1
|
St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31:239-51. [PMID: 25869999 DOI: 10.1016/j.tig.2015.03.007] [Citation(s) in RCA: 853] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long noncoding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the noncoding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual unambiguous classification framework results in a number of challenges in the annotation and interpretation of noncoding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel the function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then, we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets.
Collapse
|
Review |
10 |
853 |
2
|
Abstract
Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now.
Collapse
|
Review |
13 |
480 |
3
|
Abstract
The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.
Collapse
|
Review |
8 |
361 |
4
|
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29:3595-611. [PMID: 26065857 DOI: 10.1096/fj.14-260323] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response. These noncoding RNAs are crucial for the stability and maintenance of gene expression patterns that characterize some cell types, tissues, and biologic responses. Several miRNAs, such as miR-126, miR-132, miR-146, miR-155, and miR-221, have emerged as important transcriptional regulators of some inflammation-related mediators. Additionally, little is known about the involvement of long noncoding RNAs, long intergenic noncoding RNAs, and circular RNAs in inflammation-mediated processes and the homeostatic imbalance associated with metabolic disorders. These noncoding RNAs are emerging as biomarkers with diagnosis value, in prognosis protocols, or in the personalized treatment of inflammation-related alterations. In this context, this review summarizes findings in the field, highlighting those noncoding RNAs that regulate inflammation, with emphasis on recognized mediators such as TNF-α, IL-1, IL-6, IL-18, intercellular adhesion molecule 1, VCAM-1, and plasminogen activator inhibitor 1. The down-regulation or antagonism of the noncoding RNAs and the administration of exogenous miRNAs could be, in the near future, a promising therapeutic strategy in the treatment of inflammation-related diseases.
Collapse
|
Review |
10 |
360 |
5
|
Khorkova O, Hsiao J, Wahlestedt C. Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 2015; 87:15-24. [PMID: 26024979 PMCID: PMC4544752 DOI: 10.1016/j.addr.2015.05.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNA), a class of non-coding RNA molecules recently identified largely due to the efforts of FANTOM, and later GENCODE and ENCODE consortia, have been a subject of intense investigation in the past decade. Extensive efforts to get deeper understanding of lncRNA biology have yielded evidence of their diverse structural and regulatory roles in protecting chromosome integrity, maintaining genomic architecture, X chromosome inactivation, imprinting, transcription, translation and epigenetic regulation. Here we will briefly review the recent studies in the field of lncRNA biology focusing mostly on mammalian species and discuss their therapeutic implications.
Collapse
MESH Headings
- Animals
- Chromosomal Instability
- Epigenesis, Genetic
- Evolution, Molecular
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Genetic Diseases, Inborn/diagnosis
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/therapy
- Humans
- Neoplasms/diagnosis
- Neoplasms/genetics
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- RNA Processing, Post-Transcriptional
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/urine
- Species Specificity
- Telomere/genetics
Collapse
|
Review |
10 |
250 |
6
|
Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. Mol Cell 2016; 65:25-38. [PMID: 28017589 PMCID: PMC5222723 DOI: 10.1016/j.molcel.2016.11.029] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/27/2022]
Abstract
Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.
Collapse
|
Meta-Analysis |
9 |
199 |
7
|
Li S, Yamada M, Han X, Ohler U, Benfey PN. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Dev Cell 2016; 39:508-522. [PMID: 27840108 DOI: 10.1016/j.devcel.2016.10.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/15/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
190 |
8
|
Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4975-83. [PMID: 24948679 PMCID: PMC4144774 DOI: 10.1093/jxb/eru256] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein-coding genes are considered to be a dominant component of the eukaryotic transcriptome; however, many studies have shown that intergenic, non-coding transcripts also play an important role. Long intergenic non-coding RNAs (lincRNAs) were found to play a vital role in human and Arabidopsis. However, lincRNAs and their regulatory roles remain poorly characterized in woody plants, especially Populus trichocarpa (P. trichocarpa). A large set of Populus RNA-Seq data were examined with high sequencing depth under control and drought conditions and a total of 2542 lincRNA candidates were identified. In total, 51 lincRNAs and 20 lincRNAs were identified as putative targets and target mimics of known Populus miRNAs, respectively. A total of 504 lincRNAs were found to be drought responsive, eight of which were confirmed by RT-qPCR. These findings provide a comprehensive view of Populus lincRNAs, which will enable in-depth functional analysis.
Collapse
|
research-article |
11 |
183 |
9
|
Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 2014; 20:623-31. [PMID: 25262537 PMCID: PMC4252818 DOI: 10.1016/j.molmed.2014.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/03/2023]
Abstract
The expression of lncRNAs in the immune system is cell type- and context-dependent. Several lncRNAs identified to date regulate immune gene expression. LncRNAs play crucial role in host–pathogen interactions. The majority of disease-associated SNPs lie in regulatory regions of the genome. All cells of the immune system rely on a highly integrated and dynamic gene expression program that is controlled by both transcriptional and post-transcriptional mechanisms. Recently, non-coding RNAs, including long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological contexts. lncRNAs control gene expression in the nucleus by modulating transcription or via post-transcriptional mechanisms targeting the splicing, stability, or translation of mRNAs. Our knowledge of lncRNA biogenesis, their cell type-specific expression, and their versatile molecular functions is rapidly progressing in all areas of biology. We discuss here these exciting new regulators and highlight an emerging paradigm of lncRNA-mediated control of gene expression in the immune system.
Collapse
|
Review |
11 |
178 |
10
|
Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, Imam JFC, Vogel H, Wood LD, Sage J, Hirose T, Nakagawa S, Rinn J, Attardi LD. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 2017; 31:1095-1108. [PMID: 28698299 PMCID: PMC5538433 DOI: 10.1101/gad.284661.116] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
Mello et al. identify Neat1, a ncRNA constituent of paraspeckles, as a p53 target gene that plays a crucial role in suppressing transformation in response to oncogenic signals. The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1−/− mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
168 |
11
|
Goyal D, Limesand SW, Goyal R. Epigenetic responses and the developmental origins of health and disease. J Endocrinol 2019; 242:T105-T119. [PMID: 31091503 DOI: 10.1530/joe-19-0009] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 11/08/2022]
Abstract
Maternal and paternal factors influence offspring development and program its genome for successful postnatal life. Based on the stressors during gestation, the pregnant female prepares the fetus for the outside environment. This preparation is achieved by changing the epigenome of the fetus and is referred to as 'developmental programming'. For instance, nutritional insufficiency in utero will lead to programming events that prepare the fetus to cope up with nutrient scarcity following birth; however, offspring may not face nutrient scarcity following birth. This discrepancy between predicted and exposed postnatal environments are perceived as 'stress' by the offspring and may result in cardiovascular and metabolic disorders. Thus, this developmental programming may be both beneficial as well as harmful depending on the prenatal vs postnatal environment. Over the past three decades, accumulating evidence supports the hypothesis of Developmental Origin of Health and Disease (DOHaD) by the programming of the fetal phenotype without altering the genotype per se. These heritable modifications in gene expression occur through DNA methylation, histone modification and noncoding RNA-associated gene activation or silencing, and all are defined as epigenetic modifications. In the present review, we will summarize the evidence supporting epigenetic regulation as a significant component in DOHaD.
Collapse
|
Review |
6 |
149 |
12
|
Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M, Kurata N, Nonomura KI. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:385-97. [PMID: 24635777 DOI: 10.1111/tpj.12483] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 05/03/2023]
Abstract
Small RNAs that interact with Argonaute (AGO) proteins play central roles in RNA-mediated silencing. MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice AGO, has specific functions in the development of pre-meiotic germ cells and the progression of meiosis. Here, we show that MEL1, which is located mostly in the cytoplasm of germ cells, associates preferentially with 21-nucleotide phased small interfering RNAs (phasiRNAs) that bear a 5'-terminal cytosine. Most phasiRNAs are derived from 1171 intergenic clusters distributed on all rice chromosomes. From these clusters, over 700 large intergenic, non-coding RNAs (lincRNAs) that contain the consensus sequence complementary to miR2118 are transcribed specifically in inflorescences, and cleaved within the miR2118 site. Cleaved lincRNAs are processed via DICER-LIKE4 (DCL4) protein, resulting in production of phasiRNAs. This study provides the evidence that the miR2118-dependent and the DCL4-dependent pathways are both required for biogenesis of 21-nt phasiRNAs associated with germline-specific MEL1 AGO in rice, and over 700 lincRNAs are key factors for induction of this biogenesis during reproductive-specific stages.
Collapse
|
|
11 |
149 |
13
|
Portoso M, Ragazzini R, Brenčič Ž, Moiani A, Michaud A, Vassilev I, Wassef M, Servant N, Sargueil B, Margueron R. PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J 2017; 36:981-994. [PMID: 28167697 PMCID: PMC5391141 DOI: 10.15252/embj.201695335] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/09/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play diverse roles in physiological and pathological processes. Several lncRNAs have been suggested to modulate gene expression by guiding chromatin‐modifying complexes to specific sites in the genome. However, besides the example of Xist, clear‐cut evidence demonstrating this novel mode of regulation remains sparse. Here, we focus on HOTAIR, a lncRNA that is overexpressed in several tumor types and previously proposed to play a key role in gene silencing through direct recruitment of Polycomb Repressive Complex 2 (PRC2) to defined genomic loci. Using genetic tools and a novel RNA‐tethering system, we investigated the interplay between HOTAIR and PRC2 in gene silencing. Surprisingly, we observed that forced overexpression of HOTAIR in breast cancer cells leads to subtle transcriptomic changes that appear to be independent of PRC2. Mechanistically, we found that artificial tethering of HOTAIR to chromatin causes transcriptional repression, but that this effect does not require PRC2. Instead, PRC2 recruitment appears to be a consequence of gene silencing. We propose that PRC2 binding to RNA might serve functions other than chromatin targeting.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
136 |
14
|
Li XL, Subramanian M, Jones MF, Chaudhary R, Singh DK, Zong X, Gryder B, Sindri S, Mo M, Schetter A, Wen X, Parvathaneni S, Kazandjian D, Jenkins LM, Tang W, Elloumi F, Martindale JL, Huarte M, Zhu Y, Robles AI, Frier SM, Rigo F, Cam M, Ambs S, Sharma S, Harris CC, Dasso M, Prasanth KV, Lal A. Long Noncoding RNA PURPL Suppresses Basal p53 Levels and Promotes Tumorigenicity in Colorectal Cancer. Cell Rep 2018; 20:2408-2423. [PMID: 28877474 DOI: 10.1016/j.celrep.2017.08.041] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Basal p53 levels are tightly suppressed under normal conditions. Disrupting this regulation results in elevated p53 levels to induce cell cycle arrest, apoptosis, and tumor suppression. Here, we report the suppression of basal p53 levels by a nuclear, p53-regulated long noncoding RNA that we termed PURPL (p53 upregulated regulator of p53 levels). Targeted depletion of PURPL in colorectal cancer cells results in elevated basal p53 levels and induces growth defects in cell culture and in mouse xenografts. PURPL associates with MYBBP1A, a protein that binds to and stabilizes p53, and inhibits the formation of the p53-MYBBP1A complex. In the absence of PURPL, MYBBP1A interacts with and stabilizes p53. Silencing MYBBP1A significantly rescues basal p53 levels and proliferation in PURPL-deficient cells, suggesting that MYBBP1A mediates the effect of PURPL in regulating p53. These results reveal a p53-PURPL auto-regulatory feedback loop and demonstrate a role for PURPL in maintaining basal p53 levels.
Collapse
|
Journal Article |
7 |
119 |
15
|
Ono H, Motoi N, Nagano H, Miyauchi E, Ushijima M, Matsuura M, Okumura S, Nishio M, Hirose T, Inase N, Ishikawa Y. Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Med 2014; 3:632-42. [PMID: 24591352 PMCID: PMC4101754 DOI: 10.1002/cam4.220] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/05/2014] [Accepted: 01/23/2014] [Indexed: 01/09/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis. To identify accurate predictive biomarkers and effective therapeutic modalities, we focus on a long noncoding RNA, Hox transcript antisense intergenic RNA (HOTAIR), and investigated its expression, cellular functions, and clinical relevance in SCLC. In this study, HOTAIR expression was assessed in 35 surgical SCLC samples and 10 SCLC cell lines. The efficacy of knockdown of HOTAIR by siRNA transfection was evaluated in SBC-3 cells in vitro, and the gene expression was analyzed using microarray. HOTAIR was expressed highly in pure, rather than combined, SCLC (P = 0.012), that the subgroup with high expression had significantly more pure SCLC (P = 0.04), more lymphatic invasion (P = 0.03) and more relapse (P = 0.04) than the low-expression subgroup. The knockdown of HOTAIR in SBC-3 cells led to decreased proliferation activity and decreased invasiveness in vitro. Gene expression analysis indicated that depletion of HOTAIR resulted in upregulation of cell adhesion-related genes such as ASTN1, PCDHA1, and mucin production-related genes such as MUC5AC, and downregulation of genes involved in neuronal growth and signal transduction including NTM and PTK2B. Our results suggest that HOTAIR has an oncogenic role in SCLC and could be a prognostic biomarker and therapeutic target.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
117 |
16
|
Wang H, Niu QW, Wu HW, Liu J, Ye J, Yu N, Chua NH. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:404-16. [PMID: 26387578 DOI: 10.1111/tpj.13018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/26/2015] [Indexed: 05/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) have recently been found to widely exist in eukaryotes and play important roles in key biological processes. To extend our knowledge of lncRNAs in crop plants we performed both non-directional and strand-specific RNA-sequencing experiments to profile non-coding transcriptomes of various rice and maize organs at different developmental stages. Analysis of more than 3 billion reads identified 22 334 long intergenic non-coding RNAs (lincRNAs) and 6673 pairs of sense and natural antisense transcript (NAT). Many lincRNA genes were associated with epigenetic marks. Expression of rice lincRNA genes was significantly correlated with that of nearby protein-coding genes. A set of NAT genes also showed expression correlation with their sense genes. More than 200 rice lincRNA genes had homologous non-coding sequences in the maize genome. Much more lincRNA and NAT genes were derived from conserved genomic regions between the two cereals presenting positional conservation. Protein-coding genes flanking or having a sense-antisense relationship to these conserved lncRNA genes were mainly involved in development and stress responses, suggesting that the associated lncRNAs might have similar functions. Integrating previous genome-wide association studies (GWAS), we found that hundreds of lincRNAs contain trait-associated SNPs (single nucleotide polymorphisms [SNPs]) suggesting their putative contributions to developmental and agriculture traits.
Collapse
|
|
10 |
113 |
17
|
Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY. Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 2013; 425:3731-46. [PMID: 23467124 DOI: 10.1016/j.jmb.2013.02.030] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 01/19/2023]
Abstract
Novel, profound and unexpected roles of long non-coding RNAs (lncRNAs) are emerging in critical aspects of gene regulation. Thousands of lncRNAs have been recently discovered in a wide range of mammalian systems, related to development, epigenetics, cancer, brain function and hereditary disease. The structural biology of these lncRNAs presents a brave new RNA world, which may contain a diverse zoo of new architectures and mechanisms. While structural studies of lncRNAs are in their infancy, we describe existing structural data for lncRNAs, as well as crystallographic studies of other RNA machines and their implications for lncRNAs. We also discuss the importance of dynamics in RNA machine mechanism. Determining commonalities between lncRNA systems will help elucidate the evolution and mechanistic role of lncRNAs in disease, creating a structural framework necessary to pursue lncRNA-based therapeutics.
Collapse
|
Review |
12 |
109 |
18
|
Liu G, Mattick JS, Taft RJ. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013; 12:2061-72. [PMID: 23759593 DOI: 10.4161/cc.25134] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is now clear that animal genomes are predominantly non-protein-coding, and that these sequences encode a wide array of RNA transcripts and other regulatory elements that are fundamental to the development of complex life. We have previously argued that the proportion of an animal genome that is non-protein-coding DNA (ncDNA) correlates well with its apparent biological complexity. Here we extend on that work and, using data from a total of 1,627 prokaryotic and 153 eukaryotic complete and annotated genomes, show that the proportion of ncDNA per haploid genome is significantly positively correlated with a previously published proxy of biological complexity, the number of distinct cell types. This is in contrast to the amount of the genome that encodes proteins, which we show is essentially unchanged across Metazoa. Furthermore, using a total of 179 RNA-seq data sets from nematode (47), fruit fly (72), zebrafish (20) and human (42), we show, consistent with other recent reports, that the vast majority of ncDNA in animals is transcribed. This includes more than 60 human loci previously considered "gene deserts," many of which are expressed tissue-specifically and associated with previously reported GWAS SNPs. These results suggest that ncDNA, and the ncRNAs encoded within it, may be intimately involved in the evolution, maintenance and development of complex life.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
107 |
19
|
Lorenzi L, Avila Cobos F, Decock A, Everaert C, Helsmoortel H, Lefever S, Verboom K, Volders PJ, Speleman F, Vandesompele J, Mestdagh P. Long noncoding RNA expression profiling in cancer: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:191-199. [PMID: 30461116 DOI: 10.1002/gcc.22709] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/06/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, technological advances in transcriptome profiling revealed that the repertoire of human RNA molecules is more diverse and extended than originally thought. This diversity and complexity mainly derive from a large ensemble of noncoding RNAs. Because of their key roles in cellular processes important for normal development and physiology, disruption of noncoding RNA expression is intrinsically linked to human disease, including cancer. Therefore, studying the noncoding portion of the transcriptome offers the prospect of identifying novel therapeutic and diagnostic targets. Although evidence of the relevance of noncoding RNAs in cancer is accumulating, we still face many challenges when it comes to accurately profiling their expression levels. Some of these challenges are inherent to the technologies employed, whereas others are associated with characteristics of the noncoding RNAs themselves. In this review, we discuss the challenges related to long noncoding RNA expression profiling, highlight how cancer long noncoding RNAs provide new opportunities for cancer diagnosis and treatment, and reflect on future developments.
Collapse
|
Review |
6 |
103 |
20
|
Novikova IV, Hennelly SP, Sanbonmatsu KY. Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? BIOARCHITECTURE 2014; 2:189-99. [PMID: 23267412 PMCID: PMC3527312 DOI: 10.4161/bioa.22592] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) play a key role in many important areas of epigenetics, stem cell biology, cancer, signaling and brain function. This emerging class of RNAs constitutes a large fraction of the transcriptome, with thousands of new lncRNAs reported each year. The molecular mechanisms of these RNAs are not well understood. Currently, very little structural data exist. We review the available lncRNA sequence and secondary structure data. Since almost no tertiary information is available for lncRNAs, we review crystallographic structures for other RNA systems and discuss the possibilities for lncRNAs in the context of existing constraints.
Collapse
|
Review |
11 |
103 |
21
|
linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1528-37. [PMID: 23688781 DOI: 10.1016/j.bbadis.2013.05.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/23/2013] [Accepted: 05/10/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The human genome encodes many long intergenic noncoding RNAs (lincRNAs). However, their biological functions, molecular mechanisms and prognostic values associated with bladder cancer remain to be elucidated. Here we investigated a lincRNA termed linc-UBC1 (Up-regulated in bladder cancer 1) and evaluated its prognostic value in bladder cancer patients. MATERIALS AND METHODS Expression of linc-UBC1 was evaluated by quantitative reverse transcription PCR (qRT-PCR) in 102 bladder cancer tissue samples and normal adjacent tissues. The functions of linc-UBC1 on cell proliferation, migration, invasion, colony formation, tumorigenicity and metastatic potential were evaluated by knockdown strategy in vitro and in vivo. RNA immunoprecipitation (RIP) was performed to confirm that linc-UBC1 physically associates with EZH2 and SUZ12, core components of polycomb repressive complex 2 (PRC2). Chromatin immunoprecipitation (ChIP) was conducted to examine histone modification status. RESULTS qRT-PCR confirmed that linc-UBC1 expression is up-regulated in 60 cases (58.8%) in bladder cancer tissues compared with normal adjacent tissues, and its overexpression correlates with lymph node metastasis and poor survival. Further functional analysis demonstrated that knockdown of linc-UBC1 attenuates bladder cancer cell proliferation, motility, invasion, colony formation ability, tumorigenicity and metastatic potential. Importantly, the inhibitory effect of linc-UBC1 on cell proliferation was also observed in primary bladder cancer cells obtained from patients. RIP and ChIP assay confirmed that linc-UBC1 physically associates with PRC2 complex and regulates histone modification status of target genes. CONCLUSIONS Frequently overexpressed linc-UBC1 physically associates with PRC2 complex, and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
102 |
22
|
Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women. Psychoneuroendocrinology 2013; 38:3029-38. [PMID: 24080187 PMCID: PMC3844079 DOI: 10.1016/j.psyneuen.2013.08.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a common and debilitating mental disorder with a particularly high burden for women. Emerging evidence suggests PTSD may be more heritable among women and evidence from animal models and human correlational studies suggest connections between sex-linked biology and PTSD vulnerability, which may extend to the disorder's genetic architecture. We conducted a genome-wide association study (GWAS) of PTSD in a primarily African American sample of women from the Detroit Neighborhood Health Study (DNHS) and tested for replication in an independent cohort of primarily European American women from the Nurses Health Study II (NHSII). We genotyped 413 DNHS women - 94 PTSD cases and 319 controls exposed to at least one traumatic event - on the Illumina HumanOmniExpress BeadChip for >700,000 markers and tested 578 PTSD cases and 1963 controls from NHSII for replication. We performed a network-based analysis integrating data from GWAS-derived independent regions of association and the Reactome database of functional interactions. We found genome-wide significant association for one marker mapping to a novel RNA gene, lincRNA AC068718.1, for which we found suggestive evidence of replication in NHSII. Our network-based analysis indicates that our top GWAS results were enriched for pathways related to telomere maintenance and immune function. Our findings implicate a novel RNA gene, lincRNA AC068718.1, as risk factor for PTSD in women and add to emerging evidence that non-coding RNA genes may play a crucial role in shaping the landscape of gene regulation with putative pathological effects that lead to phenotypic differences.
Collapse
|
research-article |
12 |
95 |
23
|
Yang L, Li P, Yang W, Ruan X, Kiesewetter K, Zhu J, Cao H. Integrative Transcriptome Analyses of Metabolic Responses in Mice Define Pivotal LncRNA Metabolic Regulators. Cell Metab 2016; 24:627-639. [PMID: 27667668 PMCID: PMC5181118 DOI: 10.1016/j.cmet.2016.08.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/23/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
Abstract
To systemically identify long noncoding RNAs (lncRNAs) regulating energy metabolism, we performed transcriptome analyses to simultaneously profile mRNAs and lncRNAs in key metabolic organs in mice under pathophysiologically representative metabolic conditions. Of 4,759 regulated lncRNAs, function-oriented filters yield 359 tissue-specifically regulated and metabolically sensitive lncRNAs that are predicted by lncRNA-mRNA correlation analyses to function in diverse aspects of energy metabolism. Specific regulations of liver metabolically sensitive lncRNAs (lncLMS) by nutrients, metabolic hormones, and key transcription factors were further defined in primary hepatocytes. Combining genome-wide screens, bioinformatics function predictions, and cell-based analyses, we developed an integrative roadmap to identify lncRNA metabolic regulators. An lncLMS was experimentally confirmed in mice to suppress lipogenesis by forming a negative feedback loop in the SREBP1c pathway. Taken together, this study supports that a class of lncRNAs function as important metabolic regulators and establishes a framework for systemically investigating the role of lncRNAs in physiological homeostasis.
Collapse
|
Research Support, N.I.H., Intramural |
9 |
90 |
24
|
Winterling C, Koch M, Koeppel M, Garcia-Alcalde F, Karlas A, Meyer TF. Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biol 2013; 11:66-75. [PMID: 24440876 DOI: 10.4161/rna.27504] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence suggests the non-protein coding human genome is of vital importance for human cell function. Besides small RNAs, the diverse class of long non-coding RNAs (lncRNAs) recently came into focus. However, their relevance for infection, a major evolutionary driving force, remains elusive. Using two commercially available microarray systems, namely NCode™ and Sureprint™ G3, we identified differential expression of 42 ncRNAs during influenza A virus (IAV) infection in human lung epithelial cells. This included several classes of lncRNAs, including large intergenic ncRNAs (lincRNAs). As analyzed by qRT-PCR, expression of one lincRNA, which we termed virus inducible lincRNA (VIN), is induced by several IAV strains (H1N1, H3N2, H7N7) as well as vesicular stomatitis virus. However, we did not observe an induction of VIN by influenza B virus, treatment with RNA mimics, or IFNβ. Thus, VIN expression seems to be a specific response to certain viral infections. RNA fractionation and RNA-FISH experiments revealed that VIN is localized to the host cell nucleus. Most importantly, we show that abolition of VIN by RNA interference restricts IAV replication and viral protein synthesis, highlighting the relevance of this lincRNA for productive IAV infection. Our observations suggest that viral pathogens interfere with the non-coding portion of the human genome, thereby guaranteeing their successful propagation, and that the expression of VIN correlates with their virulence. Consequently, our study provides a novel approach for understanding virus pathogenesis in greater detail, which will enable future design of new antiviral strategies targeting the host's non-protein coding genome.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
88 |
25
|
Prognostic and predictive values of long non-coding RNA LINC00472 in breast cancer. Oncotarget 2016; 6:8579-92. [PMID: 25865225 PMCID: PMC4496168 DOI: 10.18632/oncotarget.3287] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023] Open
Abstract
LINC00472 is a novel long intergenic non-coding RNA. We evaluated LINC00472 expression in breast tumor samples using RT-qPCR, performed a meta-analysis of over 20 microarray datasets from the Gene Expression Omnibus (GEO) database, and investigated the effect of LINC00472 expression on cell proliferation and migration in breast cancer cells transfected with a LINC00472-expressing vector. Our qPCR results showed that high LINC00472 expression was associated with less aggressive breast tumors and more favorable disease outcomes. Patients with high expression of LINC00472 had significantly reduced risk of relapse and death compared to those with low expression. Patients with high LINC00472 expression also had better responses to adjuvant chemo- or hormonal therapy than did patients with low expression. Results of meta-analysis on multiple studies from the GEO database were in agreement with the findings of our study. High LINC00472 was also associated with favorable molecular subtypes, Luminal A or normal-like tumors. Cell culture experiments showed that up-regulation of LINC00472 expression could suppress breast cancer cell proliferation and migration. Collectively, our clinical and in vitro studies suggest that LINC00472 is a tumor suppressor in breast cancer. Evaluating this long non-coding RNA in breast tumors may have prognostic and predictive value in the clinical management of breast cancer.
Collapse
|
Meta-Analysis |
9 |
77 |