1
|
Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res 2009; 50 Suppl:S183-8. [PMID: 19106071 PMCID: PMC2674716 DOI: 10.1194/jlr.r800069-jlr200] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/19/2008] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein (apo) E has roles beyond lipoprotein metabolism. The detrimental effects of apoE4 in cardiovascular, neurological, and infectious diseases correlate with its structural features (e.g., domain interaction) that distinguish it from apoE3 and apoE2. Structure/function studies revealed that apoE2 is severely defective in LDL receptor binding because of a structural difference that alters the receptor binding region and helped unravel the mechanism of type III hyperlipoproteinemia. ApoE4 is the major genetic risk factor for Alzheimer's disease and sets the stage for neuropathological disorders precipitated by genetic, metabolic, and environmental stressors. ApoE also influences susceptibility to parasitic, bacterial, and viral infections. In HIV-positive patients, apoE4 homozygosity hastens progression to AIDS and death and increases susceptibility to opportunistic infections. The next phase in our understanding of apoE will be characterized by clinical intervention to prevent or reverse the detrimental effects of apoE4 by modulating its structure or blocking the pathological processes it mediates.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
394 |
2
|
Brown MS, Goldstein JL. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J Lipid Res 2009; 50 Suppl:S15-27. [PMID: 18974038 PMCID: PMC2674699 DOI: 10.1194/jlr.r800054-jlr200] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 10/29/2008] [Indexed: 01/12/2023] Open
Abstract
Cholesterol biosynthesis is among the most intensely regulated processes in biology. Synthetic rates vary over hundreds of fold depending on the availability of an external source of cholesterol. Studies of this feedback regulatory process have a rich history. The field began 75 years ago when Rudolf Schoenheimer measured cholesterol balance in mice in a bottle. He found that cholesterol feeding led to decreased cholesterol synthesis, thereby introducing the general phenomenon by which end products of biosynthetic pathways inhibit their own synthesis. Recently, cholesterol feedback has been explained at a molecular level with the discovery of membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs), and an appreciation of the sterol-sensing role of their partner, an escort protein called Scap. The key element in Scap is a hexapeptide sequence designated MELADL (rhymes with bottle). Thus, over 75 years, Schoenheimer's bottle led to Scap's MELADL. In addition to their basic importance in membrane biology, these studies have implications for the regulation of plasma cholesterol levels and consequently for the development of atherosclerotic plaques, myocardial infarctions, and strokes. In this article we review the major milestones in the cholesterol feedback story.
Collapse
|
Historical Article |
16 |
367 |
3
|
Abstract
Atherosclerosis is a complex, multifactorial disease with both genetic and environmental determinants. Experimental investigation of the effects of these determinants on the development and progression of atherosclerosis has been greatly facilitated by the use of targeted mouse models of the disease, particularly those resulting from the absence of functional genes for apolipoprotein E or the low density lipoprotein receptor (LDLR). This review focuses on the influence on atherosclerosis of combining apoE or LDLR deficiencies with factors affecting atherogenesis, including (1) inflammatory processes, (2) glucose metabolism, (3) blood pressure, and (4) coagulation and fibrinolysis. We also discuss the general problem of using the mouse to test the effects on atherogenesis of human polymorphic variations and future ways of enhancing the usefulness of these mouse models.
Collapse
|
Review |
25 |
100 |
4
|
Kibbey RG, Rizo J, Gierasch LM, Anderson RG. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. J Cell Biol 1998; 142:59-67. [PMID: 9660863 PMCID: PMC2133019 DOI: 10.1083/jcb.142.1.59] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Revised: 05/29/1998] [Indexed: 02/08/2023] Open
Abstract
Previously the hexapeptide motif FXNPXY807 in the cytoplasmic tail of the LDL receptor was shown to be essential for clustering in clathrin-coated pits. We used nuclear magnetic resonance line-broadening and transferred nuclear Overhauser effect measurements to identify the molecule in the clathrin lattice that interacts with this hexapeptide, and determined the structure of the bound motif. The wild-type peptide bound in a single conformation with a reverse turn at residues NPVY. Tyr807Ser, a peptide that harbors a mutation that disrupts receptor clustering, displayed markedly reduced interactions. Clustering motif peptides interacted with clathrin cages assembled in the presence or absence of AP2, with recombinant clathrin terminal domains, but not with clathrin hubs. The identification of terminal domains as the primary site of interaction for FXNPXY807 suggests that adaptor molecules are not required for receptor-mediated endocytosis of LDL, and that at least two different tyrosine-based internalization motifs exist for clustering receptors in coated pits.
Collapse
|
research-article |
27 |
78 |
5
|
Nishimoto T, Amano Y, Tozawa R, Ishikawa E, Imura Y, Yukimasa H, Sugiyama Y. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro. Br J Pharmacol 2003; 139:911-8. [PMID: 12839864 PMCID: PMC1573926 DOI: 10.1038/sj.bjp.0705332] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. 2. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED(50), 2.9 mg kg(-1)) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. 3. In marmosets, TAK-475 (30, 100 mg kg(-1), p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg(-1), p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. 4. TAK-475 (60 mg kg(-1), p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. 5. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of (125)I-low-density lipoprotein (LDL) to LDL receptors. 6. These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia.
Collapse
|
research-article |
22 |
57 |
6
|
Li H, Liu J. Identification of heterogeneous nuclear ribonucleoprotein K as a transactivator for human low density lipoprotein receptor gene transcription. J Biol Chem 2010; 285:17789-97. [PMID: 20371611 PMCID: PMC2878543 DOI: 10.1074/jbc.m109.082057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/05/2010] [Indexed: 01/09/2023] Open
Abstract
hnRNP K, a member of the family of heterogeneous ribonucleoproteins, is known to exert various functional roles in the nucleus, cytoplasm, and mitochondria to affect different cellular processes including chromatin remodeling, transcription, splicing, and translation. Here we report, for the first time, that hnRNP K is specifically involved in human LDL receptor (LDLR) gene transcription in HepG2 cells. We show that depletion of hnRNP K by siRNA transfection reduces the expression of LDLR mRNA and protein by more than 50% as measured by quantitative real-time PCR and Western blot analysis. Importantly, we show that the decay rate of LDLR mRNA is not affected by hnRNP K siRNA transfection, whereas the LDLR promoter activity is significantly decreased. Furthermore, overexpression of hnRNP K increased the LDLR promoter activity by the luciferase reporter assay. By utilizing a series of mutational and deletional constructs of LDLR promoter luciferase reporters, we mapped the K-responsive element to the repeat 3 (R3) sequence of the LDLR promoter. Electrophoretic mobility shift assays show that the K protein binds to a single-stranded DNA probe containing the CT-rich element of R3, which is in contrast to the requirement of double-stranded DNA for Sp1 to bind to R3. Finally, chromatin immunoprecipitation assays reveal a direct interaction of hnRNP K with the LDLR promoter in intact HepG2 cells. These new findings provide strong evidence demonstrating that hnRNP K is an important transactivator for human LDLR gene transcription. This work sheds new light on our current understanding of how LDLR gene expression is controlled at the transcriptional level.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
19 |
7
|
Oka K, Mullins CE, Kushwaha RS, Leen AM, Chan L. Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector. Gene Ther 2015; 22:87-95. [PMID: 25231173 PMCID: PMC4289097 DOI: 10.1038/gt.2014.85] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/03/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022]
Abstract
Autosomal dominant familial hypercholesterolemia (FH) is a monogenic life-threatening disease. We tested the efficacy of low-density lipoprotein receptor (LDLR) gene therapy using helper-dependent adenoviral vector (HDAd) in a nonhuman primate model of FH, comparing intravenous injection versus intrahepatic arterial injection in the presence of balloon catheter-based hepatic venous occlusion. Rhesus monkeys heterozygous for mutant LDLR gene (LDLR+/-) developed hypercholesterolemia while on a high-cholesterol diet. We treated them with HDAd-LDLR either by intravenous delivery or by catheter-based intrahepatic artery injection. Intravenous injection of ⩽1.1 × 10(12) viral particles (vp) kg(-1) failed to have any effect on plasma cholesterol. Increasing the dose to 5 × 10(12) vp kg(-1) led to a 59% lowering of the plasma cholesterol that lasted for 30 days before it returned to pre-treatment levels by day 40. A further increase in dose to 8.4 × 10(12) vp kg(-1) resulted in severe lethal toxicity. In contrast, direct hepatic artery injection following catheter-based hepatic venous occlusion enabled the use of a reduced HDAd-LDLR dose of 1 × 10(12) vp kg(-1) that lowered plasma cholesterol within a week, and reached a nadir of 59% pre-treatment level on days 20-48 after injection. Serum alanine aminotransferase remained normal until day 48 when it went up slightly and stayed mildly elevated on day 72 before it returned to normal on day 90. In this monkey, the HDAd-LDLR-induced trough of hypocholesterolemia started trending upward on day 72 and returned to pre-treatment levels on day 120. We measured the LDL apolipoprotein B turnover rate at 10 days before, and again 79 days after, HDAd-LDLR treatment in two monkeys that exhibited a cholesterol-lowering response. HDAd-LDLR therapy increased the LDL fractional catabolic rate by 78 and 50% in the two monkeys, coincident with an increase in hepatic LDLR mRNA expression. In conclusion, HDAd-mediated LDLR gene delivery to the liver using a balloon catheter occlusion procedure is effective in reversing hypercholesterolemia in a nonhuman primate FH model; however, the unsustainability of the hypocholesterolemic response during 3-4 months of follow up and heterogeneous response to the treatment remains a challenge.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
18 |
8
|
Pal S, Thomson AM, Bottema CDK, Roach PD. Alpha-tocopherol modulates the low density lipoprotein receptor of human HepG2 cells. Nutr J 2003; 2:3. [PMID: 12773205 PMCID: PMC156638 DOI: 10.1186/1475-2891-2-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 05/12/2003] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to determine the effects of vitamin E (alpha-tocopherol) on the low density lipoprotein (LDL) receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of alpha, delta, or gamma-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of alpha-tocopherol was biphasic. Up to a concentration of 50 microM, alpha-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 microM alpha-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 microM alpha-tocopherol. However, at alpha-tocopherol concentrations higher than 50 microM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for alpha-tocopherol in that delta and gamma-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, alpha-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.
Collapse
|
research-article |
22 |
17 |
9
|
Tohyama J, Billheimer JT, Fuki IV, Rothblat GH, Rader DJ, Millar JS. Effects of nevirapine and efavirenz on HDL cholesterol levels and reverse cholesterol transport in mice. Atherosclerosis 2009; 204:418-23. [PMID: 18990393 PMCID: PMC2755296 DOI: 10.1016/j.atherosclerosis.2008.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/15/2008] [Accepted: 09/16/2008] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The mechanism by which non-nucleoside reverse transcriptase inhibitors (NNRTIs) increase HDL cholesterol (HDL-C) in HIV+ patients and the benefits of this with respect to cardiovascular risk are not known. Studies were conducted to test the hypothesis that NNRTIs have a beneficial effect on HDL-C and reverse cholesterol transport (RCT). METHODS LDLr-/- and hA-I transgenic mice were fed a Western diet containing either nevirapine (20mg/kg per day), efavirenz (10mg/kg per day), or diet alone. hA-I transgenic mice underwent a study to measure RCT (measured by excretion of macrophage [(3)H]-cholesterol into HDL and feces) at 8 weeks. RESULTS LDLr-/- and hA-I transgenic mice treated with nevirapine and efavirenz had a significant increase in HDL-C level (up to 23% in hA-I transgenic) at 4 weeks. However, there was no difference in HDL levels beyond 4 weeks of treatment. At 4 weeks, the FPLC profile of hA-I transgenic mice showed an increase in large HDL. hApoA-I transgenic mice treated with efavirenz for 4 weeks had increased expression of human apoA-I in liver and an increased human apoA-I production rate. Incubation of plasma from hA-I transgenic mice treated for 4 weeks with [(3)H]-cholesterol-labeled macrophages revealed increased cholesterol efflux to plasma from mice treated with efavirenz and nevirapine. Following injection of hA-I transgenic mice treated for 8 weeks with [(3)H]-cholesterol-labeled macrophages, RCT was increased in the efavirenz (p=0.01) group and trended towards an increase in the nevirapine (p=0.15) group. CONCLUSION Nevirapine and efavirenz transiently increased HDL-C in LDLr-/- and hA-I transgenic mice fed a Western diet that was associated with increased apoA-I production. An increase in RCT in hA-I transgenic mice at 8 weeks despite no difference in HDL levels indicates that these drugs affect additional factors in the RCT pathway that enhance cholesterol efflux from the macrophage and peripheral tissues to plasma and delivery to liver for excretion. These results suggest that treatment with NNRTIs has a beneficial effect on cholesterol efflux and RCT.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
17 |
10
|
Lara LL, Rivera H, Perez-P C, Blanca I, Bianco NE, De Sanctis JB. Low density lipoprotein receptor expression and function in human polymorphonuclear leucocytes. Clin Exp Immunol 1997; 107:205-12. [PMID: 9010277 PMCID: PMC1904546 DOI: 10.1046/j.1365-2249.1997.d01-888.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Low density lipoprotein receptors (LDLR), capable of internalizing LDL, are expressed in polymorphonuclear neutrophils (PMN). The expression was assessed using anti-LDLR antibody by flow cytometry. The internalization of LDL was assessed by: (i) quantification of the uptake of labelled LDL with 1,1'-dioctadecyl-3,3,3',3' tetramethyl-indocarboxycyanine perchlorate (DiI) by flow cytometry; and (ii) the binding of LDL-125I. In fresh purified cells, Lineweaver Burk analysis of LDL binding (LDL-DiI) revealed that the calculated Kd (internalized LDL) for PMN (15.0 x 10(-9) M) is lower than the Kd for monocytes (1.1 x 10(-7) M) and the Kd for lymphocytes (3.2 x 10(-7) M). Scatchard analysis (LDL-125I) revealed 25,000 binding sites and a Kd of 9.6 x 10(-9) M for PMN. The interaction of LDL with its receptor caused a two-fold fast (peak at 1 min) and transient increase in the oxidative burst, measured by the formation of 2',7' dicholoflurescein (DCF) by flow cytometry. This effect was not observed in monocytes or lymphocytes, and it was blocked by anti-LDLR antibody. The stimulation of LDL was optimal at 10 microg of protein/ml. LDL was able to suppress DCF formation induced by phorbol myristate acetate (PMA) and PMA was unable to further stimulate LDL-treated cells, suggesting protein kinase-C (PKC) involvement in LDL effects. Using a PKC assay, LDL was shown to induce a two-fold increase in PKC translocation to the membrane. Thus, LDL increases PMN oxidative burst through a PKC-dependent pathway.
Collapse
|
research-article |
28 |
16 |
11
|
He NY, Li Q, Wu CY, Ren Z, Gao Y, Pan LH, Wang MM, Wen HY, Jiang ZS, Tang ZH, Liu LS. Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol Sin 2017; 38:301-311. [PMID: 28112180 PMCID: PMC5342665 DOI: 10.1038/aps.2016.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), also known as neural apoptosis regulated convertase (NARC1), is a key modulator of cholesterol metabolism. PCSK9 increases the serum concentration of low-density lipoprotein cholesterol by escorting low-density lipoprotein receptors (LDLRs) from the membrane of hepatic cells into lysosomes, where the LDLRs are degraded. Owing to the importance of PCSK9 in lipid metabolism, considerable effort has been made over the past decade in developing drugs targeting PCSK9 to lower serum lipid levels. Nevertheless, some problems and challenges remain. In this review we first describes the structure and function of PCSK9 and its gene polymorphisms. We then discuss the various designs of pharmacological targets of PCSK9, including those that block the binding of PCSK9 to hepatic LDLRs (mimetic peptides, adnectins, and monoclonal antibodies), inhibit PCSK9 expression (the clustered regularly interspaced short palindromic repeats/Cas9 platform, small molecules, antisense oligonucleotides, and small interfering RNAs), and interfere with PCSK9 secretion. Finally, this review highlights future challenges in this field, including safety concerns associated with PCSK9 monoclonal antibodies, the limited utility of PCSK9 inhibitors in the central nervous system, and the cost-effectiveness of PCSK9 inhibitors.
Collapse
|
Review |
8 |
14 |
12
|
Bunnoy A, Saenphet K, Lumyong S, Saenphet S, Chomdej S. Monascus purpureus-fermented Thai glutinous rice reduces blood and hepatic cholesterol and hepatic steatosis concentrations in diet-induced hypercholesterolemic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:88. [PMID: 25880551 PMCID: PMC4381394 DOI: 10.1186/s12906-015-0624-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Red yeast rice (RYR) is a fermented product used as a food supplement to promote blood circulation and lower blood cholesterol levels in eastern Asia. Interestingly, monacolin K is the most active compound in RYR that proved to inhibit HMG-CoA reductase in the cholesterol biosynthesis pathway. METHODS The hypocholesterolemic effects of oral administration of Thai RYR, produced by fermentation of Thai glutinous rice (Oryza sativa L. var. Niaw San-pah-tawng) with Monascus purpureus CMU 002U, were determined in normal and hypercholesterolemic rats. The rats were divided into six groups, and fed two different kinds of diet. Groups I-II, normal rats fed with a normal diet (SP-diet), were treated with distilled water (SP-control) and 2.0 g/kg/day of RYR extract (SP-2 g). In Groups III-VI, the rats were rendered hypercholesterolemic by feeding them a high fat and cholesterol diet (HFC-diet), and were treated with distilled water (HFC-control), 1.0 g/kg/day (HFC-1 g), 2.0 g/kg/day (HFC-2 g) of RYR extract, and 5.0 mg/kg/day of rosuvastatin (HFC-rosuvastatin) for 30 days, respectively. RESULTS The RYR extract significantly decreased the concentrations of serum total cholesterol and low density lipoprotein cholesterol (LDL-C), atherosclerotic index, LDL-C/HDL-C ratio and hepatic cholesterol levels in both HFC-1 g and HFC-2 g groups (p < 0.05) as compared with the HFC-control group, and with no significant change in high density lipoprotein cholesterol (HDL-C) concentrations among all six groups. The reduction of serum TC and LDL-C also paralleled the observed changes in mRNA expressions of the genes involved in cholesterol biosynthesis and homeostasis in the liver. The hypercholesterolemic rats treated with RYR extract were significantly higher in LDLR and HMGR expression, but lower in CYP7A1 expression when compared to the untreated hypercholesterolemic rats (HFC-control) (p < 0.05). The hepatic injuries in hypercholesterolemic rats were also obviously alleviated by RYR extract. CONCLUSIONS The extract of Thai RYR possessed potent hypocholesterolemic and anti-atherogenic activities in diet-induced hypercholesterolemic rats. The possible mechanism involving cholesterol-lowering potential of the extract might contribute to its ability to increase LDL-C endocytosis in hepatocyte and to competitively inhibit HMG-CoA reductase, a key enzyme for cholesterol biosynthesis in liver.
Collapse
|
research-article |
10 |
12 |
13
|
Lindholm D, Bornhauser BC, Korhonen L. Mylip makes an Idol turn into regulation of LDL receptor. Cell Mol Life Sci 2009; 66:3399-402. [PMID: 19688294 PMCID: PMC11115883 DOI: 10.1007/s00018-009-0127-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 01/29/2023]
Abstract
High blood low-density-lipoprotein (LDL) cholesterol is a serious health problem among an increased number of patients in the Western world. Statins and other cholesterol lowering drugs have proven to be beneficial as therapy but are not optimal and show adverse effects in some patients. The LDL receptor is a crucial determinant of cholesterol metabolism in the body and amenable for drug interventions. Novel insights into the physiology of this receptor come from studies on the ubiquitination and degradation of LDL receptor by the ubiquitin ligase Mylip/Idol that is induced in cells by the nuclear receptor, LXR. This may open up new possibilities in the future to influence LDL receptor levels and cholesterol metabolism pharmacologically in various diseases.
Collapse
|
Review |
16 |
10 |
14
|
Franceschini N, Muallem H, Rose KM, Boerwinkle E, Maeda N. Low density lipoprotein receptor polymorphisms and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. J Thromb Haemost 2009; 7:496-8. [PMID: 19087220 PMCID: PMC2656439 DOI: 10.1111/j.1538-7836.2008.03262.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
Letter |
16 |
7 |
15
|
Mehta KD. Role of mitogen-activated protein kinases and protein kinase C in regulating low-density lipoprotein receptor expression. Gene Expr 2002; 10:153-64. [PMID: 12173743 PMCID: PMC5977515 DOI: 10.3727/000000002783992451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2002] [Indexed: 11/24/2022]
Abstract
The cell signaling pathways that culminate in induction of low-density lipoprotein (LDL) receptor transcription in response to a variety of extracellular and intracellular signals are beginning to be defined. Evidence is accumulating that LDL receptor transcription is under complex regulation and that a major pathway of induction by cytokines, growth factors, anisomycin, and phorbol esters involves the extracellular/mitogen-activated protein kinase (p42/44MAPK) cascade. In fact, degree of p42/44MAPK activation determines the extent of LDL receptor induction. The suppression of LDL receptor expression by stress-activated p38MAPK via p42/44MAPK provides a potential mechanism for stress-induced hypercholesterolemia observed in humans and animals. Moreover, endogenous signals such as cholesterol regulate LDL receptor transcription through a different signaling cascade involving protein kinase Cepsilon isoform (PKCepsilon). The ability of cholesterol to directly bind PKCepsilon in an isoform-specific manner strongly supports its role in sensing the cellular cholesterol levels. The emerging picture from the above studies is that regulation of LDL receptor transcription results from the activity of a number of interlinked regulatory molecules and pathways, rather than from a single linear series of events. These studies will provide the necessary framework for understanding differential responses within human populations to atherosclerosis following high-fat/cholesterol diet. This information may also provide new strategies to modulate specific gene expression with the hope to develop novel therapies for the treatment of hypercholesterolemia.
Collapse
|
Review |
23 |
7 |
16
|
Harsch M, Gebhardt A, Reymann A, Lang G, Schliack M, Löser R, Braesen JH, Niendorf A. Effects of pravastatin on cholesterol metabolism of cholesterol-fed heterozygous WHHL rabbits. Br J Pharmacol 1998; 124:277-82. [PMID: 9641543 PMCID: PMC1565386 DOI: 10.1038/sj.bjp.0701831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. We administered the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor pravastatin at a daily dose of 1 mg kg(-1) body weight to cholesterol-fed (0.03%) heterozygous Watanabe heritable hyperlipidaemic rabbits, an animal model for heterozygous familial hypercholesterolaemia. 2. After 12 months of cholesterol treatment, immunohistochemistry with the monoclonal antibody 9D9 was used to detect hepatic low density lipoprotein (LDL) receptors, which were quantified by densitometry. In addition we determined LDL receptor mRNA by competitive reverse transcriptase polymerase chain reaction. The cholesterol precursor lathosterol and the plant sterol campesterol were analysed by gas-liquid chromatography. 3. The drug reduced total plasma cholesterol levels by 51% (P=0.04), when compared to the control group. Unexpectedly, hepatic LDL receptor density and mRNA showed no significant differences between the groups. Total plasma levels of lathosterol and campesterol also revealed no significant differences between the groups, if expressed relative to plasma cholesterol. 4. The findings suggest that mechanisms other than induced hepatic LDL receptors are responsible for the cholesterol-lowering effect of pravastatin in this animal model. We propose a reduced cholesterol absorption efficiency compatible with similar campesterol levels between both groups observed in our study.
Collapse
|
research-article |
27 |
3 |
17
|
Berglund L, Witztum JL, Galeano NF, Khouw AS, Ginsberg HN, Ramakrishnan R. Three-fold effect of lovastatin treatment on low density lipoprotein metabolism in subjects with hyperlipidemia: increase in receptor activity, decrease in apoB production, and decrease in particle affinity for the receptor. Results from a novel triple-tracer approach. J Lipid Res 1998; 39:913-24. [PMID: 9555954 PMCID: PMC3988111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To differentiate effects of lovastatin on low density lipoprotein (LDL) receptor activity from effects on LDL metabolic properties, LDL apolipoprotein B (apoB) turnover was studied in eight hyperlipidemic subjects during baseline and lovastatin treatment, in the latter case with LDL tracers isolated during both baseline (CLDL) and drug treatment (Rx-LDL) conditions. Lovastatin (40 mg/day) significantly lowered total plasma and LDL cholesterol levels (27% and 25%, respectively) as well as plasma triglyceride levels (30%). Using contemporaneous tracers (C-LDL before and Rx-LDL during treatment), lovastatin caused a modest increase in LDL fractional catabolic rate (FCR) (0.410+/-0.113 vs. 0.339+/-0.108 pools/day, P < 0.04 by paired t). The increase in LDL tracer FCR was higher when C-LDL tracer isolated during the untreated period was injected during lovastatin treatment (0.496+/-0.177 vs. 0.339+/-0.108 pools/day, P < 0.02). These in vivo studies in humans were confirmed by injecting LDL tracers from two patients into five guinea pigs. The C-LDL tracer was cleared consistently faster than the Rx-LDL tracer (0.082+/-0.018 vs. 0.057+/-0.015 pools/h, P< 0.001). The results demonstrate three important outcomes of lovastatin treatment in these subjects: LDL receptor activity increased by 49% (P < 0.02); LDL apoB production rate decreased by 17% (P < 0.03), and LDL particle in vivo affinity for the LDL receptor decreased by 15% (P < 0.01). The decrease in LDL particle affinity partially negated the expected effect of increased LDL receptors on LDL clearance. The present study provides an explanation for earlier observations by several investigators using contemporaneous tracers that treatment with HMG-CoA reductase inhibitors resulted in only modest increases in low density lipoprotein functional catabolic rate.
Collapse
|
research-article |
27 |
|
18
|
Tancevski I, Eller P, Patsch JR, Ritsch A. The resurgence of thyromimetics as lipid-modifying agents. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2009; 10:912-918. [PMID: 19705333 PMCID: PMC2993058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aggressive reduction of LDL-cholesterol levels by treatment with statins is a key component of preventive cardiovascular care; however, additional therapies to prevent atherosclerosis and the associated clinical sequelae are still needed. Thyromimetic compounds selective for the liver or for the thyroid hormone receptor isoform beta1 constitute a novel approach for the treatment of dyslipidemia. In preclinical studies, selective thyromimetics significantly reduced plasma cholesterol levels and provided protection from atherosclerosis by upregulating the hepatic LDL receptor and promoting reverse cholesterol transport. Importantly, data from ongoing clinical trials have provided the first evidence that selective thyromimetics may also reduce the levels of plasma cholesterol in humans.
Collapse
|
Review |
16 |
|