Scacchetti A, Shields EJ, Trigg NA, Lee GS, Wilusz JE, Conine CC, Bonasio R. A
ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini.
Mol Cell 2024;
84:3843-3859.e8. [PMID:
39096899 PMCID:
PMC11455606 DOI:
10.1016/j.molcel.2024.07.008]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/12/2023] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Despite the numerous sequencing methods available, the diversity in RNA size and chemical modification makes it difficult to capture all RNAs in a cell. We developed a method that combines quasi-random priming with template switching to construct sequencing libraries from RNA molecules of any length and with any type of 3' modifications, allowing for the sequencing of virtually all RNA species. Our ligation-independent detection of all types of RNA (LIDAR) is a simple, effective tool to identify and quantify all classes of coding and non-coding RNAs. With LIDAR, we comprehensively characterized the transcriptomes of mouse embryonic stem cells, neural progenitor cells, mouse tissues, and sperm. LIDAR detected a much larger variety of tRNA-derived RNAs (tDRs) compared with traditional ligation-dependent sequencing methods and uncovered tDRs with blocked 3' ends that had previously escaped detection. Therefore, LIDAR can capture all RNAs in a sample and uncover RNA species with potential regulatory functions.
Collapse