1
|
Zhao L, Lee KM, Roh K, Khan SUZ, Rand BP. Improved Outcoupling Efficiency and Stability of Perovskite Light-Emitting Diodes using Thin Emitting Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805836. [PMID: 30412319 DOI: 10.1002/adma.201805836] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/08/2018] [Indexed: 05/21/2023]
Abstract
Hybrid organic-inorganic perovskite semiconductors have shown potential to develop into a new generation of light-emitting diode (LED) technology. Herein, an important design principle for perovskite LEDs is elucidated regarding optimal perovskite thickness. Adopting a thin perovskite layer in the range of 35-40 nm is shown to be critical for both device efficiency and stability improvements. Maximum external quantum efficiencies (EQEs) of 17.6% for Cs0.2 FA0.8 PbI2.8 Br0.2 , 14.3% for CH3 NH3 PbI3 (MAPbI3 ), 10.1% for formamidinium lead iodide (FAPbI3 ), and 11.3% for formamidinium lead bromide (FAPbBr3 )-based LEDs are demonstrated with optimized perovskite layer thickness. Optical simulations show that the improved EQEs source from improved light outcoupling. Furthermore, elevated device temperature caused by Joule heating is shown as an important factor contributing to device degradation, and that thin perovskite emitting layers maintain lower junction temperature during operation and thus demonstrate increased stability.
Collapse
|
|
6 |
103 |
2
|
Shen Y, Cheng LP, Li YQ, Li W, Chen JD, Lee ST, Tang JX. High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901517. [PMID: 31012195 DOI: 10.1002/adma.201901517] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/30/2019] [Indexed: 05/15/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) show great application potential in high-quality flat-panel displays and solid-state lighting due to their steadily improved efficiency, tunable colors, narrow emission peak, and easy solution-processing capability. However, because of high optical confinement and nonradiative charge recombination during electron-photon conversion, the highest reported efficiency of PeLEDs remains far behind that of their conventional counterparts, such as inorganic LEDs, organic LEDs, and quantum-dot LEDs. Here a facile route is demonstrated by adopting bioinspired moth-eye nanostructures at the front electrode/perovskite interface to enhance the outcoupling efficiency of waveguided light in PeLEDs. As a result, the maximum external quantum efficiency and current efficiency of the modified cesium lead bromide (CsPbBr3 ) green-emitting PeLEDs are improved to 20.3% and 61.9 cd A-1 , while retaining spectral and angular independence. Further reducing light loss in the substrate mode using a half-ball lens, efficiencies of 28.2% and 88.7 cd A-1 are achieved, which represent the highest values reported to date for PeLEDs. These results represent a substantial step toward achieving practical applications of PeLEDs.
Collapse
|
|
6 |
101 |
3
|
Lien DH, Kang JS, Amani M, Chen K, Tosun M, Wang HP, Roy T, Eggleston MS, Wu MC, Dubey M, Lee SC, He JH, Javey A. Engineering light outcoupling in 2D materials. NANO LETTERS 2015; 15:1356-61. [PMID: 25602462 DOI: 10.1021/nl504632u] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Collapse
|
|
10 |
65 |
4
|
Bai W, Xuan T, Zhao H, Dong H, Cheng X, Wang L, Xie RJ. Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302283. [PMID: 37246938 DOI: 10.1002/adma.202302283] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) are strong candidates for next-generation display and lighting technologies due to their high color purity and low-cost solution-processed fabrication. However, PeLEDs are not superior to commercial organic light-emitting diodes (OLEDs) in efficiency, as some key parameters affecting their efficiency, such as the charge carrier transport and light outcoupling efficiency, are usually overlooked and not well optimized. Here, ultrahigh-efficiency green PeLEDs are reported with quantum efficiencies surpassing a milestone of 30% by regulating the charge carrier transport and near-field light distribution to reduce electron leakage and achieve a high light outcoupling efficiency of 41.82%. Ni0.9 Mg0.1 Ox films are applied with a high refractive index and increased hole carrier mobility as the hole injection layer to balance the charge carrier injection and insert the polyethylene glycol layer between the hole transport layer and the perovskite emissive layer to block the electron leakage and reduce the photon loss. Therefore, with the modified structure, the state-of-the-art green PeLEDs achieve a world record external quantum efficiency of 30.84% (average = 29.05 ± 0.77%) at a luminance of 6514 cd m-2 . This study provides an interesting idea to construct super high-efficiency PeLEDs by balancing the electron-hole recombination and enhancing the light outcoupling.
Collapse
|
|
2 |
60 |
5
|
Nam S, Oh N, Zhai Y, Shim M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS NANO 2015; 9:878-885. [PMID: 25565187 DOI: 10.1021/nn506577p] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent advances in colloidal quantum dot light-emitting diodes (QD-LEDs) have led to efficiencies and brightness that rival the best organic LEDs. Nearly ideal internal quantum efficiency being achieved leaves light outcoupling as the only remaining means to improve external quantum efficiency (EQE) but that might require radically different device design and reoptimization. However, the current state-of-the-art QD-LEDs are based on spherical core/shell QDs, and the effects of shape and optical anisotropy remain essentially unexplored. Here, we demonstrate solution-processed, red-emitting double-heterojunction nanorod (DHNR)-LEDs with efficient hole transport exhibiting low threshold voltage and high brightness (76,000 cd m(-2)) and efficiencies (EQE = 12%, current efficiency = 27.5 cd A(-1), and power efficiency = 34.6 lm W(-1)). EQE exceeding the expected upper limit of ∼ 8% (based on ∼ 20% light outcoupling and solution photoluminescence quantum yield of ∼ 40%) suggests shape anisotropy and directional band offsets designed into DHNRs play an important role in enhancing light outcoupling.
Collapse
|
|
10 |
60 |
6
|
Xu LH, Ou QD, Li YQ, Zhang YB, Zhao XD, Xiang HY, Chen JD, Zhou L, Lee ST, Tang JX. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes. ACS NANO 2016; 10:1625-32. [PMID: 26687488 DOI: 10.1021/acsnano.5b07302] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).
Collapse
|
|
9 |
39 |
7
|
Xiang HY, Li YQ, Zhou L, Xie HJ, Li C, Ou QD, Chen LS, Lee CS, Lee ST, Tang JX. Outcoupling-Enhanced Flexible Organic Light-Emitting Diodes on Ameliorated Plastic Substrate with Built-in Indium-Tin-Oxide-Free Transparent Electrode. ACS NANO 2015; 9:7553-62. [PMID: 26143652 DOI: 10.1021/acsnano.5b02826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enhancing light outcoupling in flexible organic light-emitting diodes (FOLEDs) is an important task for increasing their efficiencies for display and lighting applications. Here, a strategy for an angularly and spectrally independent boost in light outcoupling of FOLEDs is demonstrated by using plastic substrates with a low refractive index, consisting of a bioinspired optical coupling layer and a transparent conductive electrode composed of a silver network. The good transmittance to full-color emission (>94% over the whole visible wavelength range), ultralow sheet resistance to carrier injection (<5 Ω sq(-1)), and high tolerance to mechanical bending of the ameliorated plastic substrates synergistically optimize the device performance of FOLEDs. The maximum power efficiencies reach 47, 93, 56, and 52 lm W(-1) for red, green, blue, and white emissions, which are competitive with similarly structured OLEDs fabricated on traditional indium-tin-oxide (ITO) glass. This paradigm for light outcoupling enhancement in ITO-free FOLEDs offers additional features and design freedoms for highly efficient flexible optoelectronics in large-scale and low-cost manufacturing without the need for a high-refractive-index plastic substrate.
Collapse
|
|
10 |
25 |
8
|
Shen Y, Li MN, Li Y, Xie FM, Wu HY, Zhang GH, Chen L, Lee ST, Tang JX. Rational Interface Engineering for Efficient Flexible Perovskite Light-Emitting Diodes. ACS NANO 2020; 14:6107-6116. [PMID: 32223190 DOI: 10.1021/acsnano.0c01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although perovskite light-emitting diodes (PeLEDs) are promising for next-generation displays and lighting, their efficiency is still considerably below that of conventional inorganic and organic counterparts. Significant efforts in various aspects of the electroluminescence process are required to achieve high-performance PeLEDs. Here, we present an improved flexible PeLED structure based on the rational interface engineering for energy-efficient photon generation and enhanced light outcoupling. The interface-stimulated crystallization and defect passivation of the perovskite emitter are synergistically realized by tuning the underlying interlayer, leading to the suppression of trap-mediated nonradiative recombination losses. Besides approaching highly emissive perovskite layers, the outcoupling of trapped light is also enhanced by combining the silver nanowires-based electrode with quasi-random nanopatterns on flexible plastic substrate. Upon the collective optimization of the device structure, a record external quantum efficiency of 24.5% is achieved for flexible PeLEDs based on green-emitting CsPbBr3 perovskite.
Collapse
|
|
5 |
10 |
9
|
Shen Y, Cheng LP, Li YQ, Li W, Chen JD, Lee ST, Tang JX. High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901517. [PMID: 31012195 DOI: 10.1002/adma.201970174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/30/2019] [Indexed: 05/22/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) show great application potential in high-quality flat-panel displays and solid-state lighting due to their steadily improved efficiency, tunable colors, narrow emission peak, and easy solution-processing capability. However, because of high optical confinement and nonradiative charge recombination during electron-photon conversion, the highest reported efficiency of PeLEDs remains far behind that of their conventional counterparts, such as inorganic LEDs, organic LEDs, and quantum-dot LEDs. Here a facile route is demonstrated by adopting bioinspired moth-eye nanostructures at the front electrode/perovskite interface to enhance the outcoupling efficiency of waveguided light in PeLEDs. As a result, the maximum external quantum efficiency and current efficiency of the modified cesium lead bromide (CsPbBr3 ) green-emitting PeLEDs are improved to 20.3% and 61.9 cd A-1 , while retaining spectral and angular independence. Further reducing light loss in the substrate mode using a half-ball lens, efficiencies of 28.2% and 88.7 cd A-1 are achieved, which represent the highest values reported to date for PeLEDs. These results represent a substantial step toward achieving practical applications of PeLEDs.
Collapse
|
|
6 |
7 |
10
|
Mallem K, Prodanov MF, Dezhang C, Marus M, Kang C, Shivarudraiah SB, Vashchenko VV, Halpert JE, Srivastava AK. Solution-Processed Red, Green, and Blue Quantum Rod Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18723-18735. [PMID: 35417119 DOI: 10.1021/acsami.2c04466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solution-processed semiconductor nanocrystals are evolving as potential candidates for future display and lighting applications owing to their size-tunable emission, ultrasaturated colors, and compatibility with large-area flexible substrates. Among them, quantum rods (QRs) are emerging materials for optoelectronic applications, offering polarized emission, high light outcoupling efficiency, color purity, and better stability in solid films. However, synthesizing QRs covering the full visible wavelength region has been a big challenge, particularly in the blue range. Herein, we report for the first time the synthesis of red CdSe/CdS, green CdSe/ZnxCd1-xS/ZnS, and blue CdSe/ZnxCd1-xS/ZnS QRs and their application in red, green, and blue QR-based light-emitting diodes (QR-LEDs). We have improved the charge injection balance into the QRs through embedding a poly(methyl methacrylate) (PMMA) layer between the emissive and electron transport layers. The thin PMMA electron-blocking layer (EBL) suppresses the excessive electron flux and thus promotes charge injection balance and pushes the recombination zone back to the QR layer, resulting in 1.35×, 1.2×, and 1.7× peak external quantum efficiency improvement for red, green, and blue QR-LEDs, respectively. The efficiency roll-off of green and blue QR-LEDs with an EBL is less than 50% at maximum current density. The proposed red, green, and blue QR-LEDs open up an avenue toward further improving the light source efficiency and stability focusing on real device applications.
Collapse
|
|
3 |
6 |
11
|
Zhao XD, Li YQ, Xiang HY, Zhang YB, Chen JD, Xu LH, Tang JX. Efficient Color-Stable Inverted White Organic Light-Emitting Diodes with Outcoupling-Enhanced ZnO Layer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2767-2775. [PMID: 28050901 DOI: 10.1021/acsami.6b14778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W1-, which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.
Collapse
|
|
8 |
6 |
12
|
Ji Y, Yang J, Luo W, Tang L, Bai X, Leng C, Ma C, Wei X, Wang J, Shen J, Lu S, Sun K, Shi H. Ultraflexible and High-Performance Multilayer Transparent Electrode Based on ZnO/Ag/CuSCN. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9571-9578. [PMID: 29451772 DOI: 10.1021/acsami.7b15902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Driven by huge demand for flexible optoelectronic devices, high-performance flexible transparent electrodes are continuously sought. In this work, a flexible multilayer transparent electrode with the structure of ZnO/Ag/CuSCN (ZAC) is engineered, featuring inorganic solution-processed cuprous thiocyanate (CuSCN) as a hole-transport antireflection coating. The ZAC electrode exhibits an average transmittance of 94% (discounting the substrate) in the visible range, a sheet resistance ( Rsh) of 9.7 Ω/sq, a high mechanical flexibility without Rsh variation after bending 10 000 times, a long-term stability of 400 days in ambient environment, and a scalable fabrication process. Moreover, spontaneously formed nanobulges are integrated into ZAC electrode, and light outcoupling is significantly improved. As a result, when applied into super yellow-based flexible organic light-emitting diode, the ZAC electrode provides a high-current efficiency of 23.4 cd/A and excellent device flexibility. These results suggest that multilayer thin films with ingenious material design and engineering can serve as a promising flexible transparent electrode for optoelectronic applications.
Collapse
|
|
7 |
5 |
13
|
Xiao P, Yu Y, Cheng J, Chen Y, Yuan S, Chen J, Yuan J, Liu B. Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E103. [PMID: 33406749 PMCID: PMC7823701 DOI: 10.3390/nano11010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022]
Abstract
Recently, perovskite light-emitting diodes (PeLEDs) are seeing an increasing academic and industrial interest with a potential for a broad range of technologies including display, lighting, and signaling. The maximum external quantum efficiency of PeLEDs can overtake 20% nowadays, however, the lifetime of PeLEDs is still far from the demand of practical applications. In this review, state-of-the-art concepts to improve the lifetime of PeLEDs are comprehensively summarized from the perspective of the design of perovskite emitting materials, the innovation of device engineering, the manipulation of optical effects, and the introduction of advanced encapsulations. First, the fundamental concepts determining the lifetime of PeLEDs are presented. Then, the strategies to improve the lifetime of both organic-inorganic hybrid and all-inorganic PeLEDs are highlighted. Particularly, the approaches to manage optical effects and encapsulations for the improved lifetime, which are negligibly studied in PeLEDs, are discussed based on the related concepts of organic LEDs and Cd-based quantum-dot LEDs, which is beneficial to insightfully understand the lifetime of PeLEDs. At last, the challenges and opportunities to further enhance the lifetime of PeLEDs are introduced.
Collapse
|
Review |
4 |
5 |
14
|
Zhong Z, Ma Y, Liu H, Peng F, Ying L, Wang S, Li X, Peng J, Cao Y. Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20750-20756. [PMID: 32266807 DOI: 10.1021/acsami.0c03821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
For light-emitting polymers with a deep highest occupied molecular orbital energy level used for polymer light-emitting diodes (PLEDs), the hole injection barrier and hole transport of the anode buffer layer are of vital importance for optimizing electroluminescent performance. In this study, high-work-function hole injection layers with nanotextures were achieved by modifying poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with a perfluorinated ionomer (PFI) and n-butyl alcohol and were used to achieve a single-layer device without a hole transport layer. With such an interlayer, the PLEDs based on PPF-SO25 exhibit remarkable current efficiency over 13.0 cd A-1, which significantly outperform the devices with regular PEDOT:PSS. To our knowledge, this performance is among the best reported for single-layer blue PLEDs. The bias-dependent capacitance curves of these PLEDs suggest a nonuniform surface distribution of PFI. Our findings show that the PFI-modified PEDOT:PSS not only operates as a high-work-function hole injection layer to facilitate hole injection but also as a potential inner scattering medium for light extraction.
Collapse
|
|
5 |
3 |
15
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
|
Review |
2 |
3 |
16
|
Sun SQ, Tai JW, He W, Yu YJ, Feng ZQ, Sun Q, Tong KN, Shi K, Liu BC, Zhu M, Wei G, Fan J, Xie YM, Liao LS, Fung MK. Enhancing Light Outcoupling Efficiency via Anisotropic Low Refractive Index Electron Transporting Materials for Efficient Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400421. [PMID: 38430204 DOI: 10.1002/adma.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.
Collapse
|
|
1 |
|
17
|
Galán-González A, Pander P, MacKenzie RCI, Bowen L, Zeze DA, Borthwick RJ, Thompson RL, Dias FB, Chaudhry MU. Nanostructured Channel for Improving Emission Efficiency of Hybrid Light-Emitting Field-Effect Transistors. ACS PHOTONICS 2023; 10:4315-4321. [PMID: 38145168 PMCID: PMC10739997 DOI: 10.1021/acsphotonics.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m-2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications.
Collapse
|
research-article |
2 |
|
18
|
Preinfalk JB, Schackmar FR, Lampe T, Egel A, Schmidt TD, Brütting W, Gomard G, Lemmer U. Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer-Nanoparticle Composite Layers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2666-2672. [PMID: 26744904 DOI: 10.1021/acsami.5b10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique. Moreover, it is shown that the optoelectronic device parameters are in good agreement with transfer matrix simulations of the corresponding layer stack, which offers the possibility to numerically design devices based on such composite layers. Lastly, it could be shown that the introduction of nanoparticles leads to an improved charge injection, which combined with an optimized microcavity resulted in a maximum luminous efficacy increase of 85% compared to a nanoparticle-free reference device.
Collapse
|
|
9 |
|
19
|
Muscarella L, Cordaro A, Krause G, Pal D, Grimaldi G, Antony LSD, Langhorst D, Callies A, Bläsi B, Höhn O, Koenderink AF, Polman A, Ehrler B. Nanopatterning of Perovskite Thin Films for Enhanced and Directional Light Emission. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38067-38076. [PMID: 35943781 PMCID: PMC9412957 DOI: 10.1021/acsami.2c09643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Lead-halide perovskites offer excellent properties for lighting and display applications. Nanopatterning perovskite films could enable perovskite-based devices with designer properties, increasing their performance and adding novel functionalities. We demonstrate the potential of nanopatterning for achieving light emission of a perovskite film into a specific angular range by introducing periodic sol-gel structures between the injection and emissive layer by using substrate conformal imprint lithography (SCIL). Structural and optical characterization reveals that the emission is funnelled into a well-defined angular range by optical resonances, while the emission wavelength and the structural properties of the perovskite film are preserved. The results demonstrate a flexible and scalable approach to the patterning of perovskite layers, paving the way toward perovskite LEDs with designer angular emission patterns.
Collapse
|
research-article |
3 |
|