1
|
Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst 2018; 6:271-281.e7. [PMID: 29596782 PMCID: PMC6075717 DOI: 10.1016/j.cels.2018.03.002] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/21/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
548 |
2
|
Lim JM, Swami A, Gilson LM, Chopra S, Choi S, Wu J, Langer R, Karnik R, Farokhzad OC. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS NANO 2014; 8:6056-65. [PMID: 24824296 PMCID: PMC4072409 DOI: 10.1021/nn501371n] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
176 |
3
|
Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P. Target-Specific Precision of CRISPR-Mediated Genome Editing. Mol Cell 2019; 73:699-713.e6. [PMID: 30554945 PMCID: PMC6395888 DOI: 10.1016/j.molcel.2018.11.031] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.
Collapse
|
Comparative Study |
6 |
167 |
4
|
Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186:363-381.e19. [PMID: 36669472 PMCID: PMC10019067 DOI: 10.1016/j.cell.2022.12.028] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
138 |
5
|
Yang G, Chen C, Yao F, Chen Z, Zhang Q, Zheng X, Ma J, Lei H, Qin P, Xiong L, Ke W, Li G, Yan Y, Fang G. Effective Carrier-Concentration Tuning of SnO 2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706023. [PMID: 29484722 DOI: 10.1002/adma.201706023] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/11/2018] [Indexed: 05/23/2023]
Abstract
The carrier concentration of the electron-selective layer (ESL) and hole-selective layer can significantly affect the performance of organic-inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two-step method, i.e., room-temperature colloidal synthesis and low-temperature removal of additive (thiourea), to control the carrier concentration of SnO2 quantum dot (QD) ESLs to achieve high-performance PSCs is developed. By optimizing the electron density of SnO2 QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH3 NH3 PbI3 absorber is achieved. The superior uniformity of low-temperature processed SnO2 QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm2 and 16.97% efficiency flexible device. The results demonstrate the promise of carrier-concentration-controlled SnO2 QD ESLs for fabricating stable, efficient, reproducible, large-scale, and flexible planar PSCs.
Collapse
|
|
7 |
109 |
6
|
Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J Phys Chem Lett 2012; 3:3599-604. [PMID: 26290994 DOI: 10.1021/jz301805f] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed a simple, cost-effective, and scalable approach to fabricate a piezoelectric nanogenerator (NG) with stretchable and flexible characteristics using BaTiO3 nanotubes, which were synthesized by the hydrothermal method. The NG was fabricated by making a composite of the nanotubes with polymer poly(dimethylsiloxane) (PDMS). The peak open-circuit voltage and short-circuit current of the NG reached a high level of 5.5 V and 350 nA (current density of 350 nA/cm(2)), respectively. It was used to directly drive a commercial liquid crystal display. The BaTiO3 nanotubes/PDMS composite is highly transparent and useful for a large-scale (11 × 11 cm) fabrication of lead-free piezoelectric NG.
Collapse
|
|
13 |
107 |
7
|
Li T, Li GH, Li LH, Liu L, Xu Y, Ding HY, Zhang T. Large-Scale Self-Assembly of 3D Flower-like Hierarchical Ni/Co-LDHs Microspheres for High-Performance Flexible Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2562-2572. [PMID: 26751174 DOI: 10.1021/acsami.5b10158] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, a facile and inexpensive and self-assembled strategy to massively fabricate Ni/Co layered double hydroxides (LDHs) is developed under mild reaction conditions (55 °C). The resulting composite material displays a special three-dimensional hierarchical microsphere structure with well-defined flower-like configuration. The fabrication mechanism can be ascribed to stepwise and regular reaction process of nanoparticles and nanosheets gradually growing to nanopetals and then assembling into flower-like microspheres, based on the systematically investigation of various reaction factors including the Ni:Co feeding ratio, the reaction time and the initial pH-value. Because of its large surface, ultrathin feature and synergetic results of this Ni/Co LDHs nanosheets (20 nm), these Ni/Co-LDHs microspheres deliver an excellent capacitance value about 2228 F·g(-1) (1 A·g(-1)). An all-solid-state flexible asymmetric supercapacitor is designed and assembled by exploiting this Ni/Co-LDHs as the positive materials, which exhibits energy density of 165.51 Wh·kg(1-) at 1.53 KW·kg(1-). It may have vast potential significance in personal wearable equipment. Moreover, this monolithic design provides a promising approach for large scale fabrication of other LDHs materials.
Collapse
|
|
9 |
104 |
8
|
Lai H, Chen Q. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. PLANT CELL REPORTS 2012; 31:573-84. [PMID: 22134876 PMCID: PMC3278561 DOI: 10.1007/s00299-011-1196-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/07/2011] [Accepted: 11/20/2011] [Indexed: 05/19/2023]
Abstract
Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can be established for processing virus-like particles (VLPs) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
74 |
9
|
Ng CY, Kee LT, Al-Masawa ME, Lee QH, Subramaniam T, Kok D, Ng MH, Law JX. Scalable Production of Extracellular Vesicles and Its Therapeutic Values: A Review. Int J Mol Sci 2022; 23:7986. [PMID: 35887332 PMCID: PMC9315612 DOI: 10.3390/ijms23147986] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs. Here, we discussed the strategies utilized by researchers for the scalable production of EVs. Techniques such as bioreactors, mechanical stimulation, electrical stimulation, thermal stimulation, magnetic field stimulation, topographic clue, hypoxia, serum deprivation, pH modification, exposure to small molecules, exposure to nanoparticles, increasing the intracellular calcium concentration, and genetic modification have been used to improve the secretion of EVs by cultured cells. In addition, nitrogen cavitation, porous membrane extrusion, and sonication have been utilized to prepare EV-mimetic nanovesicles that share many characteristics with naturally secreted EVs. Apart from inducing EV production, these upscaling interventions have also been reported to modify the EVs' cargo and thus their functionality and therapeutic potential. In summary, it is imperative to identify a reliable upscaling technique that can produce large quantities of EVs consistently. Ideally, the produced EVs should also possess cargo with improved therapeutic potential.
Collapse
|
Review |
3 |
65 |
10
|
Wang H, Hill RT, Zheng T, Hu X, Wang B. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol 2014; 36:341-52. [PMID: 25264573 DOI: 10.3109/07388551.2014.961402] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.
Collapse
|
Review |
11 |
63 |
11
|
Antolin AA, Tym JE, Komianou A, Collins I, Workman P, Al-Lazikani B. Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Cell Chem Biol 2018; 25:194-205.e5. [PMID: 29249694 PMCID: PMC5814752 DOI: 10.1016/j.chembiol.2017.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation.
Collapse
|
research-article |
7 |
55 |
12
|
Huang M, Li YS, Zhang CQ, Cui C, Huang QQ, Li M, Qiang Z, Zhou T, Wu X, Yu HQ. Facilely tuning the intrinsic catalytic sites of the spinel oxide for peroxymonosulfate activation: From fundamental investigation to pilot-scale demonstration. Proc Natl Acad Sci U S A 2022; 119:e2202682119. [PMID: 35858430 PMCID: PMC9335229 DOI: 10.1073/pnas.2202682119] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/30/2022] [Indexed: 01/21/2023] Open
Abstract
Heterogeneous peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have shown a great potential for pollutant degradation, but their feasibility for large-scale water treatment application has not been demonstrated. Herein, we develop a facile coprecipitation method for the scalable production (∼10 kg) of the Cu-Fe-Mn spinel oxide (CuFeMnO). Such a catalyst has rich oxygen vacancies and symmetry-breaking sites, which endorse it with a superior PMS-catalytic capacity. We find that the working reactive species and their contributions are highly dependent on the properties of target organic pollutants. For the organics with electron-donating group (e.g., -OH), high-valent metal species are mainly responsible for the pollutant degradation, whereas for the organics with electron-withdrawing group (e.g., -COOH and -NO2), hydroxyl radical (•OH) as the secondary oxidant also plays an important role. We demonstrate that the CuFeMnO-PMS system is able to achieve efficient and stable removal of the pollutants in the secondary effluent from a municipal wastewater plant at both bench and pilot scales. Moreover, we explore the application prospect of this PMS-based AOP process for large-scale wastewater treatment. This work describes an opportunity to scalably prepare robust spinel oxide catalysts for water purification and is beneficial to the practical applications of the heterogeneous PMS-AOPs.
Collapse
|
research-article |
3 |
53 |
13
|
Rasilo T, Prairie YT, Del Giorgio PA. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. GLOBAL CHANGE BIOLOGY 2015; 21:1124-39. [PMID: 25220765 DOI: 10.1111/gcb.12741] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/25/2014] [Indexed: 05/15/2023]
Abstract
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2) d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.
Collapse
|
|
10 |
48 |
14
|
Fernández L, Fernández A, Mirones I, Escudero A, Cardoso L, Vela M, Lanzarot D, de Paz R, Leivas A, Gallardo M, Marcos A, Romero AB, Martínez-López J, Pérez-Martínez A. GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy. Front Immunol 2019; 10:2361. [PMID: 31649672 PMCID: PMC6795760 DOI: 10.3389/fimmu.2019.02361] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer group 2D (NKG2D) is a natural killer (NK) cell-activating receptor that recognizes different stress-induced ligands that are overexpressed in a variety of childhood and adult tumors. NKG2D chimeric antigen receptor (CAR) T cells have shown potent anticancer effects against different cancer types. A second-generation NKG2D CAR was generated by fusing full-length human NKG2D to 4-1BB costimulatory molecule and CD3ζ signaling domain. Patient-derived CAR T cells show limitations including inability to manufacture CAR T cells from the patients' own T cells, disease progression, and death prior to return of engineered cells. The use of allogeneic T cells for CAR therapy could be an attractive alternative, although undesirable graft vs. host reactions may occur. To avoid such adverse effects, we used CD45RA− memory T cells, a T-cell subset with less alloreactivity, as effector cells to express NKG2D CAR. In this study, we developed a protocol to obtain large-scale NKG2D CAR memory T cells for clinical use by using CliniMACS Prodigy, an automated closed system compliant with Good Manufacturing Practice (GMP) guidelines. CD45RA+ fraction was depleted from healthy donors' non-mobilized apheresis using CliniMACS CD45RA Reagent and CliniMACS Plus device. A total of 108 CD45RA− cells were cultured in TexMACS media supplemented with 100 IU/mL IL-2 and activated at day 0 with T Cell TransAct. Then, we used NKG2D-CD8TM-4-1BB-CD3ζ lentiviral vector for cell transduction (MOI = 2). NKG2D CAR T cells expanded between 10 and 13 days. Final cell products were analyzed to comply with the specifications derived from the quality and complementary controls carried out in accordance with the instructions of the Spanish Regulatory Agency of Medicines and Medical Devices (AEMPS) for the manufacture of investigational advanced therapy medicinal products (ATMPs). We performed four validations. The manufacturing protocol here described achieved large numbers of viable NKG2D CAR memory T cells with elevated levels of NKG2D CAR expression and highly cytotoxic against Jurkat and 531MII tumor target cells. CAR T cell final products met release criteria, except for one showing myc overexpression and another with viral copy number higher than five. Manufacturing of clinical-grade NKG2D CAR memory T cells using CliniMACS Prodigy is feasible and reproducible, widening clinical application of CAR T cell therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
45 |
15
|
Bednar JA. Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components. Front Neuroinform 2009; 3:8. [PMID: 19352443 PMCID: PMC2666198 DOI: 10.3389/neuro.11.008.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/26/2009] [Indexed: 11/13/2022] Open
Abstract
Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate.
Collapse
|
Journal Article |
16 |
35 |
16
|
van der Plas F, Ratcliffe S, Ruiz-Benito P, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Ampoorter E, Baeten L, Barbaro L, Bastias CC, Bauhus J, Benavides R, Benneter A, Bonal D, Bouriaud O, Bruelheide H, Bussotti F, Carnol M, Castagneyrol B, Charbonnier Y, Cornelissen JHC, Dahlgren J, Checko E, Coppi A, Dawud SM, Deconchat M, De Smedt P, De Wandeler H, Domisch T, Finér L, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly FX, Jucker T, Kambach S, Kaendler G, Kattge J, Koricheva J, Kunstler G, Lehtonen A, Liebergesell M, Manning P, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Ohse B, Paquette A, Peñuelas J, Pollastrini M, Radoglou K, Raulund-Rasmussen K, Roger F, Seidl R, Selvi F, Stenlid J, Valladares F, van Keer J, Vesterdal L, Fischer M, Gamfeldt L, Allan E. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol Lett 2017; 21:31-42. [PMID: 29143494 DOI: 10.1111/ele.12868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 02/04/2023]
Abstract
Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.
Collapse
|
Letter |
8 |
31 |
17
|
Guo L, Deng J, He Y, Deng X, Huang J, Huang G, Gao X, Zhang WH, Lu C. Alcohol use and alcohol-related problems among adolescents in China: A large-scale cross-sectional study. Medicine (Baltimore) 2016; 95:e4533. [PMID: 27661013 PMCID: PMC5044883 DOI: 10.1097/md.0000000000004533] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Alcohol misuse among adolescents is a common issue worldwide and is an emerging problem in China. This study aimed to investigate the prevalence of alcohol drinking and alcohol-related problems among Chinese adolescents and to explore their risk factors and connections.A cross-sectional study using an anonymous questionnaire was conducted among junior and senior high school students between 2010 and 2012. Data on self-reported alcohol use, alcohol-related problems, school factors, family factors, and psychosocial factors were collected. Descriptive analyses were made of the proportions of sociodemographics, family, school, and psychosocial factors. Multilevel logistic regression models were conducted to analyze the risk factors for alcohol drinking and alcohol-related problems.Of the 105,752 students who ranged in age from 9 to 21 years, the prevalence of current drinking among students was 7.3%, and 13.2% students reported having alcohol-related problems. Male students were 1.78 (95% confidence interval [CI] = 1.69-1.87) times more likely to be involved in current drinking and 1.86 (95% CI = 1.79-1.93) times more likely to have alcohol-related problems. Higher grade level students were at a higher risk of current drinking (adjusted odds ratio [AOR] = 1.09, 95% CI = 1.05-1.13) and having alcohol-related problems (AOR = 1.43, 95% CI = 1.42-1.58). Older students were more likely to report current drinking (AOR = 1.06, 95% CI = 1.04-1.17) and having alcohol-related problems (AOR = 1.83, 95% CI = 1.82-1.85). Having poor classmate relations (AOR = 1.28, 95% CI = 1.03-1.37), having poor relationships with teachers (AOR = 1.08, 95% CI = 1.00-1.16), and below average academic achievement (AOR = 1.50, 95% CI = 1.41-1.59) were positively associated with current drinking. Moreover, students with suicidal ideation were at a higher risk of current drinking (AOR = 1.70, 95% CI = 1.61-1.81) and having alcohol-related problems (AOR = 2.08, 95% CI = 1.98-2.16). Having higher Center for Epidemiology Scale for Depression scores was positively associated with current drinking (AOR = 1.09, 95% CI = 1.05-1.11) and having alcohol-related problems (AOR = 1.08, 95% CI = 1.06-1.18).Alcohol drinking and alcohol-related problems among Chinese adolescents are major public health problems, and effective preventive programs will require full consideration of the individual, social, and environmental factors that facilitate and prevent alcohol use.
Collapse
|
research-article |
9 |
30 |
18
|
Xu X, Liu S, Han B, Han Y, Yuan K, Xu W, Yao X, Li P, Yang S, Gong W, Muller DA, Gao P, Ye Y, Dai L. Scaling-up Atomically Thin Coplanar Semiconductor-Metal Circuitry via Phase Engineered Chemical Assembly. NANO LETTERS 2019; 19:6845-6852. [PMID: 31478675 DOI: 10.1021/acs.nanolett.9b02006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) layered semiconductors, with their ultimate atomic thickness, have shown promise to scale down transistors for modern integrated circuitry. However, the electrical contacts that connect these materials with external bulky metals are usually unsatisfactory, which limits the transistor performance. Recently, contacting 2D semiconductors using coplanar 2D conductors has shown promise in reducing the problematic high contact resistance. However, many of these methods are not ideal for scaled production. Here, we report on the large-scale, spatially controlled chemical assembly of the integrated 2H-MoTe2 field-effect transistors (FETs) with coplanar metallic 1T'-MoTe2 contacts via phase engineered approaches. We demonstrate that the heterophase FETs exhibit ohmic contact behavior with low contact resistance, resulting from the coplanar seamless contact between 2H and 1T'-MoTe2 confirmed by transmission electron microscopy characterizations. The average mobility of the heterophase FETs was measured to be as high as 23 cm2 V-1 s-1 (comparable with those of exfoliated single crystals), due to the large 2H-MoTe2 single-crystalline domain size (486 ± 187 μm). By developing a patterned growth method, we realize the 1T'-MoTe2 gated heterophase FET array whose components of the channel, gate, and contacts are all 2D materials. Finally, we transfer the heterophase device array onto a flexible substrate and demonstrate the near-infrared photoresponse with high photoresponsivity (∼1.02 A/W). Our study provides a basis for the large-scale application of phase-engineered coplanar MoTe2 semiconductor-metal structure in advanced electronics and optoelectronics.
Collapse
|
|
6 |
27 |
19
|
Zhang B, Gui X, Song P, Xu X, Guo L, Han Y, Wang L, Zhou C, Fan Y, Zhang X. Three-Dimensional Printing of Large-Scale, High-Resolution Bioceramics with Micronano Inner Porosity and Customized Surface Characterization Design for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8804-8815. [PMID: 35156367 DOI: 10.1021/acsami.1c22868] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional printing technologies have opened up new possibilities for manufacturing bioceramics with complex shapes in a completely digital fabrication process. Some bioceramics have demonstrated elaborate design and high resolution in their small parts through digital light projection (DLP) printing. However, it is still a challenge to prepare large-scale, high-precision ceramics that can effectively regulate the bioactivity of materials. In this study, we fabricated a large-scale hydroxyapatite porous bioceramic (length >150 mm) using DLP. This bioceramic had highly micronanoporous surface structures (printing resolution <65 μm), which could be controlled by adjusting the solid content and sintering process. Both in vitro and in vivo results indicated that the designed bioceramic had promising bone regeneration ability. This study provides significant evidence for exploring the effects of microenvironments on bone tissue regeneration. These results indicated that DLP technology has the potential to produce large-scale bone tissue engineering scaffolds with accurate porosity.
Collapse
|
|
3 |
26 |
20
|
Starsich FHL, Sotiriou GA, Wurnig MC, Eberhardt C, Hirt AM, Boss A, Pratsinis SE. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment. Adv Healthc Mater 2016; 5:2698-2706. [PMID: 27592719 DOI: 10.1002/adhm.201600725] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 01/25/2023]
Abstract
Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h-1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn0.4 Fe2.6 O4 ) nanoparticles coated in situ with a nanothin SiO2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn0.4 Fe2.6 O4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system.
Collapse
|
|
9 |
26 |
21
|
Buron JD, Pizzocchero F, Jessen BS, Booth TJ, Nielsen PF, Hansen O, Hilke M, Whiteway E, Jepsen PU, Bøggild P, Petersen DH. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. NANO LETTERS 2014; 14:6348-6355. [PMID: 25317778 DOI: 10.1021/nl5028167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electrical performance of graphene synthesized by chemical vapor deposition and transferred to insulating surfaces may be compromised by extended defects, including for instance grain boundaries, cracks, wrinkles, and tears. In this study, we experimentally investigate and compare the nano- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two noninvasive conductance characterization methods: ultrabroadband terahertz time-domain spectroscopy and micro four-point probe, which probe the electrical properties of the graphene film on different length scales, 100 nm and 10 μm, respectively. Ultrabroadband terahertz time-domain spectroscopy allows for measurement of the complex conductance response in the frequency range 1-15 terahertz, covering the entire intraband conductance spectrum, and reveals that the conductance response for the graphene grown on single crystalline copper intimately follows the Drude model for a barrier-free conductor. In contrast, the graphene grown on commercial copper foil shows a distinctly non-Drude conductance spectrum that is better described by the Drude-Smith model, which incorporates the effect of preferential carrier backscattering associated with extended, electronic barriers with a typical separation on the order of 100 nm. Micro four-point probe resistance values measured on graphene grown on single crystalline copper in two different voltage-current configurations show close agreement with the expected distributions for a continuous 2D conductor, in contrast with previous observations on graphene grown on commercial copper foil. The terahertz and micro four-point probe conductance values of the graphene grown on single crystalline copper shows a close to unity correlation, in contrast with those of the graphene grown on commercial copper foil, which we explain by the absence of extended defects on the microscale in CVD graphene grown on single crystalline copper. The presented results demonstrate that the graphene grown on single crystal copper is electrically continuous on the nanoscopic, microscopic, as well as intermediate length scales.
Collapse
|
|
11 |
25 |
22
|
Large-Scale Oral Treatment Study with the Four Most Promising D3-Derivatives for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22101693. [PMID: 28994710 PMCID: PMC6151452 DOI: 10.3390/molecules22101693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 01/26/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is associated with the aggregation of the amyloid β protein (Aβ). Aβ oligomers are currently thought to be the major neurotoxic agent responsible for disease development and progression. Thus, their elimination is highly desirable for therapy development. Our therapeutic approach aims at specific and direct elimination of toxic Aβ oligomers by stabilizing Aβ monomers in an aggregation-incompetent conformation. We have proven that our lead compound “D3”, an all d-enantiomeric-peptide, specifically eliminates Aβ oligomers in vitro. In vivo, D3 enhances cognition and reduces plaque load in several transgenic AD mouse models. Here, we performed a large-scale oral proof of concept efficacy study, in which we directly compared four of the most promising D3-derivatives in transgenic mice expressing human amyloid precursor protein with Swedish and London mutations (APPSL), transgenic mice, to identify the most effective compound. RD2 and D3D3, both derived from D3 by rational design, were discovered to be the most effective derivatives in improving cognition in the Morris water maze. The performance of RD2- and D3D3-treated mice within the Morris water maze was significantly better than placebo-treated mice and, importantly, nearly as good as those of non-transgenic littermates, suggesting a complete reversal of the cognitive deficit of APPSL mice.
Collapse
|
Journal Article |
8 |
24 |
23
|
Zeng S, Tong X, Zhou S, Lv B, Qiao J, Song Y, Chen M, Di J, Li Q. All-in-One Bifunctional Oxygen Electrode Films for Flexible Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803409. [PMID: 30334376 DOI: 10.1002/smll.201803409] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/27/2018] [Indexed: 06/08/2023]
Abstract
As a promising energy-storage device, rechargeable Zn-air batteries have attracted considerable interests. Herein, a bifunctional oxygen electrode film prepared by adhering NiCo2 O4 nanosheets to a nitrogen and oxygen dual-doped carbon nanotubes film in a large scale is reported. The resulting self-supporting film electrode is multifunctional, which integrates a porous conducting structure for air diffusion and charge transfer, high-performance catalysts for oxygen reduction and evolution, and novel structural flexibility. The composite film demonstrates excellent oxygen reduction/evolution reaction catalytic activities with low Tafel slopes (50 mV dec-1 for oxygen reduction reaction; 92 mV dec-1 for oxygen evolution reaction). Without any additional current collector, gas diffusion layer, or binder, the obtained bifunctional film performs as an "all-in-one" air electrode in a Zn-air battery. A 50-cm-long cable-shaped Zn-air battery based on such a film air electrode exhibits high operating potentials (≈1.2 V at 0.25 mA cm-2 ), low charging-discharging overpotentials (≈0.7 V), and stable cycling performance. Moreover, the flexible cable Zn-air batteries show excellent stability under different deformation conditions. The proposed concept of constructing scalable, all-in-one, freestanding, and flexible air electrodes would pave the way to develop next-generation wearable and portable energy-storage devices.
Collapse
|
|
7 |
23 |
24
|
Zhao H, Zhao S, Fei B, Liu H, Yang H, Dai H, Wang D, Jin W, Tang F, Gao Q, Xun H, Wang Y, Qi L, Yue X, Lin S, Gu L, Li L, Zhu T, Wei Q, Su Z, Wan TBWA, Ofori DA, Muthike GM, Mengesha YM, de Castro E Silva RM, Beraldo AL, Gao Z, Liu X, Jiang Z. Announcing the Genome Atlas of Bamboo and Rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. Gigascience 2018. [PMID: 28637269 PMCID: PMC5570132 DOI: 10.1093/gigascience/gix046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bamboo and rattan are widely grown for manufacturing, horticulture, and agroforestry. Bamboo and rattan production might help reduce poverty, boost economic growth, mitigate climate change, and protect the natural environment. Despite progress in research, sufficient molecular and genomic resources to study these species are lacking. We launched the Genome Atlas of Bamboo and Rattan (GABR) project, a comprehensive, coordinated international effort to accelerate understanding of bamboo and rattan genetics through genome analysis. GABR includes 2 core subprojects: Bamboo-T1K (Transcriptomes of 1000 Bamboos) and Rattan-G5 (Genomes of 5 Rattans), and several other subprojects. Here we describe the organization, directions, and status of GABR.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
21 |
25
|
Wu Z, Shi C, Chen A, Li Y, Chen S, Sun D, Wang C, Liu Z, Wang Q, Huang J, Yue Y, Zhang S, Liu Z, Xu Y, Su J, Zhou Y, Wen S, Yan C, Shi Y, Deng X, Jiang L, Su B. Large-Scale, Abrasion-Resistant, and Solvent-Free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207183. [PMID: 36670063 PMCID: PMC10037971 DOI: 10.1002/advs.202207183] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Indexed: 05/20/2023]
Abstract
Manufacturing abrasion-resistant superhydrophobic matters is challenging due to the fragile feature of the introduced micro-/nanoscale surface roughness. Besides the long-term durability, large scale at meter level, and 3D complex structures are of great importance for the superhydrophobic objects used across diverse industries. Here it is shown that abrasion-resistant, half-a-meter scaled superhydrophobic objects can be one-step realized by the selective laser sintering (SLS) 3D printing technology using hydrophobic-fumed-silica (HFS)/polymer composite grains. The HFS grains serve as the hydrophobic guests while the sintered polymeric network provides the mechanical strength, leading to low-adhesion, intrinsic superhydrophobic objects with desired 3D structures. It is found that as-printed structures remained anti-wetting capabilities even after undergoing different abrasion tests, including knife cutting test, rude file grinding test, 1000 cycles of sandpaper friction test, tape test and quicksand impacting test, illustrating their abrasion-resistant superhydrophobic stability. This strategy is applied to manufacture a shell of the unmanned aerial vehicle and an abrasion-resistant superhydrophobic shoe, showing the industrial customization of large-scale superhydrophobic objects. The findings thus provide insight for designing intrinsic superhydrophobic objects via the SLS 3D printing strategy that might find use in drag-reduce, anti-fouling, or other industrial fields in harsh operating environments.
Collapse
|
research-article |
2 |
21 |