1
|
Ladau J, Eloe-Fadrosh EA. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol 2019; 27:662-669. [PMID: 31000488 DOI: 10.1016/j.tim.2019.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Microbial communities play a major role in disease, biogeochemical cycling, agriculture, and bioremediation. However, identifying the ecological processes that govern microbial community assembly and disentangling the relative impacts of those processes has proven challenging. Here, we propose that this discord is due to microbial systems being studied at different spatial, temporal, and phylogenetic scales. We argue that different processes dominate at different scales, and that through a more explicit consideration of spatial, temporal, and phylogenetic grains and extents (the two components of scale) a more accurate, clear, and useful understanding of microbial community assembly can be developed. We demonstrate the value of applying ecological concepts of scale to microbiology, specifically examining their application to nestedness, legacy effects, and taxa-area relationships of microbial systems. These proposed considerations of scale will help resolve long-standing debates in microbial ecology regarding the processes determining the assembly of microbial communities, and provide organizing principles around which hypotheses and theories can be developed.
Collapse
|
Review |
6 |
84 |
2
|
Huang M, Wang X, Keenan TF, Piao S. Drought timing influences the legacy of tree growth recovery. GLOBAL CHANGE BIOLOGY 2018; 24:3546-3559. [PMID: 29729065 DOI: 10.1111/gcb.14294] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Whether and how the timing of extreme events affects the direction and magnitude of legacy effects on tree growth is poorly understood. In this study, we use a global database of Ring-Width Index (RWI) from 2,500 sites to examine the impact and legacy effects (the departure of observed RWI from expected RWI) of extreme drought events during 1948-2008, with a particular focus on the influence of drought timing. We assessed the recovery of stem radial growth in the years following severe drought events with separate groupings designed to characterize the timing of the drought. We found that legacies from extreme droughts during the dry season (DS droughts) lasted longer and had larger impacts in each of the 3 years post drought than those from extreme droughts during the wet season (WS droughts). At the global scale, the average integrated legacy from DS droughts (0.18) was about nine times that from WS droughts (0.02). Site-level comparisons also suggest stronger negative impacts or weaker positive impacts of DS droughts on tree growth than WS droughts. Our results, therefore, highlight that the timing of drought is a crucial factor determining drought impacts on tree recovery. Further increases in baseline aridity could therefore exacerbate the impact of punctuated droughts on terrestrial ecosystems.
Collapse
|
|
7 |
69 |
3
|
Khunti K, Kosiborod M, Ray KK. Legacy benefits of blood glucose, blood pressure and lipid control in individuals with diabetes and cardiovascular disease: Time to overcome multifactorial therapeutic inertia? Diabetes Obes Metab 2018; 20:1337-1341. [PMID: 29405543 DOI: 10.1111/dom.13243] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality globally and the largest contributor to healthcare costs. There is good evidence that management of risk factors such as blood pressure, dyslipidaemia and glucose can lead to improved microvascular and macrovascular complications in individuals with type 2 diabetes mellitus. Legacy effect is a phenomenon used to describe the prolonged benefits of glucose, blood pressure or lipid control in individuals with cardiovascular disease, diabetes or in primary prevention of cardiovascular disease by early risk factor control. There is now also good quality evidence on the legacy benefits of multifactorial risk factor interventions on renal, cardiovascular and mortality outcomes. Despite this robust evidence, therapeutic inertia is widespread in the management of these risk factors in clinical practice.
Collapse
|
Review |
7 |
66 |
4
|
Gherardi LA, Sala OE. Effect of interannual precipitation variability on dryland productivity: A global synthesis. GLOBAL CHANGE BIOLOGY 2019; 25:269-276. [PMID: 30338886 DOI: 10.1111/gcb.14480] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Climate-change assessments project increasing precipitation variability through increased frequency of extreme events. However, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. Here, we report on the effects of interannual precipitation variability on the primary production of global drylands, which include deserts, steppes, shrublands, grasslands, and prairies and cover about 40% of the terrestrial earth surface. We used a global database that has 43 datasets, which are uniformly distributed in parameter space and each has at least 10 years of data. We found (a) that at the global scale, precipitation variability has a negative effect on aboveground net primary production. (b) Expected increases in interannual precipitation variability for the year 2,100 may result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect of precipitation interannual variability on dryland productivity changes from positive to negative along a precipitation gradient. Arid sites with mean precipitation under 300 mm/year responded positively to increases in precipitation variability, whereas sites with mean precipitation over 300 mm/year responded negatively. We propose three complementary mechanisms to explain this result: (a) concave-up and concave-down precipitation-production relationships in arid vs. humid systems, (b) shift in the distribution of water in the soil profile, and (c) altered frequency of positive and negative legacies. Our results demonstrated that enhanced precipitation variability will have direct impacts on global drylands that can potentially affect the future terrestrial carbon sink.
Collapse
|
|
6 |
62 |
5
|
Jing J, Cong WF, Bezemer TM. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability. TRENDS IN PLANT SCIENCE 2022; 27:781-792. [PMID: 35701291 DOI: 10.1016/j.tplants.2022.05.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Agricultural intensification has had long-lasting negative legacies largely because of excessive inputs of agrochemicals (e.g., fertilizers) and simplification of cropping systems (e.g., continuous monocropping). Conventional agricultural management focuses on suppressing these negative legacies. However, there is now increasing attention for creating positive above- and belowground legacies through selecting crop species/genotypes, optimizing temporal and spatial crop combinations, improving nutrient inputs, developing intelligent fertilizers, and applying soil or microbiome inoculations. This can lead to enhanced yields and reduced pest and disease pressure in cropping systems, and can also mitigate greenhouse gas emissions and enhance carbon sequestration in soils. Strengthening positive legacies requires a deeper understanding of plant-soil-microbiome interactions and innovative crop, input, and soil management which can help to achieve agricultural sustainability.
Collapse
|
Review |
3 |
46 |
6
|
Ward SE, Smart SM, Quirk H, Tallowin JRB, Mortimer SR, Shiel RS, Wilby A, Bardgett RD. Legacy effects of grassland management on soil carbon to depth. GLOBAL CHANGE BIOLOGY 2016; 22:2929-2938. [PMID: 26854892 DOI: 10.1111/gcb.13246] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.
Collapse
|
|
9 |
42 |
7
|
Gao S, Liu R, Zhou T, Fang W, Yi C, Lu R, Zhao X, Luo H. Dynamic responses of tree-ring growth to multiple dimensions of drought. GLOBAL CHANGE BIOLOGY 2018; 24:5380-5390. [PMID: 29963735 DOI: 10.1111/gcb.14367] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/25/2023]
Abstract
Droughts, which are characterized by multiple dimensions including frequency, duration, severity, and onset timing, can impact tree stem radial growth profoundly. Different dimensions of drought influence tree stem radial growth independently or jointly, which makes the development of accurate predictions a formidable challenge. Measurement-based tree-ring data have obvious advantages for studying the drought responses of trees. Here, we explored the use of abundant tree-ring records for quantifying regional response patterns to key dimensions of drought. Specifically, we designed a series of regional-scaled "natural experiments," based on 357 tree-ring chronologies from Southwest USA and location-matched monthly water balance anomalies, to reveal how tree-ring responds to each dimension of drought. Our results showed that tree-ring was affected significantly more by the water balance condition in the current hydrological year than that in the prior hydrological year. Within the current hydrological year, increased drought frequency (number of dry months) and duration (maximum number of consecutive dry months) resulted in "cumulative effects" which amplified the impacts of drought on trees and reduced the drought resistance of trees. Drought events that occurred in the pregrowing seasons strongly affected subsequent tree stem radial growth. Both the onset timing and severity of drought increased "legacy effects" on tree stem radial growth, which reduced the drought resilience of trees. These results indicated that the drought impact on trees is a dynamic process: even when the total water deficits are the same, differences among the drought processes could lead to considerably different responses from trees. This study thus provides a conceptual framework and probabilistic patterns of tree-ring growth response to multiple dimensions of drought regimes, which in turn may have a wide range of implications for predictions, uncertainty assessment, and forest management.
Collapse
|
|
7 |
32 |
8
|
Bahn M, Reichstein M, Dukes JS, Smith MD, McDowell NG. Climate-biosphere interactions in a more extreme world. THE NEW PHYTOLOGIST 2014; 202:356-359. [PMID: 24383455 DOI: 10.1111/nph.12662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
Letter |
11 |
26 |
9
|
Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Geng X, Peñuelas J, Zhang X, Janssens IA, Campioli M. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. TREE PHYSIOLOGY 2019; 39:1277-1284. [PMID: 30989235 DOI: 10.1093/treephys/tpz041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called for.
Collapse
|
|
6 |
20 |
10
|
Fox A, Lüscher A, Widmer F. Plant species identity drives soil microbial community structures that persist under a following crop. Ecol Evol 2020; 10:8652-8668. [PMID: 32884648 PMCID: PMC7452769 DOI: 10.1002/ece3.6560] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Compared to monocultures, multi-species swards have demonstrated numerous positive diversity effects on aboveground plant performance, such as yield, N concentration, and even legacy effects on a following crop. Whether such diversity effects are seen in the soil microbiome is currently unclear. In a field experiment, we analyzed the effect that three plant species (a grass, forb, and legume), and mixtures of these, had on soil fungal and bacterial community structures, as well as their associated legacy effects under a following crop, the grass Lolium multiflorum. We utilized six sward types, three monocultures (Lolium perenne, Cichorium intybus and Trifolium pratense), two bi-species mixtures, and a mixture of the three species. Soil samples were taken from these swards in March (at the end of a three year conditioning phase) and in June, August, and September after L. multiflorum was established, that is, the legacy samplings. When present, the differing monocultures had a significant effect on various aspects of the fungal community: structure, OTU richness, the relative abundance of the phylum Glomeromycota, and indicator OTUs. The effect on bacterial community structure was not as strong. In the multi-species swards, a blending of individual plant species monoculture effects (identity effect) was seen in (a) fungal and bacterial community structure and (b) fungal OTU richness and the relative abundance of the Glomeromycota. This would indicate that plant species identity, rather than diversity effects (i.e., the interactions among the plant species), was the stronger determinant. During the legacy samplings, structural patterns in the fungal and bacterial communities associated with the previous swards were retained, but the effect faded with time. These results highlight that plant species identity can be a strong driver of soil microbial community structures. They also suggest that their legacy effect on the soil microbiome may play a crucial role in following crop performance.
Collapse
|
research-article |
5 |
19 |
11
|
Zhang X, Liu Y, Zhang F, Li J, Tong N. Legacy Effect of Intensive Blood Glucose Control on Cardiovascular Outcomes in Patients With Type 2 Diabetes and Very High Risk or Secondary Prevention of Cardiovascular Disease: A Meta-analysis of Randomized Controlled Trials. Clin Ther 2018; 40:776-788.e3. [PMID: 29656857 DOI: 10.1016/j.clinthera.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/22/2018] [Accepted: 03/26/2017] [Indexed: 01/15/2023]
Abstract
PURPOSE We performed a meta-analysis to investigate the legacy effect of >5 years of intensive blood glucose lowering on cardiovascular outcomes in patients with type 2 diabetes and very high risk or secondary prevention of cardiovascular disease (CVD). METHODS We mainly searched PubMed, Embase, and the Cochrane Library for relevant randomized controlled trials. Patients in the included studies had intensive glucose lowering for >5 years and posttrial follow-up for at least 5 years. Primary end points were all-cause mortality and cardiovascular death. Secondary end points were major macrovascular events, myocardial infarction, and stroke. We used risk ratios (RRs) with 95% CIs as summary statistics. FINDINGS We included 3 trials that involved 13,684 patients, of whom 6805 received intensive glucose-lowering treatment and 6879 received standard treatment. The mean total follow-up duration was 10.3 years, which included 5.4 years of in-trial intervention and 5.5 years of posttrial follow-up. Intensive glucose control treatment did not significantly reduce all-cause mortality (RR = 0.98; 95% CI, 0.87-1.10) or cardiovascular death (RR = 0.97; 95% CI, 0.87-1.09). No significant risk reduction was found for stroke (RR = 1.02; 95% CI, 0.92-1.14), myocardial infarction (RR = 0.91; 95% CI, 0.75-1.09), or major macrovascular events (RR = 0.99; 95% CI, 0.93-1.06). IMPLICATIONS A legacy effect of >5-year intensive blood glucose control on cardiovascular outcomes in patients with type 2 diabetes and very high risk or secondary prevention of CVD was not detected, although this effect might be applicable in patients with diabetes and primary prevention of CVD. Further investigation of the legacy effect in different CVD risk populations should therefore be performed.
Collapse
|
Meta-Analysis |
7 |
15 |
12
|
Zou J, Ding J, Welp M, Huang S, Liu B. Assessing the Response of Ecosystem Water Use Efficiency to Drought During and after Drought Events across Central Asia. SENSORS (BASEL, SWITZERLAND) 2020; 20:E581. [PMID: 31973086 PMCID: PMC7038223 DOI: 10.3390/s20030581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022]
Abstract
The frequency and intensity of drought are expected to increase worldwide in the future. However, it is still unclear how ecosystems respond to drought. Ecosystem water use efficiency (WUE) is an essential ecological index used to measure the global carbon-water cycles, and is defined as the carbon absorbed per unit of water lost by the ecosystem. In this study, we applied gross primary productivity (GPP), evapotranspiration (ET), land surface temperature (LST), and normalized difference vegetation index (NDVI) data to calculate the WUE and drought index (temperature vegetation dryness index (TVDI)), all of which were retrieved from moderate resolution imaging spectroradiometer (MODIS) data. We compared the mean WUE across different vegetation types, drought classifications, and countries. The temporal and spatial changes in WUE and drought were analyzed. The correlation between drought and WUE was calculated and compared across different vegetation types, and the differences in WUE between drought and post-drought periods were compared. The results showed that (1) ecosystems with a low (high) productivity had a high (low) WUE, and the mean ecosystem WUE of Central Asia showed vast differences across various drought levels, countries, and vegetation types. (2) The WUE in Central Asia exhibited an increasing trend from 2000 to 2014, and Central Asia experienced both drought (from 2000 to 2010) and post-drought (from 2011 to 2014) periods. (3) The WUE showed a negative correlation with drought during the drought period, and an obvious drought legacy effect was found, in which severe drought affected the ecosystem WUE over the following two years, while a positive correlation between WUE and drought was found in the post-drought period. (4) A significant increase in ecosystem WUE was found after drought, which revealed that arid ecosystems exhibit high resilience to drought stress. Our results can provide a specific reference for understanding how ecosystems will respond to climate change.
Collapse
|
research-article |
5 |
12 |
13
|
Viñas Esmel E, Naval Álvarez J, Sacanella Meseguer E. The Legacy Effect in the Prevention of Cardiovascular Disease. Nutrients 2020; 12:E3227. [PMID: 33105611 PMCID: PMC7690390 DOI: 10.3390/nu12113227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The "legacy effect" describes the long-term benefits that may persist for many years after the end of an intervention period, involving different biological processes. The legacy effect in cardiovascular disease (CVD) prevention has been evaluated by a limited number of studies, mostly based on pharmacological interventions, while few manuscripts on dietary interventions have been published. Most of these studies are focused on intensive treatment regimens, whose main goal is to achieve tight control of one or more cardiovascular risk factors. This review aims to summarise the legacy effect-related results obtained in those studies and to determine the existence of this effect in CVD prevention. There is sufficient data to suggest the existence of a legacy effect after intensive intervention on cardiovascular risk factors; however, this effect is not equivalent for all risk factors and could be influenced by patient characteristics, disease duration, and the type of intervention performed. Currently, available evidence suggests that the legacy effect is greater in subjects with moderately-high cardiovascular risk but without CVD, especially in those patients with recent-onset diabetes. However, preventive treatment for CVD should not be discontinued in high-risk subjects, as the level of existing evidence on the legacy effect is low to moderate.
Collapse
|
Review |
5 |
10 |
14
|
Zhang K, Qiu Y, Zhao Y, Wang S, Deng J, Chen M, Xu X, Wang H, Bai T, He T, Zhang Y, Chen H, Wang Y, Hu S. Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semi-arid grassland. GLOBAL CHANGE BIOLOGY 2023; 29:3114-3129. [PMID: 36892227 DOI: 10.1111/gcb.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2 O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. -30%) influenced soil N2 O and carbon dioxide (CO2 ) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2 O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2 O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2 O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2 O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.
Collapse
|
|
2 |
10 |
15
|
Qu Y, Weinstein A, Wang Z, Cheng Y, Kingsley L, Levine A, Martin E, Munro C, Ragin AB, Rubin LH, Sacktor NW, Seaberg EC, Becker JT. Legacy effect on neuropsychological function in HIV-infected men on combination antiretroviral therapy. AIDS 2022; 36:19-27. [PMID: 34524146 PMCID: PMC8665003 DOI: 10.1097/qad.0000000000003071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine whether combination antiretroviral therapy (cART) initiation alters the trajectory of cognitive performance in HIV+ men, and whether cognition prior to cART predicts postcART function. DESIGN Longitudinal cohort study. Multicenter AIDS Cohort Study. METHODS From an initial set of 3701 men with complete neuropsychological data, men with HIV infection were initially matched with men without infection on cognitive status, race, age, and timeline (T0 defined as cART initiation). Propensity score matching was then used to match pairs on depressive symptoms at T0, education, T0 cognitive scores, and recruitment cohort. There were 506 matched pairs of infected and uninfected men in the final analysis. Mixed effect models were constructed to analyze the trajectories of cognitive functions and to test the effect of cART and HIV on cognitive functions over time. RESULTS Performance in each cognitive domain did not change following the initiation of cART among HIV-infected men with prior impairment and was comparable to the performance of their matched uninfected men. However, among the infected men who were unimpaired prior to cART, motor function declined significantly faster than it did for uninfected controls. CONCLUSIONS Cognitive dysfunction is persistent in HIV-infected men and cART does not alter the trajectory of cognitive decline in men who were impaired prior to effective therapy. This suggests that current cognitive impairment in HIV+ men results from a legacy effect, and from factors other than the HIV itself. Furthermore, motor skills may be uniquely vulnerable to the virus, cART, or age-related co-morbidities.
Collapse
|
Multicenter Study |
3 |
9 |
16
|
Signarbieux C, Toledano E, Sanginés de Carcer P, Fu YH, Schlaepfer R, Buttler A, Vitasse Y. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. GLOBAL CHANGE BIOLOGY 2017; 23:4569-4580. [PMID: 28464396 DOI: 10.1111/gcb.13740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
In temperate trees, the timings of plant growth onset and cessation affect biogeochemical cycles, water, and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 days compared to the control, whereas it was delayed by only 10 days in saplings that experienced a warmer winter. Budburst timing in 2015 was not significantly impacted by the artificial advance or delay of the budburst timing in 2014, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.
Collapse
|
|
8 |
8 |
17
|
The Effects of Continuous and Withdrawal Voluntary Wheel Running Exercise on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of Young Mice. Int J Mol Sci 2020; 22:ijms22010264. [PMID: 33383848 PMCID: PMC7794976 DOI: 10.3390/ijms22010264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Obesity has become a global medical problem. The upregulation of senescence-related markers in adipose tissue may cause impairment of adipose tissue and disorders of systemic metabolism. Weight control through diet has been found to ameliorate senescence in the adipose tissue. Exercise is also important in maintaining a healthy lifestyle, however, very few researchers have examined the relationship between senescence-related markers in adipose tissue. Dietary restriction is also reported to have a legacy effect, wherein the effects are maintained for some periods after the termination of the intervention. However, very few researchers have examined the relationship between exercise and senescence-related markers in adipose tissue. Besides, there is no study on the long-term effects of exercise. Hence, we investigated whether the exercise could change the expression of senescence-related genes in the visceral adipose tissue of young mice and whether there was a legacy effect of exercise for 10 weeks after the termination of exercise. Four-week-old male ICR mice were assigned to one of the three groups: 20 weeks of sedentary condition, 20 weeks of voluntary wheel running exercise, or 10 weeks of exercise followed by 10 weeks of sedentary condition. The mice showed decreased expression in genes related to senescence and senescence-associated secretory phenotype, such as p53, p16, and IL-6, in the visceral adipose tissue in response to exercise. These effects were maintained for 10 weeks after the mice stopped exercising. Our study is the first report that exercise reduces the expression of senescence-related genes in the visceral adipose tissue of young mice, and that exercise causes the legacy effect.
Collapse
|
|
5 |
7 |
18
|
Ding F, Li S, Lu J, Penn CJ, Wang QW, Lin G, Sardans J, Penuelas J, Wang J, Rillig MC. Consequences of 33 Years of Plastic Film Mulching and Nitrogen Fertilization on Maize Growth and Soil Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311089 DOI: 10.1021/acs.est.2c08878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plastic film mulching and urea nitrogen fertilization are widely used in agricultural ecosystems, but both their long-term use may leave a negative legacy on crop growth, due to deleterious effects of plastic and microplastic accumulation and acidification in soil, respectively. Here, we stopped covering soil with a plastic film in an experimental site that was previously covered for 33 years and compared soil properties and subsequent maize growth and yield between plots that were previously and never covered with the plastic film. Soil moisture was about 5-16% higher at the previously mulched plot than at the never-mulched plot, but NO3- content was lower for the former when with fertilization. Maize growth and yield were generally similar between previously and never-mulched plots. Maize had an earlier dough stage (6-10 days) in previously mulched compared to never-mulched plots. Although plastic film mulching did add substantial amounts of film residues and microplastic accumulation into soils, it did not leave a net negative legacy (given the positive effects of the mulching practice in the first place) for soil quality and subsequent maize growth and yield, at least as an initial effect in our experiment. Long-term urea fertilization resulted in a pH decrease of about 1 unit, which bring a temporary maize P deficiency occurring in early stages of growth. Our data add long-term information on this important form of plastic pollution in agricultural systems.
Collapse
|
|
2 |
5 |
19
|
Koufakis T, Popovic DS, Papanas N. Should tirzepatide be considered for early management in type 2 diabetes? Pros and cons. Expert Opin Pharmacother 2023; 24:1657-1660. [PMID: 37450311 DOI: 10.1080/14656566.2023.2237414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
|
Editorial |
2 |
5 |
20
|
Pither J, Pickles BJ. The paleosymbiosis hypothesis: host plants can be colonised by root symbionts that have been inactive for centuries to millenia. FEMS Microbiol Ecol 2017; 93:3806672. [PMID: 28486678 DOI: 10.1093/femsec/fix061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/08/2017] [Indexed: 11/14/2022] Open
Abstract
Paleoecologists have speculated that post-glacial migration of tree species could have been facilitated by mycorrhizal symbionts surviving glaciation as resistant propagules belowground. The general premise of this idea, which we call the 'paleosymbiosis hypothesis', is that host plants can access and be colonised by fungal root symbionts that have been inactive for millennia. Here, we explore the plausibility of this hypothesis by synthesising relevant findings from a diverse literature. For example, the paleoecology literature provided evidence of modern roots penetrating paleosols containing ancient (>6000 years) fungal propagules, though these were of unknown condition. With respect to propagule longevity, the available evidence is of mixed quality, but includes convincing examples consistent with the paleosymbiosis hypothesis (i.e. >1000 years viable propagules). We describe symbiont traits and environmental conditions that should favour the development and preservation of an ancient propagule bank, and discuss the implications for our understanding of soil symbiont diversity and ecosystem functioning. We conclude that the paleosymbiosis hypothesis is plausible in locations where propagule deposition and preservation conditions are favourable (e.g. permafrost regions). We encourage future belowground research to consider and explore the potential temporal origins of root symbioses.
Collapse
|
Review |
8 |
3 |
21
|
Tsao CF, Chang YH, Shen FC, Su YJ, Lin HY, Chang CS, Lin CY, Lian WS, Chuang JH, Lin TK, Liou CW, Wang PW, Weng SW. Legacy Effect of Antioxidant N-acetylcysteine in Cellular Senescence of Diet-induced Obesity Mice. Curr Mol Med 2020; 21:506-525. [PMID: 33191885 DOI: 10.2174/1566524020999201113101738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cellular senescence is a state of stable growth arrest triggered by mitogenic and metabolic stressors. Ageing and a high-fat diet (HFD) are proven inducers of senescence in various organs, presenting a challenge for ageing populations worldwide. Our previous study demonstrated that ROS scavenger N-acetylcysteine (NAC) can improve insulin resistance (IR) and chronic inflammation in diet-induced obesity mice, an effect better achieved through early intervention. We, herein, investigate whether NAC can improve cellular senescence in a diet-induced obesity mouse model, and whether a legacy effect is presented with early intervention. MATERIALS AND METHODS For a twelve-month treatment course, all C57B/L6 mice were fed a chow diet (CD), high-fat high-sucrose diet (HFD), CD+NAC1-12 (NAC intervention 1st-12th month), HFD+NAC1-12, and HFD+NAC1-6 (NAC intervention 1st-6th month). Staticalanalysis was used to analyze the different markers of cellular senescence and inflammation. RESULTS Throughout the study, the HFD group exhibited significantly increased body weight (BW) and body fat, markers of senescence, decreased motor activity (MA) and impaired glucose tolerance. Compared to the HFD group, the HFD+NAC1-12 group exhibited increased MA, decreased BW and body fat, improved glucose tolerance, and decreased senescence markers.The HFD+NAC1-6 group showed similar effects to the HFD+NAC1-12 group, despite discontinuing NAC for 6 months. Our study showed that NAC significantly increased MA in both HFD+NAC1-12 and HFD+NAC1-6 groups, and improved HFD-induced mitochondrial and intracellular ROS expression, DNA and protein oxidative damage, and adipose tissue inflammation. CONCLUSION Legacy effect was indeed presented in HFD-induced cellular senescence with NAC intervention, with possible mechanisms being persistently increased motor activity and anti-oxidative stress effects.
Collapse
|
|
5 |
2 |
22
|
Babushkina EA, Dergunov DR, Belokopytova LV, Zhirnova DF, Upadhyay KK, Tripathi SK, Zharkov MS, Vaganov EA. Non-linear Response to Cell Number Revealed and Eliminated From Long-Term Tracheid Measurements of Scots Pine in Southern Siberia. FRONTIERS IN PLANT SCIENCE 2021; 12:719796. [PMID: 34671371 PMCID: PMC8521138 DOI: 10.3389/fpls.2021.719796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Dendroclimatic research offers insight into tree growth-climate response as a solution to the forward problem and provides reconstructions of climatic variables as products of the reverse problem. Methodological developments in dendroclimatology have led to the inclusion of a variety of tree growth parameters in this field. Tree-ring traits developed during short time intervals of a growing season can potentially provide a finer temporal scale of both dendroclimatic applications and offer a better understanding of the mechanisms of tree growth reaction to climatic variations. Furthermore, the transition from classical dendroclimatic studies based on a single integral variable (tree-ring width) to the modern multitude of quantitative variables (e.g., wood anatomical structure) adds a lot of complexity, which mainly arises from intrinsic feedbacks between wood traits and muddles seasonality of registered climatic signal. This study utilized life-long wood anatomical measurements of 150- to 280-year-old trees of Pinus sylvestris L. growing in a moisture-sensitive habitat of the forest-steppe of Southern Siberia (Russia) to investigate and eliminate legacy effect from cell production in tracheid traits. Anatomical parameters were calculated to describe the results of the three main subsequent stages of conifer xylem tracheid development, namely, cell number per radial file in the ring, mean and maximum cell radial diameter, and mean and maximum cell-wall thickness. Although tree-ring width was almost directly proportional to cell number, non-linear relationships with cell number were revealed in tracheid measurements. They exhibited a stronger relationship in the areas of narrow rings and stable anatomical structure in wider rings. The exponential models proposed in this study demonstrated these relationships in numerical terms with morphometric meaning. The ratio of anatomical measurements to their modeled values was used to develop long-term anatomical chronologies, which proved to retain information about climatic fluctuations independent of tree-ring width (cell number), despite decreased common signal.
Collapse
|
research-article |
4 |
2 |
23
|
Pothen L, Balligand JL. Legacy in Cardiovascular Risk Factors Control: From Theory to Future Therapeutic Strategies? Antioxidants (Basel) 2021; 10:antiox10111849. [PMID: 34829720 PMCID: PMC8614708 DOI: 10.3390/antiox10111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
In medicine, a legacy effect is defined as the sustained beneficial effect of a given treatment on disease outcomes, even after cessation of the intervention. Initially described in optimized control of diabetes, it was also observed in clinical trials exploring intensification strategies for other cardiovascular risk factors, such as hypertension or hypercholesterolemia. Mechanisms of legacy were particularly deciphered in diabetes, leading to the concept of metabolic memory. In a more discreet manner, other memory phenomena were also described in preclinical studies that demonstrated long-lasting deleterious effects of lipids or angiotensin II on vascular wall components. Interestingly, epigenetic changes and reactive oxygen species (ROS) appear to be common features of “memory” of the vascular wall.
Collapse
|
Review |
4 |
2 |
24
|
Xin Y, Fan Y, Babalola OO, Zhang X, Yang W. Legacy Effects of Biochar and Compost Addition on Arbuscular Mycorrhizal Fungal Community and Co-Occurrence Network in Black Soil. Microorganisms 2022; 10:2137. [PMID: 36363729 PMCID: PMC9692858 DOI: 10.3390/microorganisms10112137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/11/2025] Open
Abstract
Compost and biochar are beneficial soil amendments which derived from agricultural waste, and their application was proven to be effective practices for promoting soil fertility. Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species, and are recognized as one group of the most important soil microorganisms to increase food security in sustainable agriculture. To understand the legacy effects of compost and biochar addition on AM fungal communities, a field study was conducted on the Songnen Plain, Northeast China. Two years after application, compost addition improved soil aggregate stability, but we did not detect a legacy effect of compost addition on AM fungal community. Our results indicated that AM fungal Shannon diversity and Pielou evenness indices were significantly increased by one-time biochar addition, but unaffected by compost addition after two year's application. PERMANOVA analysis also revealed a legacy effect of biochar addition on AM fungal community. Network analysis revealed a dramatically simplified AM fungal co-occurrence network and small network size in biochar added soils, demonstrated by their topological properties (e.g., low connectedness and betweenness). However, AM fungal community did not differ among aggregate fractions, as confirmed by the PERMANOVA analysis as well as the fact that only a small number of AM fungal OTUs were shared among aggregate fractions. Consequently, the current study highlights a stronger legacy effect of biochar than compost addition on AM fungi, and have implications for agricultural practices.
Collapse
|
research-article |
3 |
2 |
25
|
Ho CLB, Sanders S, Doust J, Breslin M, Reid CM, Nelson MR. Legacy Effect of Delayed Blood Pressure-Lowering Pharmacotherapy in Middle-Aged Individuals Stratified by Absolute Cardiovascular Disease Risk: Protocol for a Systematic Review. JMIR Res Protoc 2017; 6:e177. [PMID: 28864428 PMCID: PMC5600968 DOI: 10.2196/resprot.8362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Many national and international guidelines recommend that the initiation of blood pressure (BP)-lowering drug treatment for the primary prevention of cardiovascular disease (CVD) should no longer be based on BP level alone, but on absolute cardiovascular risk. While BP-lowering drug treatment is beneficial in high-risk individuals at any level of elevated BP, clinicians are concerned about legacy effects on patients with low-to-moderate risk and mildly elevated BP who remain "untreated". OBJECTIVE We aim to investigate the legacy effect of delayed BP-lowering pharmacotherapy in middle-aged individuals (45-65 years) with mildly elevated BP (systolic BP 140-159 mmHg and/or diastolic BP 90-99 mmHg) stratified by absolute risk for primary prevention of CVD, but particularly in the low-risk (<10% five-year absolute risk) group. METHODS Randomized trials of BP-lowering therapy versus placebo or pretreated subjects in active comparator studies with posttrial follow-up will be identified using a 2-step process. First, randomized trials of BP-lowering therapy will be identified by (1) retrieving the references of trials included in published systematic reviews of BP-lowering therapy, (2) retrieving studies published by the Blood Pressure Lowering Treatment Trialists' Collaboration (BPLTTC), and (3) checking studies referenced in the 1993 World Health Organization/International Society of Hypertension meeting memorandum on BP management. Posttrial follow-up studies will then be identified by forward citation searching the randomized trials identified in step 1 through Web of Science. The search will include randomized controlled trials with at least 1-year in-trial period and a posttrial follow-up phase. Age is the major determinant of absolute cardiovascular risk, so the participants in our review will be restricted to middle-aged adults who are more likely to have a lower cardiovascular risk profile. The primary outcome will be all-cause mortality. Secondary outcomes will include cardiovascular mortality, fatal stroke, fatal myocardial infarction, and death due to heart failure. RESULTS The searches for existing systematic reviews and BPLTTC studies were piloted and modified. The study is expected to be completed before June 2018. CONCLUSIONS The findings of this study will contribute to the body of knowledge concerning the beneficial, neutral, or harmful effects of delayed BP-lowering drug treatment on the primary prevention of CVD in patients with mildly elevated BP and low-to-moderate CVD risk. TRIAL REGISTRATION PROSPERO International Prospective Register of Systematic Reviews: CRD42017058414; https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017058414 (Archived by WebCite® at http://www.webcitation.org/6t6sa8O2Q).
Collapse
|
research-article |
8 |
2 |