal centres via a variety of binding modes. In cases where the metal ion is able to form directional coordinate bonds, however, the carboxylate group tends to bond in a monodentate mode, interacting with just one metal centre in the syn mode. A dominant influence on the structures of the complexes seems to be the face-to-face stacking of the aromatic rings, which creates networks containing layers of metal-oxygen polyhedra that participate in hydrogen bonding. This investigation was undertaken, in part, by a group of secondary school students as an educational exercise designed to introduce school students to the technique of single-crystal X-ray diffraction and enhance their understanding of primary and secondary bonding.
Collapse
|
7
|
Synthesis of 3-Aryl- ortho-carboranes with Sensitive Functional Groups. Molecules 2021; 26:molecules26237297. [PMID: 34885881 PMCID: PMC8659134 DOI: 10.3390/molecules26237297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
A simple and efficient method was developed for the one-pot synthesis of 3-aryl derivatives of ortho-carborane with sensitive functional groups using 3-iodo-ortho-carborane and aryl zinc bromides that were generated in situ. A series of 3-aryl-ortho-carboranes, including those containing nitrile and ester groups, 3-RC6H4-1,2-C2B10H11 (R = p-Me, p-NMe2, p-OCH2OMe, p-OMe, o-CN, p-CN, o-COOEt, m-COOEt, p-COOEt) was synthesized using this approach. The solid-state structures of 3-RC6H4-1,2-C2B10H11 (R = p-OMe, o-CN, and p-CN) were determined by single crystal X-ray diffraction. The intramolecular hydrogen bonding involving the ortho-substituents of the aryl ring and the CH and BH groups of carborane was discussed.
Collapse
|
8
|
Suzuki N, Kubota T, Ando N, Yamaguchi S. Photobase-Driven Excited-State Intramolecular Proton Transfer (ESIPT) in a Strapped π-Electron System. Chemistry 2021; 28:e202103584. [PMID: 34841575 DOI: 10.1002/chem.202103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 11/09/2022]
Abstract
We report a new design strategy for an excited-state intramolecular proton transfer (ESIPT) fluorophore that can be used in acidic media. A photobasic pyridine-centered donor-acceptor-donor-type fluorophore is combined with a basic trialkylamine "strap". In the presence of an acid, protonation occurs predominantly at the amine moiety in the ground state. A single-crystal X-ray diffraction analysis confirmed the formation of a pre-organized intramolecular hydrogen-bonded structure between the resulting ammonium moiety and the pyridine ring. Upon excitation, the intramolecular charge-transfer transition increases the basicity of the pyridine moiety in the excited state, resulting in proton transfer from the amine to the pyridine moiety. Consequently, the fluorophore takes on a polymethine-dye character in the ESIPT state, which gives rise to significantly red-shifted emission with an increased fluorescence quantum yield.
Collapse
|
9
|
Naphthazarin Derivatives in the Light of Intra- and Intermolecular Forces. Molecules 2021; 26:molecules26185642. [PMID: 34577113 PMCID: PMC8468954 DOI: 10.3390/molecules26185642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller-Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers' stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm-1-1700 cm-1 and 2300 cm-1-3400 cm-1 in the gas phase and 600 cm-1-1800 cm-1 and 2200 cm-1-3400 cm-1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm-1-1700 cm-1 and 2300 cm-1-3300 cm-1 for the gas phase and one broad absorption region in the solid state between 700 cm-1 and 3100 cm-1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.
Collapse
|
10
|
Ermondi G, Lavore F, Vallaro M, Tiana G, Vasile F, Caron G. Managing Experimental 3D Structures in the Beyond-Rule-of-5 Chemical Space: The Case of Rifampicin. Chemistry 2021; 27:10394-10404. [PMID: 34114271 PMCID: PMC8361677 DOI: 10.1002/chem.202100961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/29/2022]
Abstract
The beyond-Rule-of-5 (bRo5) chemical space is a source of new oral drugs and includes large and flexible compounds. Because of their size and conformational variability, bRo5 molecules assume different privileged conformations in the compartments of human body, i. e., they can exhibit chameleonic properties. The elucidation of the ensemble of 3D structures explored by such molecules under different conditions is therefore critical to check the role played by chameleonicity to modulate cell permeability. Here we characterized the conformational ensembles of rifampicin, a bRo5 drug, in polar and nonpolar solvents and in the solid state. We performed NMR experiments, analyzed their results with a novel algorithm and set-up a pool of ad hoc in silico strategies to investigate crystallographic structures retrieved from the CSD. Moreover, a polarity descriptor often related to permeability (SA-3D-PSA) was calculated for all the conformers and its variation with the environment analyzed. Results showed that the conformational behavior of rifampicin in solution and in the solid state is not superposable. The identification of dynamic intramolecular hydrogen bonds can be assessed by NMR spectroscopy but not by X-ray structures. Moreover, SA-3D-PSA revealed that dynamic IMHBs do not provide rifampicin with chameleonic properties. Overall, this study highlights that the peculiarity of rifampicin, which is cell permeable probably because of the presence of static IMHBs but is devoid of any chameleonic behavior, can be assessed by a proper analysis of experimental 3D structures.
Collapse
|
11
|
Lamsabhi AM, Mó O, Yáñez M. Perturbating Intramolecular Hydrogen Bonds through Substituent Effects or Non-Covalent Interactions. Molecules 2021; 26:3556. [PMID: 34200912 PMCID: PMC8230504 DOI: 10.3390/molecules26123556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
An analysis of the effects induced by F, Cl, and Br-substituents at the α-position of both, the hydroxyl or the amino group for a series of amino-alcohols, HOCH2(CH2)nCH2NH2 (n = 0-5) on the strength and characteristics of their OH···N or NH···O intramolecular hydrogen bonds (IMHBs) was carried out through the use of high-level G4 ab initio calculations. For the parent unsubstituted amino-alcohols, it is found that the strength of the OH···N IMHB goes through a maximum for n = 2, as revealed by the use of appropriate isodesmic reactions, natural bond orbital (NBO) analysis and atoms in molecules (AIM), and non-covalent interaction (NCI) procedures. The corresponding infrared (IR) spectra also reflect the same trends. When the α-position to the hydroxyl group is substituted by halogen atoms, the OH···N IMHB significantly reinforces following the trend H < F < Cl < Br. Conversely, when the substitution takes place at the α-position with respect to the amino group, the result is a weakening of the OH···N IMHB. A totally different scenario is found when the amino-alcohols HOCH2(CH2)nCH2NH2 (n = 0-3) interact with BeF2. Although the presence of the beryllium derivative dramatically increases the strength of the IMHBs, the possibility for the beryllium atom to interact simultaneously with the O and the N atoms of the amino-alcohol leads to the global minimum of the potential energy surface, with the result that the IMHBs are replaced by two beryllium bonds.
Collapse
|
12
|
Alkorta I, Elguero J, Del Bene JE. Perturbing the O-H …O Hydrogen Bond in 1-oxo-3-hydroxy-2-propene. Molecules 2021; 26:3086. [PMID: 34064185 PMCID: PMC8196739 DOI: 10.3390/molecules26113086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to identify and characterize equilibrium structures and transition structures on the 1-oxo-3-hydroxy-2-propene: Lewis acid potential energy surfaces, with the acids LiH, LiF, BeH2, and BeF2. Two equilibrium structures, one with the acid interacting with the C=O group and the other with the interaction occurring at the O-H group, exist on all surfaces. These structures are separated by transition structures that present the barriers to the interconversion of the two equilibrium structures. The structures with the acid interacting at the C=O group have the greater binding energies. Since the barriers to convert the structures with interaction occurring at the O-H group are small, only the isomers with interaction occurring at the C=O group could be experimentally observed, even at low temperatures. Charge-transfer energies were computed for equilibrium structures, and EOM-CCSD spin-spin coupling constants 2hJ(O-O), 1hJ(H-O), and 1J(O-H) were computed for equilibrium and transition structures. These coupling constants exhibit a second-order dependence on the corresponding distances, with very high correlation coefficients.
Collapse
|
13
|
Hansen PE. A Spectroscopic Overview of Intramolecular Hydrogen Bonds of NH…O,S,N Type. Molecules 2021; 26:2409. [PMID: 33919132 PMCID: PMC8122615 DOI: 10.3390/molecules26092409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Intramolecular NH…O,S,N interactions in non-tautomeric systems are reviewed in a broad range of compounds covering a variety of NH donors and hydrogen bond acceptors. 1H chemical shifts of NH donors are good tools to study intramolecular hydrogen bonding. However in some cases they have to be corrected for ring current effects. Deuterium isotope effects on 13C and 15N chemical shifts and primary isotope effects are usually used to judge the strength of hydrogen bonds. Primary isotope effects are investigated in a new range of magnitudes. Isotope ratios of NH stretching frequencies, νNH/ND, are revisited. Hydrogen bond energies are reviewed and two-bond deuterium isotope effects on 13C chemical shifts are investigated as a possible means of estimating hydrogen bond energies.
Collapse
|
14
|
Shang C, Wang G, Liu K, Jiang Q, Liu F, Chou PT, Fang Y. Perylene Bisimide and Naphthyl-Based Molecular Dyads: Hydrogen Bonds Driving Co-planarization and Anomalous Temperature-Response Fluorescence. Angew Chem Int Ed Engl 2020; 59:8579-8585. [PMID: 32080956 DOI: 10.1002/anie.201914070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/30/2020] [Indexed: 12/22/2022]
Abstract
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho-methoxy group (NM) at its bay positions (PBI-2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol-1 ) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co-planarization of the different aromatic units, resulting in delocalization of the π-electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co-planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H-bond-driven co-planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.
Collapse
|
15
|
Shahab S, Sheikhi M, Filippovich L, Dikusar E, Pazniak A, Rouhani M, Kumar R. Molecular Investigations of the Newly Synthesized Azomethines as Antioxidants: Theoretical and Experimental Studies. Curr Mol Med 2019; 19:419-433. [PMID: 31072290 DOI: 10.2174/1566524019666190509102620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In this study, the antioxidant property of new synthesized azomethins has been investigated as theoretical and experimental. METHODS AND RESULTS Density functional theory (DFT) was employed to investigate the Bond Dissociation Enthalpy (BDE), Mulliken Charges, NBO analysis, Ionization Potential (IP), Electron Affinities (EA), HOMO and LUMO energies, Hardness (η), Softness (S), Electronegativity (µ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) in order to deduce scavenging action of the two new synthesized azomethines (FD-1 and FD-2). Spin density calculations and NBO analysis were also carried out to understand the antioxidant activity mechanism. Comparison of BDE of FD-1 and FD-2 indicate the weal antioxidant potential of these structures. CONCLUSION FD-1 and FD-2 have very high antioxidant potential due to the planarity and formation of intramolecular hydrogen bonds.
Collapse
|
16
|
Cooperative Effects in Weak Interactions: Enhancement of Tetrel Bonds by Intramolecular Hydrogen Bonds. Molecules 2019; 24:molecules24020308. [PMID: 30654469 PMCID: PMC6359400 DOI: 10.3390/molecules24020308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/02/2022] Open
Abstract
A series of silyl and germanium complexes containing halogen atoms (fluorine and chlorine atoms) and exhibiting tetrel bonds with Lewis bases were analyzed by means of Møller-Plesset computational theory. Binding energies of germanium derivatives were more negative than silicon ones. Amongst the different Lewis bases utilized, ammonia produced the strongest tetrel bonded complexes in both Ge and Si cases, and substitution of the F atom by Cl led to stronger complexes with an ethylene backbone. However, with phenyl backbones, the fluorosilyl complexes were shown to be less stable than the chlorosilyl ones, but the opposite occurred for halogermanium complexes. In all the cases studied, the presence of a hydroxyl group enhanced the tetrel bond. That effect becomes more remarkable when an intramolecular hydrogen bond between the halogen and the hydrogen atom of the hydroxyl group takes places.
Collapse
|
17
|
Carreño A, Rodríguez L, Páez-Hernández D, Martin-Trasanco R, Zúñiga C, Oyarzún DP, Gacitúa M, Schott E, Arratia-Pérez R, Fuentes JA. Two New Fluorinated Phenol Derivatives Pyridine Schiff Bases: Synthesis, Spectral, Theoretical Characterization, Inclusion in Epichlorohydrin-β-Cyclodextrin Polymer, and Antifungal Effect. Front Chem 2018; 6:312. [PMID: 30109223 PMCID: PMC6080543 DOI: 10.3389/fchem.2018.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that the structure of the Schiff bases is fundamental for their function in biomedical applications. Pyridine Schiff bases are characterized by the presence of a pyridine and a phenolic ring, connected by an azomethine group. In this case, the nitrogen present in the pyridine is responsible for antifungal effects, where the phenolic ring may be also participating in this bioactivity. In this study, we synthesized two new pyridine Schiff Bases: (E)-2-[(3-Amino-pyridin-4-ylimino)-methyl]-4,6-difluoro-phenol (F1) and (E)- 2-[(3-Amino-pyridin-4-ylimino)-methyl]-6-fluoro-phenol (F2), which only differ in the fluorine substitutions in the phenolic ring. We fully characterized both F1 and F2 by FTIR, UV-vis, 1H; 13C; 19F-NMR, DEPT, HHCOSY, TOCSY, and cyclic voltammetry, as well as by computational studies (DFT), and NBO analysis. In addition, we assessed the antifungal activity of both F1 (two fluorine substitution at positions 4 and 6 in the phenolic ring) and F2 (one fluorine substitution at position 6 in the phenolic ring) against yeasts. We found that only F1 exerted a clear antifungal activity, showing that, for these kind of Schiff bases, the phenolic ring substitutions can modulate biological properties. In addition, we included F1 and F2 into in epichlorohydrin-β-cyclodextrin polymer (βCD), where the Schiff bases remained inside the βCD as determined by the ki, TGA, DSC, and SBET. We found that the inclusion in βCD improved the solubility in aqueous media and the antifungal activity of both F1 and F2, revealing antimicrobial effects normally hidden by the presence of common solvents (e.g., DMSO) with some cellular inhibitory activity. The study of structural prerequisites for antimicrobial activity, and the inclusion in polymers to improve solubility, is important for the design of new drugs.
Collapse
|
18
|
Bouchoux G, Eckert-Maksic M. Gas phase basicities of polyfunctional molecules. Part 5: Non-aromatic sp 2 nitrogen containing compounds. MASS SPECTROMETRY REVIEWS 2018; 37:139-170. [PMID: 27275644 DOI: 10.1002/mas.21511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
This paper constitutes the fifth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435, Part 4: Carbonyl as basic site, Mass Spectrom Rev 2015, 34:493-534). This part is devoted to non-aromatic molecules characterized by a lone pair located on a sp2 nitrogen atom, it embraces functional groups such as imines, amidines, guanidines, diazenes, hydrazines, oximes, and phosphazenes. Specific examples are examined under five major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) imines, hydrazones, and oximes are considered. A second chapter describes the protonation energetic of aliphatic, conjugated, or cyclic amidines. Guanidines, polyguanides, and biomolecules containing guanidine were examined in the third chapter. A fourth chapter describes the particular case of the phosphazene molecules. Finally, diazenes and azides were considered in the last chapter. Experimental data were re-evaluated according to the presently adopted basicity scale, i.e., PA(NH3 ) = 853.6 kJ/mol, GB (NH3 ) = 819 kJ/mol. Structural and energetic information given by G4MP2 quantum chemistry computations on typical systems are presented. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:139-170, 2018.
Collapse
|
19
|
Sung SS. Dielectric screening effect of electronic polarization and intramolecular hydrogen bonding. Protein Sci 2017; 26:2003-2009. [PMID: 28726339 DOI: 10.1002/pro.3238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 01/11/2023]
Abstract
Recent site-resolved hydrogen exchange measurements have uncovered significant discrepancies between simulations and experimental data during protein folding, including the excessive intramolecular hydrogen bonds in simulations. This finding indicates a possibility that intramolecular charge-charge interactions have not included sufficient dielectric screening effect of the electronic polarization. Scaling down peptide atomic charges according to the optical dielectric constant is tested in this study. As a result, the number of intramolecular hydrogen bonds is lower than using unscaled atomic charges while reaching the same levels of helical contents or β-hairpin backbone hydrogen bonds, because van der Waals interactions contribute substantially to peptide folding in water. Reducing intramolecular charge-charge interactions and hydrogen bonding increases conformational search efficiency. In particular, it reduces the equilibrium helical content in simulations using AMBER force field and the energy barrier in folding simulations using CHARMM force field.
Collapse
|
20
|
McIver AL, Zhang W, Liu Q, Jiang X, Stashko MA, Nichols J, Miley MJ, Norris-Drouin J, Machius M, DeRyckere D, Wood E, Graham DK, Earp HS, Kireev D, Frye SV, Wang X. Discovery of Macrocyclic Pyrimidines as MerTK-Specific Inhibitors. ChemMedChem 2017; 12:207-213. [PMID: 28032464 PMCID: PMC5336325 DOI: 10.1002/cmdc.201600589] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/22/2016] [Indexed: 11/08/2022]
Abstract
Macrocycles have attracted significant attention in drug discovery recently. In fact, a few de novo designed macrocyclic kinase inhibitors are currently in clinical trials with good potency and selectivity for their intended target. In this study, we successfully engaged a structure-based drug design approach to discover macrocyclic pyrimidines as potent Mer tyrosine kinase (MerTK)-specific inhibitors. An enzyme-linked immunosorbent assay (ELISA) in 384-well format was employed to evaluate the inhibitory activity of macrocycles in a cell-based assay assessing tyrosine phosphorylation of MerTK. Through structure-activity relationship (SAR) studies, analogue 11 [UNC2541; (S)-7-amino-N-(4-fluorobenzyl)-8-oxo-2,9,16-triaza-1(2,4)-pyrimidinacyclohexadecaphane-1-carboxamide] was identified as a potent and MerTK-specific inhibitor that exhibits sub-micromolar inhibitory activity in the cell-based ELISA. In addition, an X-ray structure of MerTK protein in complex with 11 was resolved to show that these macrocycles bind in the MerTK ATP pocket.
Collapse
|
21
|
Caron G, Vallaro M, Ermondi G, Goetz GH, Abramov YA, Philippe L, Shalaeva M. A Fast Chromatographic Method for Estimating Lipophilicity and Ionization in Nonpolar Membrane-Like Environment. Mol Pharm 2016; 13:1100-10. [PMID: 26767433 DOI: 10.1021/acs.molpharmaceut.5b00910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study describes the design and implementation of a new chromatographic descriptor called log k'80 PLRP-S that provides information about the lipophilicity of drug molecules in the nonpolar environment, both in their neutral and ionized form. The log k'80 PLRP-S obtained on a polymeric column with acetonitrile/water mobile phase is shown to closely relate to log Ptoluene (toluene dielectric constant ε ∼ 2). The main intermolecular interactions governing log k'80 PLRP-S were deconvoluted using the Block Relevance (BR) analysis. The information provided by this descriptor was compared to ElogD and calclog Ptol, and the differences are highlighted. The "charge-flush" concept is introduced to describe the sensitivity of log k'80 PLRP-S to the ionization state of compounds in the pH range 2 to 12. The ability of log k'80 PLRP-S to indicate the propensity of neutral molecules and monoanions to form Intramolecular Hydrogen Bonds (IMHBs) is proven through a number of examples.
Collapse
|
22
|
Bouchoux G. Gas-phase basicities of polyfunctional molecules. Part 4: Carbonyl groups as basic sites. MASS SPECTROMETRY REVIEWS 2015; 34:493-534. [PMID: 24399766 DOI: 10.1002/mas.21416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
This article constitutes the fourth part of a general review of the gas-phase protonation thermochemistry of polyfunctional molecules (Part 1: Theory and methods, Mass Spectrom Rev 2007, 26:775-835, Part 2: Saturated basic sites, Mass Spectrom Rev 2012, 31:353-390, Part 3: Amino acids, Mass Spectrom Rev 2012, 31:391-435). This fourth part is devoted to carbonyl containing polyfunctional molecules. After a short reminder of the methods of determination of gas-phase basicity and the underlying physicochemical concepts, specific examples are examined under two major chapters. In the first one, aliphatic and unsaturated (conjugated and cyclic) ketones, diketones, ketoalcohols, and ketoethers are considered. A second chapter describes the protonation energetic of gaseous acids and derivatives including diacids, diesters, diamides, anhydrides, imides, ureas, carbamates, amino acid derivatives, and peptides. Experimental data were re-evaluated according to the presently adopted basicity scale. Structural and energetic information given by G3 and G4 quantum chemistry computations on typical systems are presented.
Collapse
|
23
|
Umadevi M, Saravanan V, Yamuna R, Mohanakrishnan AK, Chakkaravarthi G. Crystal structure of (2-bromo-methyl-1-phenyl-sulfonyl-1H-indol-3-yl)(phen-yl)methanone. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS 2015; 71:o86-7. [PMID: 25878885 PMCID: PMC4384623 DOI: 10.1107/s2056989014028084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/24/2014] [Indexed: 11/15/2022]
Abstract
In the title compound, C22H16BrNO3S, the phenyl rings make dihedral angles of 84.81 (16) and 61.67 (17)° with the indole ring system (r.m.s. deviation = 0.012 Å), while the phenyl rings are inclined to one another by 69.5 (2)°. The molecular structure is stabilized by weak intramolecular C—H⋯O hydrogen bonds. The sulfonyl S atom has a distorted tetrahedral configuration. In the crystal, there are no significant intermolecular interactions present.
Collapse
|
24
|
Pietrzak M, Grech E, Nowicka-Scheibe J, Hansen PE. Deuterium isotope effects on 13C chemical shifts of negatively charged NH…N systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:683-688. [PMID: 24038402 DOI: 10.1002/mrc.4000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/21/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Deuterium isotope effects on (13)C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH(+) as counter ion. These compounds represent both "static" and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on (13)C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative indicating transmission via the hydrogen bond. In addition, unusual long range effects are seen. Structures, (1)H and (13)C NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using density functional theory methods.
Collapse
|