1
|
Westerband AC, Funk JL, Barton KE. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. ANNALS OF BOTANY 2021; 127:397-410. [PMID: 33507251 PMCID: PMC7988520 DOI: 10.1093/aob/mcab011] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Investigating the causes and consequences of intraspecific trait variation (ITV) in plants is not novel, as it has long been recognized that such variation shapes biotic and abiotic interactions. While evolutionary and population biology have extensively investigated ITV, only in the last 10 years has interest in ITV surged within community and comparative ecology. SCOPE Despite this recent interest, still lacking are thorough descriptions of ITV's extent, the spatial and temporal structure of ITV, and stronger connections between ITV and community and ecosystem properties. Our primary aim in this review is to synthesize the recent literature and ask: (1) How extensive is intraspecific variation in traits across scales, and what underlying mechanisms drive this variation? (2) How does this variation impact higher-order ecological processes (e.g. population dynamics, community assembly, invasion, ecosystem productivity)? (3) What are the consequences of ignoring ITV and how can these be mitigated? and (4) What are the most pressing research questions, and how can current practices be modified to suit our research needs? Our secondary aim is to target diverse and underrepresented traits and plant organs, including anatomy, wood, roots, hydraulics, reproduction and secondary chemistry. In addressing these aims, we showcase papers from the Special Issue. CONCLUSIONS Plant ITV plays a key role in determining individual and population performance, species interactions, community structure and assembly, and ecosystem properties. Its extent varies widely across species, traits and environments, and it remains difficult to develop a predictive model for ITV that is broadly applicable. Systematically characterizing the sources (e.g. ontogeny, population differences) of ITV will be a vital step forward towards identifying generalities and the underlying mechanisms that shape ITV. While the use of species means to link traits to higher-order processes may be appropriate in many cases, such approaches can obscure potentially meaningful variation. We urge the reporting of individual replicates and population means in online data repositories, a greater consideration of the mechanisms that enhance and constrain ITV's extent, and studies that span sub-disciplines.
Collapse
|
Review |
4 |
115 |
2
|
Stein RJ, Höreth S, de Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. THE NEW PHYTOLOGIST 2017; 213:1274-1286. [PMID: 27735064 PMCID: PMC5248639 DOI: 10.1111/nph.14219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Leaf mineral composition, the leaf ionome, reflects the complex interaction between a plant and its environment including local soil composition, an influential factor that can limit species distribution and plant productivity. Here we addressed within-species variation in plant-soil interactions and edaphic adaptation using Arabidopsis halleri, a well-suited model species as a facultative metallophyte and metal hyperaccumulator. We conducted multi-element analysis of 1972 paired leaf and soil samples from 165 European populations of A. halleri, at individual resolution to accommodate soil heterogeneity. Results were further confirmed under standardized conditions upon cultivation of 105 field-collected genotypes on an artificially metal-contaminated soil in growth chamber experiments. Soil-independent between- and within-population variation set apart leaf accumulation of zinc, cadmium and lead from all other nutrient and nonessential elements, concurring with differential hypothesized ecological roles in either biotic interaction or nutrition. For these metals, soil-leaf relationships were element-specific, differed between metalliferous and nonmetalliferous soils and were geographically structured both in the field and under standardized growth conditions, implicating complex scenarios of recent ecological adaptation. Our study provides an example and a reference for future related work and will serve as a basis for the molecular-genetic dissection and ecological analysis of the observed phenotypic variation.
Collapse
|
research-article |
8 |
95 |
3
|
Anderegg LDL, HilleRisLambers J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. GLOBAL CHANGE BIOLOGY 2016; 22:1029-45. [PMID: 26663665 DOI: 10.1111/gcb.13148] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range-limit context, helps elucidate a mechanistic understanding of range constraints.
Collapse
|
|
9 |
59 |
4
|
Hahn PG, Agrawal AA, Sussman KI, Maron JL. Population Variation, Environmental Gradients, and the Evolutionary Ecology of Plant Defense against Herbivory. Am Nat 2018; 193:20-34. [PMID: 30624107 DOI: 10.1086/700838] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A central tenet of plant defense theory is that adaptation to the abiotic environment sets the template for defense strategies, imposing a trade-off between plant growth and defense. Yet this trade-off, commonly found among species occupying divergent resource environments, may not occur across populations of single species. We hypothesized that more favorable climates and higher levels of herbivory would lead to increases in growth and defense across plant populations. We evaluated whether plant growth and defense traits covaried across 18 populations of showy milkweed (Asclepias speciosa) inhabiting an east-west climate gradient spanning 25° of longitude. A suite of traits impacting defense (e.g., latex, cardenolides), growth (e.g., size), or both (e.g., specific leaf area [SLA], trichomes) were measured in natural populations and in a common garden, allowing us to evaluate plastic and genetically based variation in these traits. In natural populations, herbivore pressure increased toward warmer sites with longer growing seasons. Growth and defense traits showed strong clinal patterns and were positively correlated. In a common garden, clines with climatic origin were recapitulated only for defense traits. Correlations between growth and defense traits were also weaker and more negative in the common garden than in the natural populations. Thus, our data suggest that climatically favorable sites likely facilitate the evolution of greater defense at minimal costs to growth, likely because of increased resource acquisition.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
49 |
5
|
Brans KI, Govaert L, Engelen JMT, Gianuca AT, Souffreau C, De Meester L. Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0030. [PMID: 27920375 DOI: 10.1098/rstb.2016.0030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
Urbanization causes both changes in community composition and evolutionary responses, but most studies focus on these responses in isolation. We performed an integrated analysis assessing the relative contribution of intra- and interspecific trait turnover to the observed change in zooplankton community body size in 83 cladoceran communities along urbanization gradients quantified at seven spatial scales (50-3200 m radii). We also performed a quantitative genetic analysis on 12 Daphnia magna populations along the same urbanization gradient. Body size in zooplankton communities generally declined with increasing urbanization, but the opposite was observed for communities dominated by large species. The contribution of intraspecific trait variation to community body size turnover with urbanization strongly varied with the spatial scale considered, and was highest for communities dominated by large cladoceran species and at intermediate spatial scales. Genotypic size at maturity was smaller for urban than for rural D. magna populations and for animals cultured at 24°C compared with 20°C. While local genetic adaptation likely contributed to the persistence of D. magna in the urban heat islands, buffering for the phenotypic shift to larger body sizes with increasing urbanization, community body size turnover was mainly driven by non-genetic intraspecific trait change.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
41 |
6
|
Merckx T, Kaiser A, Van Dyck H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. GLOBAL CHANGE BIOLOGY 2018; 24:3837-3848. [PMID: 29791767 DOI: 10.1111/gcb.14151] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Urbanization involves a cocktail of human-induced rapid environmental changes and is forecasted to gain further importance. Urban-heat-island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro-moths-an insect group characterized by positive size-dispersal links-at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro-moth communities display considerable increases in community-weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro-moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization-driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size-biased filtering happens simultaneously and coherently at both the inter- and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species-specific size increases happen at local and landscape scales (50-3,200 m radius), depending on the species. Hence, measures-such as creating and improving urban green infrastructure-to mitigate the effects of urbanization on body size will have to be implemented at multiple spatial scales in order to be most effective.
Collapse
|
|
7 |
36 |
7
|
Laughlin DC, Laughlin DE. Advances in modeling trait-based plant community assembly. TRENDS IN PLANT SCIENCE 2013; 18:584-93. [PMID: 23727200 DOI: 10.1016/j.tplants.2013.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 05/08/2023]
Abstract
In this review, we examine two new trait-based models of community assembly that predict the relative abundance of species from a regional species pool. The models use fundamentally different mathematical approaches and the predictions can differ considerably. Maxent obtains the most even probability distribution subject to community-weighted mean trait constraints. Traitspace predicts low probabilities for any species whose trait distribution does not pass through the environmental filter. Neither model maximizes functional diversity because of the emphasis on environmental filtering over limiting similarity. Traitspace can test for the effects of limiting similarity by explicitly incorporating intraspecific trait variation. The range of solutions in both models could be used to define the range of natural variability of community composition in restoration projects.
Collapse
|
Review |
12 |
32 |
8
|
Isaac ME, Martin AR, de Melo Virginio Filho E, Rapidel B, Roupsard O, Van den Meersche K. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients. FRONTIERS IN PLANT SCIENCE 2017; 8:1196. [PMID: 28747919 PMCID: PMC5506091 DOI: 10.3389/fpls.2017.01196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 05/23/2023]
Abstract
Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.
Collapse
|
research-article |
8 |
29 |
9
|
Welles SR, Funk JL. Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. ANNALS OF BOTANY 2021; 127:461-471. [PMID: 32949134 PMCID: PMC7988521 DOI: 10.1093/aob/mcaa173] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS In water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments. METHODS In this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient. KEY RESULTS We found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient. CONCLUSIONS While previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.
Collapse
|
research-article |
4 |
29 |
10
|
Lajoie G, Vellend M. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change. Ecol Evol 2018; 8:3895-3907. [PMID: 29721266 PMCID: PMC5916269 DOI: 10.1002/ece3.3947] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 01/18/2023] Open
Abstract
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.
Collapse
|
Journal Article |
7 |
24 |
11
|
Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M. Range margin populations show high climate adaptation lags in European trees. GLOBAL CHANGE BIOLOGY 2020; 26:484-495. [PMID: 31642570 DOI: 10.1111/gcb.14881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre-adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range-wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness-related traits could show similar adaptation lag patterns.
Collapse
|
|
5 |
22 |
12
|
Boonman CCF, Benítez‐López A, Schipper AM, Thuiller W, Anand M, Cerabolini BEL, Cornelissen JHC, Gonzalez‐Melo A, Hattingh WN, Higuchi P, Laughlin DC, Onipchenko VG, Peñuelas J, Poorter L, Soudzilovskaia NA, Huijbregts MAJ, Santini L. Assessing the reliability of predicted plant trait distributions at the global scale. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:1034-1051. [PMID: 32612452 PMCID: PMC7319484 DOI: 10.1111/geb.13086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/01/2023]
Abstract
AIM Predictions of plant traits over space and time are increasingly used to improve our understanding of plant community responses to global environmental change. A necessary step forward is to assess the reliability of global trait predictions. In this study, we predict community mean plant traits at the global scale and present a systematic evaluation of their reliability in terms of the accuracy of the models, ecological realism and various sources of uncertainty. LOCATION Global. TIME PERIOD Present. MAJOR TAXA STUDIED Vascular plants. METHODS We predicted global distributions of community mean specific leaf area, leaf nitrogen concentration, plant height and wood density with an ensemble modelling approach based on georeferenced, locally measured trait data representative of the plant community. We assessed the predictive performance of the models, the plausibility of predicted trait combinations, the influence of data quality, and the uncertainty across geographical space attributed to spatial extrapolation and diverging model predictions. RESULTS Ensemble predictions of community mean plant height, specific leaf area and wood density resulted in ecologically plausible trait-environment relationships and trait-trait combinations. Leaf nitrogen concentration, however, could not be predicted reliably. The ensemble approach was better at predicting community trait means than any of the individual modelling techniques, which varied greatly in predictive performance and led to divergent predictions, mostly in African deserts and the Arctic, where predictions were also extrapolated. High data quality (i.e., including intraspecific variability and a representative species sample) increased model performance by 28%. MAIN CONCLUSIONS Plant community traits can be predicted reliably at the global scale when using an ensemble approach and high-quality data for traits that mostly respond to large-scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.
Collapse
|
research-article |
5 |
22 |
13
|
Anderegg LDL, Loy X, Markham IP, Elmer CM, Hovenden MJ, HilleRisLambers J, Mayfield MM. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. THE NEW PHYTOLOGIST 2021; 229:1375-1387. [PMID: 32638379 DOI: 10.1111/nph.16795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Large intraspecific functional trait variation strongly impacts many aspects of communities and ecosystems, and is the medium upon which evolution works. Yet intraspecific trait variation is inconsistent and hard to predict across traits, species and locations. We measured within-species variation in leaf mass per area (LMA), leaf dry matter content (LDMC), branch wood density (WD), and allocation to stem area vs leaf area in branches (branch Huber value (HV)) across the aridity range of seven Australian eucalypts and a co-occurring Acacia species to explore how traits and their variances change with aridity. Within species, we found consistent increases in LMA, LDMC and WD and HV with increasing aridity, resulting in consistent trait coordination across leaves and branches. However, this coordination only emerged across sites with large climate differences. Unlike trait means, patterns of trait variance with aridity were mixed across populations and species. Only LDMC showed constrained trait variation in more xeric species and drier populations that could indicate limits to plasticity or heritable trait variation. Our results highlight that climate can drive consistent within-species trait patterns, but that patterns might often be obscured by the complex nature of morphological traits, sampling incomplete species ranges or sampling confounded stress gradients.
Collapse
|
|
4 |
21 |
14
|
Cole CT, Morrow CJ, Barker HL, Rubert-Nason KF, Riehl JFL, Köllner TG, Lackus ND, Lindroth RL. Growing up aspen: ontogeny and trade-offs shape growth, defence and reproduction in a foundation species. ANNALS OF BOTANY 2021; 127:505-517. [PMID: 32296821 PMCID: PMC7988516 DOI: 10.1093/aob/mcaa070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/13/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Intraspecific variation in foundation species of forest ecosystems can shape community and ecosystem properties, particularly when that variation has a genetic basis. Traits mediating interactions with other species are predicted by simple allocation models to follow ontogenetic patterns that are rarely studied in trees. The aim of this research was to identify the roles of genotype, ontogeny and genotypic trade-offs shaping growth, defence and reproduction in aspen. METHODS We established a common garden replicating >500 aspen genets in Wisconsin, USA. Trees were measured through the juvenile period into the onset of reproduction, for growth, defence chemistry (phenolic glycosides and condensed tannins), nitrogen, extrafloral nectaries, leaf morphology (specific leaf area), flower production and foliar herbivory and disease. We also assayed the TOZ19 sex marker and heterozygosity at ten microsatellite loci. KEY RESULTS We found high levels of genotypic variation for all traits, and high heritabilities for both the traits and their ontogenetic trajectories. Ontogeny strongly shaped intraspecific variation, and trade-offs among growth, defence and reproduction supported some predictions while contradicting others. Both direct resistance (chemical defence) and indirect defence (extrafloral nectaries) declined during the juvenile stage, prior to the onset of reproduction. Reproduction was higher in trees that were larger, male and had higher individual heterozygosity. Growth was diminished by genotypic allocation to both direct and indirect defence as well as to reproduction, but we found no evidence of trade-offs between defence and reproduction. CONCLUSIONS Key traits affecting the ecological communities of aspen have high levels of genotypic variation and heritability, strong patterns of ontogeny and clear trade-offs among growth, defence and reproduction. The architecture of aspen's community genetics - its ontogeny, trade-offs and especially its great variability - is shaped by both its broad range and the diverse community of associates, and in turn further fosters that diversity.
Collapse
|
research-article |
4 |
19 |
15
|
Umaña MN, Swenson NG. Does trait variation within broadly distributed species mirror patterns across species? A case study in Puerto Rico. Ecology 2019; 100:e02745. [PMID: 31032887 DOI: 10.1002/ecy.2745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/19/2019] [Accepted: 04/01/2019] [Indexed: 11/08/2022]
Abstract
Although populations are phenotypically diverse, the majority of trait-based studies have focused on examining differences among species. The justification for this broadly applied approach is based on the assumption that differences among species are always greater than within species. This is likely true for local communities, but species are often broadly distributed across a wide range of environments and patterns of intraspecific variation might surpass differences among species. Therefore, an appropriate interpretation of the functional diversity requires an assessment of patterns of trait variation across different ecological scales. In this study, we examine and characterize patterns of leaf trait variation for species that are broadly distributed along an elevational gradient. We focus on seven leaf traits that represent a main axis of functional differentiation in plants reflecting the balance between photosynthetic efficiency, display, and stomatal conductance. We evaluated patterns of trait variance across ecological scales (elevation, species, populations, and individuals) and examined trait covariance at both within species and across species levels, along the elevation gradient. Our results show three key patterns: (1) intraspecific leaf trait variation for broadly distributed species is comparable to the interspecific trait variation, (2) the trait variance structure is highly variable across species, and (3) trait coordination between pairs of leaf traits is evident across species along the gradient, but not always within species. Combined, our results show that trait coordination and covariance are highly idiosyncratic across broadly distributed and co-occurring species, indicating that species may achieve similar functional roles even when exhibiting different phenotypes. This result challenges the traditional paradigm of functional ecology that assumes single trait values as optimal solutions for environments. In conclusion, patterns of trait variation both across and within species should be considered in future studies that assess trade-offs among traits over environmental gradients.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
18 |
16
|
Weemstra M, Roumet C, Cruz-Maldonado N, Anthelme F, Stokes A, Freschet GT. Environmental variation drives the decoupling of leaf and root traits within species along an elevation gradient. ANNALS OF BOTANY 2022; 130:419-430. [PMID: 35405006 PMCID: PMC9486920 DOI: 10.1093/aob/mcac052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Plant performance is enhanced by balancing above- and below-ground resource uptake through the intraspecific adjustment of leaf and root traits. It is assumed that these organ adjustments are at least partly coordinated, so that analogous leaf and root traits broadly covary. Understanding the extent of such intraspecific leaf-root trait covariation would strongly contribute to our understanding of how plants match above- and below-ground resource use strategies as their environment changes, but comprehensive studies are lacking. METHODS We measured analogous leaf and root traits from 11 species, as well as climate, soil and vegetation properties along a 1000-m elevation gradient in the French Alps. We determined how traits varied along the gradient, to what extent this variation was determined by the way different traits respond to environmental cues acting at different spatial scales (i.e. within and between elevations), and whether trait pairs covaried within species. KEY RESULTS Leaf and root trait patterns strongly diverged: across the 11 species along the gradient, intraspecific leaf trait patterns were largely consistent, whereas root trait patterns were highly idiosyncratic. We also observed that, when compared with leaves, intraspecific variation was greater in root traits, due to the strong effects of the local environment (i.e. at the same elevation), while landscape-level effects (i.e. at different elevations) were minor. Overall, intraspecific trait correlations between analogous leaf and root traits were nearly absent. CONCLUSIONS Our study suggests that environmental gradients at the landscape level, as well as local heterogeneity in soil properties, are the drivers of a strong decoupling between analogous leaf and root traits within species. This decoupling of plant resource acquisition strategies highlights how plants can exhibit diverse whole-plant acclimation strategies to modify above- and below-ground resource uptake, improving their resilience to environmental change.
Collapse
|
research-article |
3 |
15 |
17
|
Funk JL, Larson JE, Vose G. Leaf traits and performance vary with plant age and water availability in Artemisia californica. ANNALS OF BOTANY 2021; 127:495-503. [PMID: 32504539 PMCID: PMC7988528 DOI: 10.1093/aob/mcaa106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Leaf functional traits are strongly tied to growth strategies and ecological processes across species, but few efforts have linked intraspecific trait variation to performance across ontogenetic and environmental gradients. Plants are believed to shift towards more resource-conservative traits in stressful environments and as they age. However, uncertainty as to how intraspecific trait variation aligns with plant age and performance in the context of environmental variation may limit our ability to use traits to infer ecological processes at larger scales. METHODS We measured leaf physiological and morphological traits, canopy volume and flowering effort for Artemisia californica (California sagebrush), a dominant shrub species in the coastal sage scrub community, under conditions of 50, 100 and 150 % ambient precipitation for 3 years. KEY RESULTS Plant age was a stronger driver of variation in traits and performance than water availability. Older plants demonstrated trait values consistent with a more conservative resource-use strategy, and trait values were less sensitive to drought. Several trait correlations were consistent across years and treatments; for example, plants with high photosynthetic rates tended to have high stomatal conductance, leaf nitrogen concentration and light-use efficiency. However, the trade-off between leaf construction and leaf nitrogen evident in older plants was absent for first-year plants. While few traits correlated with plant growth and flowering effort, we observed a positive correlation between leaf mass per area and performance in some groups of older plants. CONCLUSIONS Overall, our results suggest that trait sensitivity to the environment is most visible during earlier stages of development, after which intraspecific trait variation and relationships may stabilize. While plant age plays a major role in intraspecific trait variation and sensitivity (and thus trait-based inferences), the direct influence of environment on growth and fecundity is just as critical to predicting plant performance in a changing environment.
Collapse
|
research-article |
4 |
12 |
18
|
Zhou J, Cieraad E, van Bodegom PM. Global analysis of trait-trait relationships within and between species. THE NEW PHYTOLOGIST 2022; 233:1643-1656. [PMID: 34821399 PMCID: PMC9299860 DOI: 10.1111/nph.17879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Some commonly reported trait-trait relationships between species, including the leaf economic spectrum (LES), are regarded as important plant strategies but whether these relationships represent plant strategies in reality remains unclear. We propose a novel approach to distinguish trait-trait relationships between species that may represent plant strategies vs those relationships that are the result of common drivers, by comparing the direction and strength of intraspecific trait variation (ITV) vs interspecific trait variation. We applied this framework using a unique global ITV database that we compiled, which included 11 traits related to LES, size and roots, and observations from 2064 species occurring in 1068 communities across 19 countries. Generally, compared to between species, trait-trait relationships within species were much weaker or totally disappeared. Almost only within the LES traits, the between-species trait-trait relationships were translated into positive relationships within species, which suggests that they may represent plant strategies. Moreover, the frequent coincidental trait-trait relationships between species, driven by co-varying common drivers, imply that in future research, decoupling of trait-trait relationships should be considered seriously in model projections of ecosystem functioning. Our study emphasizes the importance of describing the mechanisms behind trait-trait relationships, both between and within species, for deepening our understanding of general plant strategies.
Collapse
|
research-article |
3 |
12 |
19
|
Westerband AC, Knight TM, Barton KE. Intraspecific trait variation and reversals of trait strategies across key climate gradients in native Hawaiian plants and non-native invaders. ANNALS OF BOTANY 2021; 127:553-564. [PMID: 32211761 PMCID: PMC7988522 DOI: 10.1093/aob/mcaa050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/22/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Displacement of native plant species by non-native invaders may result from differences in their carbon economy, yet little is known regarding how variation in leaf traits influences native-invader dynamics across climate gradients. In Hawaii, one of the most heavily invaded biodiversity hotspots in the world, strong spatial variation in climate results from the complex topography, which underlies variation in traits that probably drives shifts in species interactions. METHODS Using one of the most comprehensive trait data sets for Hawaii to date (91 species and four islands), we determined the extent and sources of variation (climate, species and species origin) in leaf traits, and used mixed models to examine differences between natives and non-native invasives. KEY RESULTS We detected significant differences in trait means, such that invasives were more resource acquisitive than natives over most of the climate gradients. However, we also detected trait convergence and a rank reversal (natives more resource acquisitive than invasives) in a sub-set of conditions. There was significant intraspecific trait variation (ITV) in leaf traits of natives and invasives, although invasives expressed significantly greater ITV than natives in water loss and photosynthesis. Species accounted for more trait variation than did climate for invasives, while the reverse was true for natives. Incorporating this climate-driven trait variation significantly improved the fit of models that compared natives and invasives. Lastly, in invasives, ITV was most strongly explained by spatial heterogeneity in moisture, whereas solar energy explains more ITV in natives. CONCLUSIONS Our results indicate that trait expression and ITV vary significantly between natives and invasives, and that this is mediated by climate. These findings suggest that although natives and invasives are functionally similar at the regional scale, invader success at local scales is contingent on climate.
Collapse
|
research-article |
4 |
12 |
20
|
He D, Chen Y, Zhao K, Cornelissen JHC, Chu C. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest. ANNALS OF BOTANY 2018; 121:1173-1182. [PMID: 29415250 PMCID: PMC5946913 DOI: 10.1093/aob/mcx222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/01/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. Methods In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Key Results Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. Conclusions For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape.
Collapse
|
research-article |
7 |
11 |
21
|
Li Y, Jiang Y, Shipley B, Li B, Luo W, Chen Y, Zhao K, He D, Rodríguez-Hernández DI, Chu C. The complexity of trait-environment performance landscapes in a local subtropical forest. THE NEW PHYTOLOGIST 2021; 229:1388-1397. [PMID: 33073860 DOI: 10.1111/nph.16955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
That functional traits should affect individual performance and, in turn, determine fitness and population growth, is a foundational assumption of trait-based ecology. This assumption is, however, not supported by a strong empirical base. Here, we measured simultaneously two individual performance metrics (survival and growth), seven traits and 10 environmental properties for each of 3981 individuals of 205 species in a 50-ha stem-mapped subtropical forest. We then modelled survival/growth as a function of traits, environments and trait × environment interactions, and quantified their relative importance at both the species and individual levels. We found evidence of alternative functional designs and multiple performance peaks along environmental gradients, indicating the presence of complicated trait × environment interactions. However, such interactions were relatively unimportant in our site, which had relatively low environmental variations. Moreover, individual performance was not better predicted, and trait × environment interactions were not more likely detected, at the individual level than at the species level. Although the trait × environment interactions might be safely ignored in relatively homogeneous environments, we encourage future studies to test the interactive effects of traits and environments on individual performances and lifelong fitness at larger spatial scales or along experimentally manipulated environmental gradients.
Collapse
|
|
4 |
10 |
22
|
Park M, Cho S, Park J, Lee H, Song W, Park IK, Kim HS. Size-dependent variation in leaf functional traits and nitrogen allocation trade-offs in Robinia pseudoacacia and Cornus controversa. TREE PHYSIOLOGY 2019; 39:755-766. [PMID: 30924868 DOI: 10.1093/treephys/tpy150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/24/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Tree species vary in how they invest resources to different functions throughout their life histories, and investigating the detailed patterns of ontogenetic changes in key functional traits will aid in predicting forest dynamics and ecosystem processes. In this context, we investigated size-dependent changes in key leaf functional traits and nitrogen (N) allocation trade-offs in black locust (Robinia pseudoacacia L., an N-fixing pioneer species) and giant dogwood (Cornus controversa Hemsl., a mid-successional species), which have different life-history strategies, especially in their light use. We found that the leaf mass per area and leaf carbon concentrations increased linearly with tree size (diameter at breast height, DBH), whereas leaf N concentrations decreased nonlinearly, with U- and hump-shaped patterns in black locust and giant dogwood, respectively. We also discovered large differences in N allocation between the two species. The fraction of leaf N invested in cell walls was much higher in black locust than in giant dogwood, while the opposite was true for the light harvesting N fraction. Furthermore, these fractions were related to DBH to varying degrees: the cell wall N fraction increased with DBH for both species, whereas the light harvesting N fraction of giant dogwood decreased nonlinearly and that of black locust remained constant. Instead, black locust reduced the fraction of leaf N invested in other N pools, resulting in a smaller fraction compared to that of giant dogwood. On the other hand, both species had similar fraction of leaf N invested in ribulose-1,5-bisphosphate carboxylase/oxygenase across tree size. This study indicated that both species increased leaf mechanical toughness through characteristic changes in N allocation trade-offs over the lifetimes of the trees.
Collapse
|
|
6 |
10 |
23
|
Villellas J, Ehrlén J, Crone EE, Csergő AM, Garcia MB, Laine AL, Roach DA, Salguero-Gómez R, Wardle GM, Childs DZ, Elderd BD, Finn A, Munné-Bosch S, Bachelot B, Bódis J, Bucharova A, Caruso CM, Catford JA, Coghill M, Compagnoni A, Duncan RP, Dwyer JM, Ferguson A, Fraser LH, Griffoul E, Groenteman R, Hamre LN, Helm A, Kelly R, Laanisto L, Lonati M, Münzbergová Z, Nuche P, Olsen SL, Oprea A, Pärtel M, Petry WK, Ramula S, Rasmussen PU, Enri SR, Roeder A, Roscher C, Schultz C, Skarpaas O, Smith AL, Tack AJM, Töpper JP, Vesk PA, Vose GE, Wandrag E, Wingler A, Buckley YM. PHENOTYPIC PLASTICITY MASKS RANGE-WIDE GENETIC DIFFERENTIATION FOR VEGETATIVE BUT NOT REPRODUCTIVE TRAITS IN A SHORT-LIVED PLANT. Ecol Lett 2021; 24:2378-2393. [PMID: 34355467 DOI: 10.1111/ele.13858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
Collapse
|
Letter |
4 |
9 |
24
|
Pease JE, Grabowski TB, Pease AA, Bean PT. Changing environmental gradients over forty years alter ecomorphological variation in Guadalupe Bass Micropterus treculii throughout a river basin. Ecol Evol 2018; 8:8508-8522. [PMID: 30250719 PMCID: PMC6145027 DOI: 10.1002/ece3.4349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Understanding the degree of intraspecific variation within and among populations is a key aspect of predicting the capacity of a species to respond to anthropogenic disturbances. However, intraspecific variation is usually assessed at either limited temporal, but broad spatial scales or vice versa, which can make assessing changes in response to long-term disturbances challenging. We evaluated the relationship between the longitudinal gradient of changing flow regimes and land use/land cover patterns since 1980 and morphological variation of Guadalupe Bass Micropterus treculii throughout the Colorado River Basin of central Texas. The Colorado River Basin in Texas has experienced major alterations to the hydrologic regime due to changing land- and water-use patterns. Historical collections of Guadalupe Bass prior to rapid human-induced change present the unique opportunity to study the response of populations to varying environmental conditions through space and time. Morphological differentiation of Guadalupe Bass associated with temporal changes in flow regimes and land use/land cover patterns suggests that they are exhibiting intraspecific trait variability, with contemporary individuals showing increased body depth, in response to environmental alteration through time (specifically related to an increase in herbaceous land cover, maximum flows, and the number of low pulses and high pulses). Additionally, individuals from tributaries with increased hydrologic alteration associated with urbanization or agricultural withdrawals tended to have a greater distance between the anal and caudal fin. These results reveal trait variation that may help to buffer populations under conditions of increased urbanization and sprawl, human population growth, and climate risk, all of which impose novel selective pressures, especially on endemic species like Guadalupe Bass. Our results contribute an understanding of the adaptability and capacity of an endemic population to respond to expected future changes based on demographic or climatic projection.
Collapse
|
research-article |
7 |
9 |
25
|
Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR. Intraspecific variation in soy across the leaf economics spectrum. ANNALS OF BOTANY 2019; 123:107-120. [PMID: 30107396 PMCID: PMC6344108 DOI: 10.1093/aob/mcy147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Background and Aims Intraspecific trait variation (ITV) is an important dimension of plant ecological diversity, particularly in agroecosystems, where phenotypic ITV (within crop genotypes) is an important correlate of key agroecosystem processes including yield. There are few studies that have evaluated whether plants of the same genotype vary along well-defined axes of biological variation, such as the leaf economics spectrum (LES). There is even less information disentangling environmental and ontogenetic determinants of crop ITV along an intraspecific LES, and whether or not a plant's position along an intraspecific LES is correlated with reproductive output. Methods We sought to capture the extent of phenotypic ITV within a single cultivar of soy (Glycine max) - the world's most commonly cultivated legume - using a data set of nine leaf traits measured on 402 leaves, sampled from 134 plants in both agroforestry and monoculture management systems, across three distinct whole-plant ontogenetic stages (while holding leaf age and canopy position stable). Key Results Leaf traits covaried strongly along an intraspecific LES, in patterns that were largely statistically indistinguishable from the 'universal LES' observed across non-domesticated plants. Whole-plant ontogenetic stage explained the highest proportion of phenotypic ITV in LES traits, with plants progressively expressing more 'resource-conservative' LES syndromes throughout development. Within ontogenetic stages, leaf traits differed systematically across management systems, with plants growing in monoculture expressing more 'resource-conservative' trait syndromes: trends largely owing to an approximately ≥50% increases in leaf mass per area (LMA) in high-light monoculture vs. shaded agroforestry systems. Certain traits, particularly LMA, leaf area and maximum photosynthetic rates, correlated closely with plant-level reproductive output. Conclusions Phenotypic ITV in soy is governed by constraints in trait trade-offs along an intraspecific LES, which in turn (1) underpins plant responses to managed environmental gradients, and (2) reflects shifts in plant functional biology and resource allocation that occur throughout whole-plant ontogeny.
Collapse
|
research-article |
6 |
9 |