1
|
Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:1720-31. [PMID: 22041989 PMCID: PMC3329344 DOI: 10.4161/psb.6.11.17613] [Citation(s) in RCA: 916] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.
Collapse
|
Review |
14 |
916 |
2
|
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci 2013; 14:10242-97. [PMID: 23681010 PMCID: PMC3676838 DOI: 10.3390/ijms140510242] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/09/2023] Open
Abstract
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.
Collapse
|
Review |
12 |
402 |
3
|
Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. FRONTIERS IN PLANT SCIENCE 2016; 7:1884. [PMID: 28018412 PMCID: PMC5159420 DOI: 10.3389/fpls.2016.01884] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants.
Collapse
|
Review |
9 |
280 |
4
|
Abstract
Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Collapse
|
Review |
7 |
279 |
5
|
Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019; 9:E285. [PMID: 31319576 PMCID: PMC6680914 DOI: 10.3390/biom9070285] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
Plants face a variety of abiotic stresses, which generate reactive oxygen species (ROS), and ultimately obstruct normal growth and development of plants. To prevent cellular damage caused by oxidative stress, plants accumulate certain compatible solutes known as osmolytes to safeguard the cellular machinery. The most common osmolytes that play crucial role in osmoregulation are proline, glycine-betaine, polyamines, and sugars. These compounds stabilize the osmotic differences between surroundings of cell and the cytosol. Besides, they also protect the plant cells from oxidative stress by inhibiting the production of harmful ROS like hydroxyl ions, superoxide ions, hydrogen peroxide, and other free radicals. The accumulation of osmolytes is further modulated by phytohormones like abscisic acid, brassinosteroids, cytokinins, ethylene, jasmonates, and salicylic acid. It is thus important to understand the mechanisms regulating the phytohormone-mediated accumulation of osmolytes in plants during abiotic stresses. In this review, we have discussed the underlying mechanisms of phytohormone-regulated osmolyte accumulation along with their various functions in plants under stress conditions.
Collapse
|
Review |
6 |
209 |
6
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. Int J Mol Sci 2020; 21:ijms21020621. [PMID: 31963549 PMCID: PMC7013817 DOI: 10.3390/ijms21020621] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Plants as immovable organisms sense the stressors in their environment and respond to them by means of dedicated stress response pathways. In response to stress, jasmonates (jasmonic acid, its precursors and derivatives), a class of polyunsaturated fatty acid-derived phytohormones, play crucial roles in several biotic and abiotic stresses. As the major immunity hormone, jasmonates participate in numerous signal transduction pathways, including those of gene networks, regulatory proteins, signaling intermediates, and proteins, enzymes, and molecules that act to protect cells from the toxic effects of abiotic stresses. As cellular hubs for integrating informational cues from the environment, jasmonates play significant roles in alleviating salt stress, drought stress, heavy metal toxicity, micronutrient toxicity, freezing stress, ozone stress, CO2 stress, and light stress. Besides these, jasmonates are involved in several developmental and physiological processes throughout the plant life. In this review, we discuss the biosynthesis and signal transduction pathways of the JAs and the roles of these molecules in the plant responses to abiotic stresses.
Collapse
|
Review |
5 |
171 |
7
|
López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2589-601. [PMID: 20378666 PMCID: PMC2882257 DOI: 10.1093/jxb/erq089] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 05/17/2023]
Abstract
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses.
Collapse
|
research-article |
15 |
140 |
8
|
Dave A, Graham IA. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA). FRONTIERS IN PLANT SCIENCE 2012; 3:42. [PMID: 22645585 PMCID: PMC3355751 DOI: 10.3389/fpls.2012.00042] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/19/2012] [Indexed: 05/18/2023]
Abstract
Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA.
Collapse
|
review-article |
13 |
131 |
9
|
Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. PLANT METHODS 2012; 8:47. [PMID: 23173950 PMCID: PMC3573895 DOI: 10.1186/1746-4811-8-47] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/12/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing. RESULTS Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified. CONCLUSION The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
Collapse
|
research-article |
13 |
116 |
10
|
Nabity PD, Zavala JA, DeLucia EH. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. ANNALS OF BOTANY 2009; 103:655-63. [PMID: 18660492 PMCID: PMC2707346 DOI: 10.1093/aob/mcn127] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/04/2008] [Accepted: 06/12/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Herbivory reduces leaf area, disrupts the function of leaves, and ultimately alters yield and productivity. Herbivore damage to foliage typically is assessed in the field by measuring the amount of leaf tissue removed and disrupted. This approach assumes the remaining tissues are unaltered, and plant photosynthesis and water balance function normally. However, recent application of thermal and fluorescent imaging technologies revealed that alterations to photosynthesis and transpiration propagate into remaining undamaged leaf tissue. SCOPE AND CONCLUSIONS This review briefly examines the indirect effects of herbivory on photosynthesis, measured by gas exchange or chlorophyll fluorescence, and identifies four mechanisms contributing to the indirect suppression of photosynthesis in remaining leaf tissues: severed vasculature, altered sink demand, defence-induced autotoxicity, and defence-induced down-regulation of photosynthesis. We review the chlorophyll fluorescence and thermal imaging techniques used to gather layers of spatial data and discuss methods for compiling these layers to achieve greater insight into mechanisms contributing to the indirect suppression of photosynthesis. We also elaborate on a few herbivore-induced gene-regulating mechanisms which modulate photosynthesis and discuss the difficult nature of measuring spatial heterogeneity when combining fluorescence imaging and gas exchange technology. Although few studies have characterized herbivore-induced indirect effects on photosynthesis at the leaf level, an emerging literature suggests that the loss of photosynthetic capacity following herbivory may be greater than direct loss of photosynthetic tissues. Depending on the damage guild, ignoring the indirect suppression of photosynthesis by arthropods and other organisms may lead to an underestimate of their physiological and ecological impacts.
Collapse
|
Review |
16 |
111 |
11
|
Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L. OsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2108. [PMID: 29312378 PMCID: PMC5733117 DOI: 10.3389/fpls.2017.02108] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Jasmonates (JAs) and abscisic acid (ABA) are phytohormones known play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, OsJAZ1 was investigated for its role in drought resistance in rice. Expression of OsJAZ1 was strongly responsive to JA treatment, and it was slightly responsive to ABA, salicylic acid, and abiotic stresses including drought, salinity, and cold. The OsJAZ1-overexpression rice plants were more sensitive to drought stress treatment than the wild-type (WT) rice Zhonghua 11 (ZH11) at both the seedling and reproductive stages, while the jaz1 T-DNA insertion mutant plants showed increased drought tolerance compared to the WT plants. The OsJAZ1-overexpression plants were hyposensitive to MeJA and ABA, whereas the jaz1 mutant plants were hypersensitive to MeJA and ABA. In addition, there were significant differences in shoot and root length between the OsJAZ1 transgenic and WT plants under the MeJA and ABA treatments. A subcellular localization assay indicated that OsJAZ1 was localized in both the nucleus and cytoplasm. Transcriptome profiling analysis by RNA-seq revealed that the expression levels of many genes in the ABA and JA signaling pathways exhibited significant differences between the OsJAZ1-overexpression plants and WT ZH11 under drought stress treatment. Quantitative real-time PCR confirmed the expression profiles of some of the differentially expressed genes, including OsNCED4, OsLEA3, RAB21, OsbHLH006, OsbHLH148, OsDREB1A, OsDREB1B, SNAC1, and OsCCD1. These results together suggest that OsJAZ1 plays a role in regulating the drought resistance of rice partially via the ABA and JA pathways.
Collapse
|
research-article |
8 |
101 |
12
|
Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:433-44. [PMID: 23835361 DOI: 10.1016/j.plaphy.2013.06.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
To investigate the role of jasmonates (JAs) in the ripening of Fragaria chiloensis fruit, two concentrations of methyl jasmonate (MeJA, 10 and 100 μM) were evaluated at 2, 5 and 9 d using an in vitro ripening system. Fruit quality parameters; the contents of anthocyanin, lignin and cell wall polymers; and the transcriptional profiles of several ripening-related genes were analyzed. MeJA accelerated fruit ripening by means of a transitory increase in the soluble solid content/titratable acidity ratio, anthocyanin accumulation and an increase in softening at day 5. The expression of several phenylpropanoid-related genes, primarily those associated with anthocyanin biosynthesis, was increased under MeJA treatment, which correlated with an increased accumulation of anthocyanin. MeJA also altered the expression profiles of some cell wall-modifying genes, namely, EG1 and XTH1, and these changes correlated with a transient reduction in the firmness of MeJA-treated fruits. MeJA-responsive elements were observed in the promoter region of the EG1 gene. MeJA also increased the expression of LOX, AOS and OPR3, genes involved in the biosynthesis of JAs, and these changes correlated with the transient activation of fruit ripening observed. Conversely, the expression of ethylene and lignin biosynthesis genes (ACS, ACO, CAD and POD27) increased in MeJA-treated fruits at day 9. The present findings suggest that JAs promote the ripening of non-climacteric fruits through their involvement in anthocyanin accumulation, cell wall modification and the biosynthesis of ethylene and JAs.
Collapse
|
|
12 |
95 |
13
|
Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW, Snedden WA, Boland W, Mithöfer A. Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. MOLECULAR PLANT 2014; 7:1712-26. [PMID: 25267731 DOI: 10.1093/mp/ssu102] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Throughout their life, plants are challenged by various abiotic and biotic stress factors. Among those are attacks from herbivorous insects. The molecular mechanisms underlying the detection of herbivores and the subsequent signal transduction are not well understood. As a second messenger, fluxes in intracellular Ca(2+) levels play a key role in mediating stress response pathways. Ca(2+) signals are decoded by Ca(2+) sensor proteins such as calmodulin-like proteins (CMLs). Here, we demonstrate that recombinant CML37 behaves like a Ca(2+) sensor in vitro and, in Arabidopsis, AtCML37 is induced by mechanical wounding as well as by infestation with larvae of the generalist lepidopteran herbivore Spodoptera littoralis. Loss of function of CML37 led to a better feeding performance of larvae suggesting that CML37 is a positive defense regulator. No herbivory-induced changes in secondary metabolites such as glucosinolates or flavonoids were detected in cml37 plants, although a significant reduction in the accumulation of jasmonates was observed, due to reduced expression of JAR1 mRNA and cellular enzyme activity. Consequently, the expression of jasmonate-responsive genes was reduced as well. Summarizing, our results suggest that the Ca(2+) sensor protein, CML37, functions as a positive regulator in Ca(2+) signaling during herbivory, connecting Ca(2+) and jasmonate signaling.
Collapse
|
|
11 |
90 |
14
|
Sharma M, Laxmi A. Jasmonates: Emerging Players in Controlling Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:1129. [PMID: 26779205 PMCID: PMC4701901 DOI: 10.3389/fpls.2015.01129] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/29/2015] [Indexed: 05/17/2023]
Abstract
The sedentary life of plants has forced them to live in an environment that is characterized by the presence of numerous challenges in terms of biotic and abiotic stresses. Phytohormones play essential roles in mediating plant physiology and alleviating various environmental perturbations. Jasmonates are a group of oxylipin compounds occurring ubiquitously in the plant kingdom that play pivotal roles in response to developmental and environmental cues. Jasmonates (JAs) have been shown to participate in unison with key factors of other signal transduction pathway, including those involved in response to abiotic stress. Recent findings have furnished large body of information suggesting the role of jasmonates in cold and heat stress. JAs have been shown to regulate C-repeat binding factor (CBF) pathway during cold stress. The interaction between the integrants of JA signaling and components of CBF pathway demonstrates a complex relationship between the two. JAs have also been shown to counteract chilling stress by inducing ROS avoidance enzymes. In addition, several lines of evidence suggest the positive regulation of thermotolerance by JA. The present review provides insights into biosynthesis, signal transduction pathway of jasmonic acid and their role in response to temperature stress.
Collapse
|
Review |
10 |
82 |
15
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
|
Review |
4 |
81 |
16
|
de Ollas C, Arbona V, Gómez-Cadenas A. Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions. PLANT, CELL & ENVIRONMENT 2015; 38:2157-70. [PMID: 25789569 DOI: 10.1111/pce.12536] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 05/05/2023]
Abstract
Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA-Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1-1) and in JA-dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA-Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress-induced JA-Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.
Collapse
|
|
10 |
72 |
17
|
Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. THE NEW PHYTOLOGIST 2015; 207:91-105. [PMID: 25704234 DOI: 10.1111/nph.13337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/18/2015] [Indexed: 05/07/2023]
Abstract
Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.
Collapse
|
|
10 |
69 |
18
|
Zhang K, Logacheva MD, Meng Y, Hu J, Wan D, Li L, Janovská D, Wang Z, Georgiev MI, Yu Z, Yang F, Yan M, Zhou M. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1955-1966. [PMID: 29394372 PMCID: PMC6018783 DOI: 10.1093/jxb/ery032] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/16/2018] [Indexed: 05/17/2023]
Abstract
Jasmonates are plant hormones that induce the accumulation of many secondary metabolites, such as rutin in buckwheat, via regulation of jasmonate-responsive transcription factors. Here, we report on the identification of a clade of jasmonate-responsive subgroup 4 MYB transcription factors, FtMYB13, FtMYB14, FtMYB15, and FtMYB16, which directly repress rutin biosynthesis in Fagopyrum tataricum. Immunoblot analysis showed that FtMYB13, FtMYB14, and FtMYB15 could be degraded via the 26S proteasome in the COI1-dependent jasmonate signaling pathway, and that this degradation is due to the SID motif in their C-terminus. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that FtMYB13, FtMYB14, and FtMYB15 interact with the importin protein Sensitive to ABA and Drought 2 (FtSAD2) in stem and inflorescence. Furthermore, the key repressor of jasmonate signaling FtJAZ1 specifically interacts with FtMYB13. Point mutation analysis showed that the conserved Asp residue of the SID domain contributes to mediating protein-protein interaction. Protoplast transient activation assays demonstrated that FtMYB13, FtMYB14, and FtMYB15 directly repress phenylalanine ammonia lyase (FtPAL) gene expression, and FtSAD2 and FtJAZ1 significantly promote the repressing activity of FtMYBs. These findings may ultimately be promising for further engineering of plant secondary metabolism.
Collapse
|
research-article |
7 |
63 |
19
|
Methyl Jasmonate: An Alternative for Improving the Quality and Health Properties of Fresh Fruits. Molecules 2016; 21:molecules21060567. [PMID: 27258240 PMCID: PMC6273056 DOI: 10.3390/molecules21060567] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
Methyl jasmonate (MeJA) is a plant growth regulator belonging to the jasmonate family. It plays an important role as a possible airborne signaling molecule mediating intra- and inter-plant communications and modulating plant defense responses, including antioxidant systems. Most assessments of this compound have dealt with post-harvest fruit applications, demonstrating induced plant resistance against the detrimental impacts of storage (chilling injuries and pathogen attacks), enhancing secondary metabolites and antioxidant activity. On the other hand, the interactions between MeJA and other compounds or technological tools for enhancing antioxidant capacity and quality of fruits were also reviewed. The pleiotropic effects of MeJA have raisen numerous as-yet unanswered questions about its mode of action. The aim of this review was endeavored to clarify the role of MeJA on improving pre- and post-harvest fresh fruit quality and health properties. Interestingly, the influence of MeJA on human health will be also discussed.
Collapse
|
Review |
9 |
63 |
20
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
|
|
8 |
63 |
21
|
Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura GI, Mizutani M, Ezura H, Hashimoto T, Shoji T. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:975-990. [PMID: 29569783 DOI: 10.1111/tpj.13911] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 05/18/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.
Collapse
|
|
7 |
61 |
22
|
Shoji T, Yuan L. ERF Gene Clusters: Working Together to Regulate Metabolism. TRENDS IN PLANT SCIENCE 2021; 26:23-32. [PMID: 32883605 DOI: 10.1016/j.tplants.2020.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/18/2023]
Abstract
Plants produce structurally diverse specialized metabolites, including bioactive alkaloids and terpenoids, in response to biotic and abiotic environmental stresses. The APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family of transcription factors (TFs) play key roles in regulating biosynthesis of specialized metabolites. Increasing genomic and functional evidence shows that a subset of the ERF genes occurs in clusters on the chromosomes. These jasmonate-responsive ERF TF gene clusters control the biosynthesis of many important metabolites, from natural products, such as nicotine and steroidal glycoalkaloids (SGAs), to pharmaceuticals, such as artemisinin, vinblastine, and vincristine. Here, we review the function, regulation, and evolution of ERF clusters and highlight recent advances in understanding the distinct roles of clustered ERF genes and their possible application in metabolic engineering.
Collapse
|
Review |
4 |
59 |
23
|
Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreño AM, García-Mina JM, Solano R. An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Curr Biol 2020; 30:962-971.e3. [PMID: 32142692 DOI: 10.1016/j.cub.2020.01.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
56 |
24
|
Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:72. [PMID: 23577014 PMCID: PMC3617366 DOI: 10.3389/fpls.2013.00072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Collapse
|
research-article |
12 |
54 |
25
|
Fragoso V, Rothe E, Baldwin IT, Kim SG. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance. THE NEW PHYTOLOGIST 2014; 202:1335-1345. [PMID: 24580101 PMCID: PMC5156298 DOI: 10.1111/nph.12747] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/24/2014] [Indexed: 05/19/2023]
Abstract
While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses.
Collapse
|
research-article |
11 |
52 |