1
|
Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2016; 114:E396-E405. [PMID: 27994144 DOI: 10.1073/pnas.1612930114] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP-IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP-IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP-IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
132 |
2
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
|
Review |
5 |
126 |
3
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
|
Journal Article |
8 |
62 |
4
|
Cruz SA, Qin Z, Stewart AF, Chen HH. Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regen Res 2018; 13:252-256. [PMID: 29557374 PMCID: PMC5879896 DOI: 10.4103/1673-5374.226394] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK) associated with the tumor necrosis factor-alpha (TNF-α)/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and alleviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar concentrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-α. However, subsequent lower doses (5 mg/kg/day) failed to sustain this neuroprotective effect after 4 days. Dabrafenib blocked lipopolysaccharides-induced activation of TNF-α in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-α-induced necroptotic pathway after ischemic brain injury. Since Dabrafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.
Collapse
|
research-article |
7 |
41 |
5
|
Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab 2021; 41:857-873. [PMID: 33736511 PMCID: PMC7983501 DOI: 10.1177/0271678x20931137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-stroke neurological deficits and mortality are often associated with vascular disruption and neuronal apoptosis. Galectin-3 (Gal3) is a potent pro-survival and angiogenic factor. However, little is known about its protective role in the cerebral ischemia/reperfusion (I/R) injury. We have previously shown significant up-regulation of Gal3 in the post-stroke rat brain, and that blocking of Gal3 with neutralizing antibody decreases the cerebral blood vessel density. Our current study demonstrates that intracerebral local delivery of the Gal3 into rat brain at the time of reperfusion exerts neuroprotection. Ischemic lesion volume and neuronal cell death were significantly reduced as compared with the vehicle-treated MCAO rat brains. Gal3 increased vessel density and neuronal survival after I/R in rat brains. Importantly, Gal3-treated groups showed significant improvement in motor and sensory functional recovery. Gal3 increased neuronal cell viability under in vitro oxygen-glucose deprivation conditions in association with increased phosphorylated-Akt, decreased phosphorylated-ERK1/2, and reduced caspase-3 activity. Gene expression analysis showed down regulation of pro-apoptotic and inflammatory genes including Fas-ligand, and upregulation of pro-survival and pro-angiogenic genes including Bcl-2, PECAM, and occludin. These results indicate a key role for Gal3 in neuro-vascular protection and functional recovery following ischemic stroke through modulation of angiogenic and apoptotic pathways.
Collapse
|
research-article |
4 |
39 |
6
|
Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, Stewart AFR, Chen HH. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Front Cell Neurosci 2017; 11:201. [PMID: 28769762 PMCID: PMC5515910 DOI: 10.3389/fncel.2017.00201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke causes neuronal cell death and triggers a cascade of inflammatory signals that contribute to secondary brain damage. Microglia, the brain-resident macrophages that remove dead neurons, play a critical role in the brain’s response to ischemic injury. Our previous studies showed that IRF2 binding protein 2 (IRF2BP2) regulates peripheral macrophage polarization, limits their inflammatory response and reduces susceptibility to atherosclerosis. Here, we show that loss of IRF2BP2 in microglia leads to increased inflammatory cytokine expression in response to lipopolysaccharide challenge and impaired activation of anti-inflammatory markers in response to interleukin-4 (IL4) stimulation. Focal ischemic brain injury of the sensorimotor cortex induced by photothrombosis caused more severe functional deficits in mice with IRF2BP2 ablated in macrophages/microglia, associated with elevated expression of inflammatory cytokines in the brain. These mutant mice had larger infarctions 4 days after stroke associated with fewer anti-inflammatory M2 microglia/macrophages recruited to the peri-infarct area, suggesting an impaired clearance of injured tissues. Since IRF2BP2 modulates interferon signaling, and interferon beta (IFNβ) has been reported to be anti-inflammatory and reduce ischemic brain injury, we asked whether loss of IRF2BP2 in macrophages/microglia would affect the response to IFNβ in our stroke model. IFNβ suppressed inflammatory cytokine production of macrophages and reduced infarct volumes at 4 days after photothrombosis in wild type mice. The anti-inflammatory effect of IFNβ was lost in IRF2BP2-deficient macrophages and IFNβ failed to protect mice lacking IRF2BP2 in macrophages/microglia from ischemic injury. In summary, IRF2BP2 expression in macrophages/microglia is important to limit inflammation and stroke injury, in part by mediating the beneficial effect of IFNβ.
Collapse
|
Journal Article |
8 |
34 |
7
|
Wongprayoon P, Govitrapong P. Melatonin Receptor as a Drug Target for Neuroprotection. Curr Mol Pharmacol 2020; 14:150-164. [PMID: 32316905 DOI: 10.2174/1874467213666200421160835] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melatonin, a neurohormone secreted from the pineal gland, circulates throughout the body and then mediates several physiological functions. The pharmacological effects of melatonin can be mediated through its direct antioxidant activity and receptor-dependent signaling. OBJECTIVE This article will mainly review receptor-dependent signaling. Human melatonin receptors include melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which are widely distributed throughout the brain. RESULT Several lines of evidence have revealed the involvement of the melatonergic system in different neurodegenerative diseases. Alzheimer's disease pathology negatively affects the melatonergic system. Melatonin effectively inhibits β-amyloid (Aβ) synthesis and fibril formation. These effects are reversed by pharmacological melatonin receptor blockade. Reductions in MT1 and MT2 expression in the amygdala and substantia nigra pars compacta have been reported in Parkinson's disease patients. The protective roles of melatonin against ischemic insults via its receptors have also been demonstrated. Melatonin has been reported to enhance neurogenesis through MT2 activation in cerebral ischemic/reperfusion mice. The neurogenic effects of melatonin on mesenchymal stem cells are particularly mediated through MT2. CONCLUSION Understanding the roles of melatonin receptors in neuroprotection against diseases may lead to the development of specific analogs with specificity and potency greater than those of the original compound. These successfully developed compounds may serve as candidate preventive and disease-modifying agents in the future.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
31 |
8
|
Guan J, Harris P, Brimble M, Lei Y, Lu J, Yang Y, Gunn AJ. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19:785-93. [PMID: 25652713 DOI: 10.1517/14728222.2015.1010514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Exogenous IGF-1 protects the brain from ischemic injury and improves function. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. AREAS COVERED In this review, the authors have discussed the efficacy, pharmacokinetics and mechanisms of IGF-1 derivatives on protecting acute brain injury, preventing memory impairment and improving recovery from neurological degenerative conditions evaluated in various animal models. We have included natural metabolites of IGF-1, glycine-proline-glutamate (GPE), cleaved from N-terminal IGF-1 and cyclic glycine-proline (cGP) as well as the structural analogues of GPE and cGP, glycine-2-methyl-proline-glutamate and cyclo-l-glycyl-l-2-allylproline, respectively. In addition, the regulatory role for cGP in bioavailability of IGF-1 has also been discussed. EXPERT OPINION These small neuropeptides provide effective neuroprotection by offering an improved pharmacokinetic profile and more practical route of administration compared with IGF-1 administration. Developing modified neuropeptides to overcome the limitations of their endogenous counterparts represents a novel strategy of pharmaceutical discovery for neurological disorders. The mechanism of action may involve a regulation of IGF-1 bioavailability.
Collapse
|
Review |
10 |
29 |
9
|
Rehni AK, Nautiyal N, Perez-Pinzon MA, Dave KR. Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metab Brain Dis 2015; 30:437-47. [PMID: 24737446 PMCID: PMC4199931 DOI: 10.1007/s11011-014-9538-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/26/2014] [Indexed: 12/22/2022]
Abstract
Enhancement of ischemic brain damage is one of the most serious complications of diabetes. Studies from various in vivo and in vitro models of cerebral ischemia have led to an understanding of the role of mitochondria and complex interrelated mitochondrial biochemical pathways leading to the aggravation of ischemic neuronal damage. Advancements in the elucidation of the mechanisms of ischemic brain damage in diabetic subjects have revealed a number of key mitochondrial targets that have been hypothesized to participate in enhancement of brain damage. The present review initially discusses the neurobiology of ischemic neuronal injury, with special emphasis on the central role of mitochondria in mediating its pathogenesis and therapeutic targets. Later it further details the potential role of various biochemical mediators and second messengers causing widespread ischemic brain damage among diabetics via mitochondrial pathways. The present review discusses preclinical data which validates the significance of mitochondrial mechanisms in mediating the aggravation of ischemic cerebral injury in diabetes. Exploitation of these targets may provide effective therapeutic agents for the management of diabetes-related aggravation of ischemic neuronal damage.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
26 |
10
|
Kang X, Zuo Z, Hong W, Tang H, Geng W. Progress of Research on Exosomes in the Protection Against Ischemic Brain Injury. Front Neurosci 2019; 13:1149. [PMID: 31736691 PMCID: PMC6828609 DOI: 10.3389/fnins.2019.01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as a type of extracellular vesicle (EV), are lipid bilayer vesicles 20–100 nm in diameter that can cross the blood-brain barrier. Exosomes are important transport vesicles in the human body that participate in many conduction pathways and play an important physiological role. Because of their high biocompatibility and low immunogenicity and toxicity, exosomes have attracted increasing attention as an attractive drug delivery system. This article reviews the relevant studies that have shown that exosomes play an important role in protective mechanisms against ischemic brain injury.
Collapse
|
Review |
6 |
21 |
11
|
Bahjat FR, Gesuete R, Stenzel-Poore MP. Steps to translate preconditioning from basic research to the clinic. Transl Stroke Res 2012; 4:89-103. [PMID: 23504609 DOI: 10.1007/s12975-012-0223-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Efforts to treat cardiovascular and cerebrovascular diseases often focus on the mitigation of ischemia-reperfusion (I/R) injury. Many treatments or "preconditioners" are known to provide substantial protection against the I/R injury when administered prior to the event. Brief periods of ischemia itself have been validated as a means to achieve neuroprotection in many experimental disease settings, in multiple organ systems, and in multiple species suggesting a common pathway leading to tolerance. In addition, pharmacological agents that act as potent preconditioners have been described. Experimental induction of neuroprotection using these various preconditioning paradigms has provided a unique window into the brain's endogenous protective mechanisms. Moreover, preconditioning agents themselves hold significant promise as clinical-stage therapies for prevention of I/R injury. The aim of this article is to explore several key steps involved in the preclinical validation of preconditioning agents prior to the conduct of clinical studies in humans. Drug development is difficult, expensive and relies on multi-factorial analysis of data from diverse disciplines. Importantly, there is no single path for the preclinical development of a novel therapeutic and no proven strategy to ensure success in clinical translation. Rather, the conduct of a diverse array of robust preclinical studies reduces the risk of clinical failure by varying degrees depending upon the relevance of preclinical models and drug pharmacology to humans. A strong sense of urgency and high tolerance of failure are often required to achieve success in the development of novel treatment paradigms for complex human conditions.
Collapse
|
Review |
13 |
20 |
12
|
Paeoniflorin ameliorates ischemic injury in rat brain via inhibiting cytochrome c/caspase3/HDAC4 pathway. Acta Pharmacol Sin 2022; 43:273-284. [PMID: 33976387 PMCID: PMC8791966 DOI: 10.1038/s41401-021-00671-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Paeoniflorin (PF), a bioactive monoterpene glucoside, has shown a variety of pharmacological effects such as anti-inflammation and autophagy modulation etc. In this study, we investigated whether and how PF exerted a protective effect against ischemic brain injury in vivo and in vitro. Primary rat cortical neurons underwent oxygen/glucose deprivation/reperfusion (OGD/R) for 90 min. We showed that after OGD/R, a short fragment of histone deacetylase 4 (HDAC4) produced by caspase3-mediated degradation was markedly accumulated in the nucleus and the activity of caspase3 was increased. Treatment with PF (100 nM, 1 μM) significantly improved the viability of cortical neurons after OGD/R. Furthermore, PF treatment could maintain HDAC4 intrinsic subcellular localization and reduce the caspase3 activity without changing the HDAC4 at the transcriptional level. PF treatment significantly reduced OGD/R-caused inhibition of transcriptional factor MEF2 expression and increased the expression of downstream proteins such as GDNF, BDNF, and Bcl-xl, thus exerting a great anti-apoptosis effect as revealed by TUNEL staining. The beneficial effects of PF were almost canceled in HDAC4 (D289E)-transfected PC12 cells after OGD/R. In addition, PF treatment reduced the caspase9 activity, rescued the release of cytochrome c from mitochondria, and maintained the integrity of mitochondria membrane. We conducted in vivo experiments in 90-min-middle cerebral artery occlusion (MCAO) rat model. The rats were administered PF (20, 40 mg/kg, ip, 3 times at the reperfusion, 24 h and 48 h after the surgery). We showed that PF administration dose-dependently reduced infarction area, improved neurological symptoms, and maintained HDAC4 localization in rats after MCAO. These results demonstrate that PF is effective in protecting against ischemic brain injury and inhibit apoptosis through inhibiting the cytochrome c/caspase3/HDAC4 pathway.
Collapse
|
research-article |
3 |
17 |
13
|
Zhong L, Yan J, Li H, Meng L. HDAC9 Silencing Exerts Neuroprotection Against Ischemic Brain Injury via miR-20a-Dependent Downregulation of NeuroD1. Front Cell Neurosci 2021; 14:544285. [PMID: 33584204 PMCID: PMC7873949 DOI: 10.3389/fncel.2020.544285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral stroke is an acute cerebrovascular disease that is a leading cause of death and disability worldwide. Stroke includes ischemic stroke and hemorrhagic strokes, of which the incidence of ischemic stroke accounts for 60–70% of the total number of strokes. Existing preclinical evidence suggests that inhibitors of histone deacetylases (HDACs) are a promising therapeutic intervention for stroke. In this study, the purpose was to investigate the possible effect of HDAC9 on ischemic brain injury, with the underlying mechanism related to microRNA-20a (miR-20a)/neurogenic differentiation 1 (NeuroD1) explored. The expression of HDAC9 was first detected in the constructed middle cerebral artery occlusion (MCAO)-provoked mouse model and oxygen-glucose deprivation (OGD)-induced cell model. Next, primary neuronal apoptosis, expression of apoptosis-related factors (Bax, cleaved caspase3 and bcl-2), LDH leakage rate, as well as the release of inflammatory factors (TNF-α, IL-1β, and IL-6) were evaluated by assays of TUNEL, Western blot, and ELISA. The relationships among HDAC9, miR-20a, and NeuroD1 were validated by in silico analysis and ChIP assay. HDAC9 was highly-expressed in MCAO mice and OGD-stimulated cells. Silencing of HDAC9 inhibited neuronal apoptosis and inflammatory factor release in vitro. HDAC9 downregulated miR-20a by enriching in its promoter region, while silencing of HDCA9 promoted miR-20a expression. miR-20a targeted Neurod1 and down-regulated its expression. Silencing of HDAC9 diminished OGD-induced neuronal apoptosis and inflammatory factor release in vitro as well as ischemic brain injury in vivo by regulating the miR-20a/NeuroD1 signaling. Overall, our study revealed that HDAC9 silencing could retard ischemic brain injury through the miR-20a/Neurod1 signaling.
Collapse
|
Journal Article |
4 |
16 |
14
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
review-article |
4 |
16 |
15
|
Zhang X, Tang X, Ma F, Fan Y, Sun P, Zhu T, Zhang J, Hamblin MH, Chen YE, Yin KJ. Endothelium-targeted overexpression of Krüppel-like factor 11 protects the blood-brain barrier function after ischemic brain injury. Brain Pathol 2020; 30:746-765. [PMID: 32196819 DOI: 10.1111/bpa.12831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/07/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Microvascular endothelial cell (EC) injury and the subsequent blood-brain barrier (BBB) breakdown are frequently seen in many neurological disorders, including stroke. We have previously documented that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated cerebral protection during ischemic insults needs Krüppel-like factor 11 (KLF11) as a critical coactivator. However, the role of endothelial KLF11 in cerebrovascular function and stroke outcome is unclear. This study is aimed at investigating the regulatory role of endothelial KLF11 in BBB preservation and neurovascular protection after ischemic stroke. EC-targeted overexpression of KLF11 significantly mitigated BBB leakage in ischemic brains, evidenced by significantly reduced extravasation of BBB tracers and infiltration of peripheral immune cells, and less brain water content. Endothelial cell-selective KLF11 transgenic (EC-KLF11 Tg) mice also exhibited smaller brain infarct and improved neurological function in response to ischemic insults. Furthermore, EC-targeted transgenic overexpression of KLF11 preserved cerebral tight junction (TJ) levels and attenuated the expression of pro-inflammatory factors in mice after ischemic stroke. Mechanistically, we demonstrated that KLF11 directly binds to the promoter of major endothelial TJ proteins including occludin and ZO-1 to promote their activities. Our data indicate that KLF11 functions at the EC level to preserve BBB structural and functional integrity, and therefore, confers brain protection in ischemic stroke. KLF11 may be a novel therapeutic target for the treatment of ischemic stroke and other neurological conditions involving BBB breakdown and neuroinflammation.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
15 |
16
|
Wang YL, Lin CH, Chen CC, Chang CP, Lin KC, Su FC, Chou W. Exercise Preconditioning Attenuates Neurological Injury by Preserving Old and Newly Formed HSP72-Containing Neurons in Focal Brain Ischemia Rats. Int J Med Sci 2019; 16:675-685. [PMID: 31217735 PMCID: PMC6566739 DOI: 10.7150/ijms.32962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Exercise preconditioning (EP+) is a useful and important procedure for the prevention of stroke. We aimed to ascertain whether EP+ protects against ischemic brain injury by preserving heat shock protein (HSP) 72-containing neurons in ischemic brain tissues. Methods: Adult male Sprague-Dawley rats (n=240) were used to assess the contribution of HSP72-containing neurons to the neuroprotective effects of EP+ on ischemic brain injury caused by transient middle cerebral artery occlusion. Results: Significant (P<0.05) increases in the percentages of both old HSP72-containing neurons (NeuN+HSP72 double positive cells) (18~20% vs. 40~50%) and newly formed HSP72-containing neurons (BrdU+NeuN+HSP72 triple positive cells); (2~3% vs. 16~20%) after 3 weeks of exercise coincided with significant (P<0.05) reductions in brain ischemia volume (250 mm3 vs. 100 mm3), brain edema (78% vs. 74% brain water content), blood-brain barrier disruption (1.5 μg/g vs. 0.7 μg/g tissue Evans Blue dye extravasation) and neurological motor deficits (neurological severity scores of 12 vs. 6 and maximal angles of 60° vs. 20°) in brain ischemia rats. Reductions in the percentages of both old (from 40~50% to 10~12%) and newly formed (from 18~20% to 5~7%) HSP72-containing neurons by gene silencing with an intracerebral injection of pSUPER small interfering RNA showed a significant (P<0.05) reversal in the neuroprotective outcomes. Our data provide an inverse correlation between the EP+-mediated increases in both old and newly formed HSP72-containing neurons and the extent of cerebral ischemic injury. Conclusions: The percentages of both old and newly formed HSP72-containing neurons are inversely correlated with the outcomes of ischemic brain injury. Additionally, preischemic treadmill exercise improves the outcomes of ischemic brain injury by preserving both the old and newly formed HSP72-containing neurons in rats.
Collapse
|
research-article |
6 |
12 |
17
|
Huang Z, Liu G, Zeng Q, Gao R, Zhang S, Wang L, Liu B, Yu Y, Zhao A, Li R, Zhou S, Yu W. MiR-29b expression is associated with a dexmedetomidine-mediated protective effect against oxygen-glucose deprivation-induced injury to SK-N-SH cells in vitro. Cell Biol Int 2017; 42:344-352. [PMID: 29087603 DOI: 10.1002/cbin.10906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Ischemic cerebral stroke is a leading cause of death and long-term disability world-wide. Neuronal injury following cerebral ischemia initiates a complex series of signaling cascades that lead to neuronal cell death. MicroRNA 29b (miR-29b) has reported involvement in the pathogenic process of ischemic brain injury. Dexmedetomidine (Dex) is a highly selective α2 adrenergic receptor stimulant that exerts a protective effect on brain tissue. To determine whether Dex might directly influence miR-29b expression after an ischemic injury, human neuroblastoma SK-N-SH cells were subjected to oxygen-glucose deprivation (OGD) for the purpose of creating a neuronal injury model that mimics the effects of brain ischemia in vitro. Next, the association of miR-29b with the protective effect of Dex against ischemic brain injury was studied through the enhancement or inhibition of miR-29b expression by transfection with an miR-29b mimic or inhibitor. We demonstrated that Dex treatment could reduce miR-29b expression, increase cell viability, and inhibit cell apoptosis in the OGD-induced neuronal injury model in vitro. Furthermore, down-regulation of miR-29b expression produced effects on OGD-induced neuronal injuries that were similar to those produced by Dex treatment. Moreover, up-regulation of miR-29b reversed the protective effect of Dex treatment against OGD-induced neuronal injury. Therefore, down-regulation of miR-29b expression might play a role in anti-apoptotic signaling similar to that played by Dex. Elucidation of the role played by miR-29b in ischemia, and identification of a definite association between Dex and miR-29b may lead to the development of new strategies for treating ischemic brain injuries.
Collapse
|
Journal Article |
8 |
12 |
18
|
Huang R, Cheng T, Lai X. Mechanism of ischemic brain injury repair by endothelial progenitor cell‑derived exosomes. Mol Med Rep 2022; 26:269. [PMID: 35775379 DOI: 10.3892/mmr.2022.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/25/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is a refractory disease that seriously endangers human health and life. The main treatment aim of stroke is to alleviate brain injury. The present study aimed to investigate the effects and mechanisms of endothelial progenitor cell (EPC)‑derived exosomes in repairing ischemic brain injury. Sprague‑Dawley rat models of cerebral ischemia‑reperfusion (IR) injury were established by middle cerebral artery occlusion. The IR model rats were then treated with PBS, EPC or exosomes; untreated and Sham rats were used as control. EPCs were obtained from tibias and femurs, and exosomes were isolated from the EPCs and characterized. To measure brain injury, 2,3,5‑triphenyltetrazolium chloride staining was used to measure the infarct area, neurological deficit was scored, hematoxylin and eosin staining was used to examine pathological changes and TUNEL staining was used to quantify apoptosis. Immunofluorescence staining and reverse transcription‑quantitative PCR were used to determine CD31 and VEGF protein and mRNA expressions, respectively, and western blot analysis was used out to measure the protein expression levels of Wnt3a, GSK‑3β and phosphorylated (p)‑GSK‑3β. Compared with rats in the Control and Sham groups, in IR model rats the nerve fibers were slightly necrotic and swollen and the number of nerve cells was reduced. Following EPC treatment, the brain tissue exhibited mild liquefaction and degeneration in the small focus area with mild edema in the stroma. The numbers of nerve cells decreased, and the distribution of nerve cells was not very uniform; proliferation of glial cells was observed. Following treatment with exosomes, the distribution of nerve cells was more uniform with less degeneration and necrosis; the proliferation of glial cells was remarkable. Compared with the Control group, the infarct size, neurological defect score, percentage of apoptotic cells, expression of CD31, VEGF, Wnt3a, and p‑GSK‑3β were significantly higher in the IR model (P<0.05). After EPC and exosome treatments, the infarct size, neurological defect score, percentage of apoptotic cells, expression of Wnt3a, and p‑GSK‑3β were significantly reduced (P<0.05), whereas the mRNA and protein expression levels of CD31 and VEGF were significantly increased (P<0.05). Results from the present study demonstrated that EPC‑derived exosomes may alleviate ischemic injury by inhibiting apoptosis and promoting angiogenesis. These findings suggested that exosomes may have a protective role for nerve cells and may be a potentially effective option for treating stroke. However, human clinical studies are needed to validate these findings from animals.
Collapse
|
|
3 |
7 |
19
|
Zong W, Gouda M, Cai E, Wang R, Xu W, Wu Y, Munekata PES, Lorenzo JM. The Antioxidant Phytochemical Schisandrin A Promotes Neural Cell Proliferation and Differentiation after Ischemic Brain Injury. Molecules 2021; 26:7466. [PMID: 34946548 PMCID: PMC8706049 DOI: 10.3390/molecules26247466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Schisandrin A (SCH) is a natural bioactive phytonutrient that belongs to the lignan derivatives found in Schisandra chinensis fruit. This study aims to investigate the impact of SCH on promoting neural progenitor cell (NPC) regeneration for avoiding stroke ischemic injury. The promoting effect of SCH on NPCs was evaluated by photothrombotic model, immunofluorescence, cell line culture of NPCs, and Western blot assay. The results showed that neuron-specific class III beta-tubulin (Tuj1) was positive with Map2 positive nerve fibers in the ischemic area after using SCH. In addition, Nestin and SOX2 positive NPCs were significantly (p < 0.05) increased in the penumbra and core. Further analysis identified that SCH can regulate the expression level of cell division control protein 42 (Cdc42). In conclusion, our findings suggest that SCH enhanced NPCs proliferation and differentiation possible by Cdc42 to regulated cytoskeletal rearrangement and polarization of cells, which provides new hope for the late recovery of stroke.
Collapse
|
research-article |
4 |
7 |
20
|
Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL. Grafted Neural Progenitor Cells Persist in the Injured Site and Differentiate Neuronally in a Rodent Model of Cardiac Arrest-Induced Global Brain Ischemia. Stem Cells Dev 2020; 29:574-585. [PMID: 31964231 DOI: 10.1089/scd.2019.0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic-ischemic brain injury is the leading cause of disability and death after successful resuscitation from cardiac arrest, and, to date, no specific treatment option is available to prevent subsequent neurofunctional impairments. The hippocampal cornu ammonis segment 1 (CA1) is one of the brain areas most affected by hypoxia, and its degeneration is correlated with memory deficits in patients and corresponding animal models. The aim of this work was to evaluate the feasibility of neural progenitor cell (NPC) transplantation into the hippocampus in a refined rodent cardiac arrest model. Adult rats were subjected to 12 min of potassium-induced cardiac arrest and followed up to 6 weeks. Histological analysis showed extensive neuronal cell death specifically in the hippocampal CA1 segment, without any spontaneous regeneration. Neurofunctional assessment revealed transient memory deficits in ischemic animals compared to controls, detectable after 4 weeks, but not after 6 weeks. Using stereotactic surgery, embryonic NPCs were transplanted in a subset of animals 1 week after cardiac arrest and their survival, migration, and differentiation were assessed histologically. Transplanted cells showed a higher persistence in the CA1 segment of animals after ischemia. Glia in the damaged CA1 segment expressed the chemotactic factor stromal cell-derived factor 1 (SDF-1), while transplanted NPCs expressed its receptor CXC chemokine receptor 4 (CXCR4), suggesting that the SDF-1/CXCR4 pathway, known to be involved in the migration of neural stem cells toward injured brain regions, directs the observed retention of cells in the damaged area. Using immunostaining, we could demonstrate that transplanted cells differentiated into mature neurons. In conclusion, our data document the survival, persistence in the injured area, and neuronal differentiation of transplanted NPCs, and thus their potential to support brain regeneration after hypoxic-ischemic injury. This may represent an option worth further investigation to improve the outcome of patients after cardiac arrest.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
21
|
Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest. Int J Mol Sci 2015; 16:25999-6018. [PMID: 26528970 PMCID: PMC4661797 DOI: 10.3390/ijms161125938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA) patients are necessary, especially since therapeutic hypothermia (TH) as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods--electroencephalography (EEG) pattern, evoked potential (EP) and cellular electrophysiological measurement--were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity) provides real-time and accurate information for early-stage (particularly in the first 24 h) hypoxic-ischemic (HI) brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA) and local field potentials (LFP), has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.
Collapse
|
Review |
10 |
7 |
22
|
Duanmu WS, Cao L, Chen JY, Ge HF, Hu R, Feng H. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a. Neural Regen Res 2016; 11:641-5. [PMID: 27212927 PMCID: PMC4870923 DOI: 10.4103/1673-5374.180751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 12/25/2022] Open
Abstract
Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury.
Collapse
|
research-article |
9 |
7 |
23
|
H3K27 demethylase KDM6B aggravates ischemic brain injury through demethylation of IRF4 and Notch2-dependent SOX9 activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:622-633. [PMID: 33981480 PMCID: PMC8076647 DOI: 10.1016/j.omtn.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/17/2021] [Indexed: 01/03/2023]
Abstract
Lysine demethylase 6B (KDM6B) is a histone H3 lysine 27 (H3K27) demethylase that serves as a key mediator of gene transcription. Although KDM6B has been reported to modulate neuroinflammation after ischemic stroke, its role in ischemic brain injury is yet to be well elucidated. Therefore, this study aimed to thoroughly demonstrate the molecular mechanism underlying the effect of KDM6B on neurological function and astrocyte response in post-ischemic brain injury. Middle cerebral artery occlusion/reperfusion (MCAO) mouse models were constructed, while the oxygen-glucose deprivation/reperfusion (OGD/R) model was developed in astrocytes to mimic injury conditions. KDM6B was upregulated post-MCAO in mice and in astrocytes following the induction of OGD/R. Silencing of KDM6B resulted in suppressed neurological deficit, reduced cerebral infarction volume, attenuated neuronal cell apoptosis, and disrupted inflammation. Dual-luciferase reporter gene and chromatin immunoprecipitation-quantitative polymerase chain reaction assays revealed that KDM6B inhibited H3K27 trimethylation in the interferon regulatory factor 4 (IRF4) promoter region, resulting in the upregulation of IRF4 expression, which in turn bound to the Notch2 promoter region to induce its downstream factor SRY-related high-mobility group box 9 (SOX9). SOX9 knockdown reversed the effects of KDM6B overexpression on ischemia-triggered brain damage. Based on these findings, we concluded that KDM6B-mediated demethylation of IRF4 contributes to aggravation of ischemic brain injury through SOX9 activation.
Collapse
|
Journal Article |
4 |
6 |
24
|
Yang B, Xu J, Chang L, Miao Z, Heang D, Pu Y, Zhou X, Zhang L, Xie H. Cystatin C improves blood-brain barrier integrity after ischemic brain injury in mice. J Neurochem 2019; 153:413-425. [PMID: 31603990 DOI: 10.1111/jnc.14894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
Cystatin C, a well-established biomarker of renal function, has been associated with a protective effect against stroke. However, the potential neuroprotective mechanism of cystatin C in ischemic brain injury remains unclear. Our study hypothesized that cystatin C can ameliorate blood-brain barrier (BBB) disruption by up-regulating caveolin-1 expression, thereby improving neurological outcomes in cerebral ischemic injury. Western blotting, immunohistochemistry, immunofluorescence staining, and immunoprecipitation were performed to investigate target proteins. Evans Blue and gelatin zymography were used to examine the effect of cystatin C on BBB disruption. Plasmid and small interfering RNA transfection was used to observe alterations in caveolin-1 and occludin expression induced by changes in cystatin C expression. Intriguingly, our study showed that the expression of both cystatin C and caveolin-1 was increased in middle cerebral artery occlusion-injured mice, and pretreatment with exogenous cystatin C significantly increased caveolin-1 expression, reduced Evans Blue leakage in the injured brain region, and decreased the enzymatic activity of matrix metallopeptidase-9. Meanwhile, our study also showed that the over-expression of cystatin C greatly enhanced caveolin-1 expression, which later increased occludin expression in oxygen-glucose deprivation-exposed brain microvascular endothelial cells. The knockdown of cystatin C induced the opposite outcomes. These experimental results indicate a positive role for cystatin C in the regulation of caveolin-1 and occludin expression in cerebral ischemic injury. Taken together, these data unveil a new mechanism of the regulation of caveolin-1 expression by cystatin C in the maintenance of BBB integrity after ischemic brain injury and provide new clues for the identification of potential therapeutic strategies for stroke.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
6 |
25
|
Li PY, Wang X, Stetler RA, Chen J, Yu WF. Anti-inflammatory signaling: the point of convergence for medical gases in neuroprotection against ischemic stroke. Med Gas Res 2016; 6:227-231. [PMID: 28217296 PMCID: PMC5223315 DOI: 10.4103/2045-9912.196906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent studies suggest that a variety of medical gases confer neuroprotective effects against cerebral ischemia, extending function beyond their regular clinical applications. The mechanisms underlying ischemic neuroprotection afforded by medical gases have been intensively studied over the past two decades. A number of signaling pathways have been proposed, among which anti-inflammatory signaling has been proven to be critical. Pursuit of the role for anti-inflammatory signaling may shed new light on the translational application of medical gas-afforded neuroprotection.
Collapse
|
Review |
9 |
5 |