1
|
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. NANO LETTERS 2018; 18:3814-3822. [PMID: 29694050 DOI: 10.1021/acs.nanolett.8b01101] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although mRNA and siRNA have significant therapeutic potential, their simultaneous delivery has not been previously explored. To facilitate the treatment of diseases associated with aberrant gene upregulation and downregulation, we sought to co-formulate siRNA and mRNA in a single lipidoid nanoparticle (LNP) formulation. We accommodated the distinct molecular characteristics of mRNA and siRNA in a formulation consisting of an ionizable and biodegradable amine-containing lipidoid, cholesterol, DSPC, DOPE, and PEG-lipid. Surprisingly, the co-formulation of siRNA and mRNA in the same LNP enhanced the efficacy of both drugs in vitro and in vivo. Compared to LNPs encapsulating siRNA only, co-formulated LNPs improved Factor VII gene silencing in mice from 44 to 87% at an siRNA dose of 0.03 mg/kg. Co-formulation also improved mRNA delivery, as a 0.5 mg/kg dose of mRNA co-formulated with siRNA induced three times the luciferase protein expression compared to when siRNA was not included. As not all gene therapy applications require both RNA drugs, we sought to extend the benefit of co-formulated LNPs to formulations encapsulating only a single type of RNA. We accomplished this by substituting the "helper" RNA with a negatively charged polymer, polystyrenesulfonate (PSS). LNPs containing PSS mediated the same level of protein silencing or expression as standard LNPs using 2-3-fold less RNA. For example, LNPs formulated with and without PSS induced 50% Factor VII silencing at siRNA doses of 0.01 and 0.03 mg/kg, respectively. Together, these studies demonstrate potent co-delivery of siRNA and mRNA and show that inclusion of a negatively charged "helper polymer" enhances the efficacy of LNP delivery systems.
Collapse
|
|
7 |
188 |
2
|
Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. NANO LETTERS 2020; 20:5167-5175. [PMID: 32496069 PMCID: PMC7781386 DOI: 10.1021/acs.nanolett.0c00596] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The clinical translation of messengerRNA (mRNA) drugs has been slowed by a shortage of delivery vehicles that potently and safely shuttle mRNA into target cells. Here, we describe the properties of a particularly potent branched-tail lipid nanoparticle that delivers mRNA to >80% of three major liver cell types. We characterize mRNA delivery spatially, temporally, and as a function of injection type. Following intravenous delivery, our lipid nanoparticle induced greater protein expression than two benchmark lipids, C12-200 and DLin-MC3-DMA, at an mRNA dose of 0.5 mg/kg. Lipid nanoparticles were sufficiently potent to codeliver three distinct mRNAs (firefly luciferase, mCherry, and erythropoietin) and, separately, Cas9 mRNA and single guide RNA (sgRNA) for proof-of-concept nonviral gene editing in mice. Furthermore, our branched-tail lipid nanoparticle was neither immunogenic nor toxic to the liver. Together, these results demonstrate the unique potential of this lipid material to improve the management of diseases rooted in liver dysfunction.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
87 |
3
|
Sun S, Wang M, Knupp SA, Soto-Feliciano Y, Hu X, Kaplan DL, Langer R, Anderson DG, Xu Q. Combinatorial library of lipidoids for in vitro DNA delivery. Bioconjug Chem 2012; 23:135-40. [PMID: 22148515 PMCID: PMC3261308 DOI: 10.1021/bc200572w] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A combinatorial library of lipidoids was constructed and studied for in vitro gene delivery. The library of lipidoids was synthesized by reacting commercially available amines with lipophilic acrylates, acrylamides, or epoxides. Lipidoids derived from amine 86 (N,N-bis(2-hydroxyethyl)ethylene diamine) and amine 87 (N-(3-aminopropyl)diethaneamine) showed high efficiency in DNA delivery, some with a higher transfection efficiency than Lipofectamine 2000, a commonly used commercial gold standard for in vitro gene delivery. The structure-activity relationship between the lipidoids was further studied with respect to small variations in chemical structures and the resulting efficiency in DNA delivery in vitro. Since these lipidoids are easy to synthesize and do not require a colipid for efficient DNA delivery, they could offer an inexpensive but effective alternative to other commonly used commercial gene delivery carriers.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
64 |
4
|
Alabi CA, Love KT, Sahay G, Stutzman T, Young WT, Langer R, Anderson DG. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS NANO 2012; 6:6133-41. [PMID: 22693946 PMCID: PMC3404193 DOI: 10.1021/nn3013838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The assembly, stability, and timely disassembly of short interfering RNA (siRNA) nanocomplexes have the potential to affect the efficiency of siRNA delivery and gene silencing. As such, the design of new probes that can measure these properties without significantly perturbing the nanocomplexes or their environment may facilitate the study and further development of new siRNA nanocomplexes. Herein, we study Förster resonance energy transfer (FRET)-labeled siRNA probes that can track the assembly, stability, and disassembly of siRNA nanocomplexes in different environments. The probe is composed of two identical siRNAs, each labeled with a fluorophore. Upon nanocomplex formation, the siRNA-bound fluorophores become locally aggregated within the nanocomplex and undergo FRET. A key advantage of this technique is that the delivery vehicle (DV) need not be labeled, thus enabling the characterization of a large variety of nanocarriers, some of which may be difficult or even impossible to label. We demonstrate proof-of-concept by measuring the assembly of various DVs with siRNAs and show good agreement with gel electrophoresis experiments. As a consequence of not having to label the DV, we are able to determine nanocomplex biophysical parameters such as the extracellular apparent dissociation constants (K(D)) and intracellular disassembly half-life for several in-house and proprietary commercial DVs. Furthermore, the lack of DV modification allows for a true direct comparison between DVs as well as correlation between their biophysical properties and gene silencing.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
45 |
5
|
Altınoglu S, Wang M, Xu Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine (Lond) 2015; 10:643-57. [PMID: 25723096 DOI: 10.2217/nnm.14.192] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The past two decades have witnessed the high efficiency and efficacy of cationic lipids and liposomal formations for drug delivery. The tedious synthesis of conventional lipids and the inefficiency in studying structure-activity relationships, however, have hindered the clinical translation of lipid nanoparticle delivery systems. Combinatorial synthesis of lipid-like nanoparticles ('lipidoids') has recently emerged as an approach to accelerate the development of these delivery platforms. Utilizing a high-throughput screening strategy, the libraries of lipidoids are sorted and prime candidates for the delivery in the intended application can be identified and optimized for the next generation. In this review, we outline methods used for combinatorial lipidoid synthesis, the application of high-throughput screening, and the current medical applications of candidate lipidoids.
Collapse
|
Review |
10 |
44 |
6
|
Kasiewicz LN, Whitehead KA. Lipid nanoparticles silence tumor necrosis factor α to improve wound healing in diabetic mice. Bioeng Transl Med 2019; 4:75-82. [PMID: 30680320 PMCID: PMC6336737 DOI: 10.1002/btm2.10123] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/11/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is a mounting concern in the United States, as are the mortality and morbidity that result from its complications. Of particular concern, diabetes patients frequently suffer from impaired wound healing and resultant nonhealing diabetic foot ulcers. These ulcers overproduce tumor necrosis factor α (TNFα), which reduces wound bed cell migration and proliferation while encouraging apoptosis. Herein, we describe the use of siRNA-loaded lipid nanoparticles (LNPs) as a potential wound treatment to combat an overzealous immune response and facilitate wound closure. LNPs were formulated with an ionizable, degradable lipidoid and siRNA specific for TNFα. Topical application of nanoparticles reduced TNFα mRNA expression in the wound by 40-55% in diabetic and nondiabetic mice. In diabetic mice, this TNFα knockdown accelerated wound healing compared to untreated controls. Together, these results serve as proof-of-concept that RNA interference therapy using LNPs can reduce the severity and duration of chronic diabetic wounds.
Collapse
|
research-article |
6 |
43 |
7
|
Cho SW, Goldberg M, Son SM, Xu Q, Yang F, Mei Y, Bogatyrev S, Langer R, Anderson DG. Lipid-like Nanoparticles for Small Interfering RNA Delivery to Endothelial Cells. ADVANCED FUNCTIONAL MATERIALS 2009; 19:3112-3118. [PMID: 23393492 PMCID: PMC3564673 DOI: 10.1002/adfm.200900519] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Here we develop nanoparticles composed of lipid-like materials (lipidoids) to facilitate non-viral delivery of small interfering RNA (siRNA) to endothelial cells (ECs). Nanoparticles composed of siRNA and lipidoids with small size (~200 nm) and positive charge (~34 mV) were formed by self assembly of lipidoids and siRNA. Ten lipidoids were synthesized and screened for their ability to facilitate the delivery of siRNA into ECs. Particles composed of leading lipidoids show significantly better delivery to ECs than a leading commercially-available transfection reagent, Lipofectamine 2000. As a model of potential therapeutic application, nanoparticles composed of the top performing lipidoid, NA114, were studied for their ability to deliver siRNA targeting anti-angiogenic factor (SHP-1) to human ECs. Silencing of SHP-1 expression significantly enhanced EC proliferation and decreased EC apoptosis under a simulated ischemic condition.
Collapse
|
research-article |
16 |
42 |
8
|
Song P, Yang C, Thomsen JS, Dagnæs-Hansen F, Jakobsen M, Brüel A, Deleuran B, Kjems J. Lipidoid-siRNA Nanoparticle-Mediated IL-1β Gene Silencing for Systemic Arthritis Therapy in a Mouse Model. Mol Ther 2019; 27:1424-1435. [PMID: 31153827 DOI: 10.1016/j.ymthe.2019.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1 beta (IL-1β) plays a central role in the induction of rheumatoid arthritis (RA). In the present study, we demonstrated that lipidoid-polymer hybrid nanoparticle (FS14-NP) can efficiently deliver siRNA against IL-1β (siIL-1β) to macrophages and effectively suppress the pathogenesis of experimental arthritis induced by collagen antibody (CAIA mice). FS14-NP/siIL-1β achieved approximately 70% and 90% gene-silencing efficiency in the RAW 264.7 cell line and intraperitoneal macrophages, respectively. Intravenous administration of FS14-NP/siRNA led to rapid accumulation of siRNA in macrophages within the arthritic joints. Furthermore, FS14-NP/siIL-1β treatment lowered the expression of pro-inflammatory cytokines in arthritic joints and dramatically attenuated ankle swelling, bone erosion, and cartilage destruction. These results demonstrate that FS14-NP/siIL-1β may represent an effective therapy for systemic arthritis and other inflammatory disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
37 |
9
|
Knapp CM, He J, Lister J, Whitehead KA. Lipid nanoparticle siRNA cocktails for the treatment of mantle cell lymphoma. Bioeng Transl Med 2018; 3:138-147. [PMID: 30065968 PMCID: PMC6063866 DOI: 10.1002/btm2.10088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022] Open
Abstract
Mantle cell lymphoma is an aggressive and incurable subtype of non‐Hodgkin B cell lymphoma. Patients typically present with advanced disease, and most patients succumb within a decade of diagnosis. There is a clear and urgent need for novel therapeutic approaches that will affect mantle cell lymphoma through a unique mechanism compared to current therapies. This study examined the use of RNA interference (RNAi) therapy to attack mantle cell lymphoma at the mRNA level, silencing genes associated with cancer cell proliferation. We identified a lipid nanoparticle formulated with the lipidoid 306O13 that delivered siRNA to JeKo‐1 and MAVER‐1 mantle cell lymphoma cell lines. Three therapeutic gene targets were examined for their effect on lymphoma growth. These included Cyclin D1, which is a cell cycle regulator, as well as Bcl‐2 and Mcl‐1, which prevent apoptosis. Gene knockdown with siRNA doses as low at 10 nM increased lymphoma cell apoptosis without carrier‐mediated toxicity. Silencing of Cyclin D1 induced apoptosis despite a twofold “compensation” upregulation of Cyclin D2. Upon simultaneous silencing of all three genes, nearly 75% of JeKo‐1 cells were apoptosing 3 days post‐transfection. Furthermore, cells proliferated at only 15% of their pretreatment rate. These data suggest that lipid nanoparticles‐formulated, multiplexed siRNA “cocktails” may serve as a beneficial addition to the treatment regimens for mantle cell lymphoma and other aggressive cancers.
Collapse
|
Journal Article |
7 |
13 |
10
|
Wu Y, Li L, Chen Q, Su Y, Levkin PA, Davidson G. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts. ACS COMBINATORIAL SCIENCE 2016; 18:43-50. [PMID: 26651853 DOI: 10.1021/acscombsci.5b00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.
Collapse
|
|
9 |
8 |
11
|
Ramsay E, Raviña M, Sarkhel S, Hehir S, Cameron NR, Ilmarinen T, Skottman H, Kjems J, Urtti A, Ruponen M, Subrizi A. Avoiding the Pitfalls of siRNA Delivery to the Retinal Pigment Epithelium with Physiologically Relevant Cell Models. Pharmaceutics 2020; 12:pharmaceutics12070667. [PMID: 32708811 PMCID: PMC7407886 DOI: 10.3390/pharmaceutics12070667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.
Collapse
|
Journal Article |
5 |
4 |
12
|
Jennings J, Ašćerić D, Malanovic N, Pabst G. Structure-Activity Relationships of Cationic Lipidoids against Escherichia coli. Antibiotics (Basel) 2023; 12:1300. [PMID: 37627720 PMCID: PMC10451255 DOI: 10.3390/antibiotics12081300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active molecules provide a promising strategy to target and kill pathogenic bacteria. Understanding how specific molecular features drive interactions with membrane components and subsequently cause disruption that leads to antimicrobial activity is a crucial step in designing next-generation treatments. Here, we test a library of lipid-like compounds (lipidoids) against Gram-negative bacteria Escherichia coli to garner in-depth structure-activity relationships using antimicrobial assays. Modular lipidoid molecules were synthesized in high-throughput, such that we could analyze 104 compounds with variable combinations of hydrophobic tails and cationic headgroups. Antibacterial activity was strongly correlated to specific structural features, including tail hydrophobicity and headgroup charge density, and also to the overall molecular shape and propensity for self-assembly into curved liquid crystalline phases. Dye permeabilization assays showed that E. coli membranes were permeabilized by lipidoids, confirming their membrane-active nature. The reduced permeabilization, as compared to Gram-positive Bacillus subtilis, alludes to the challenge of permeabilizing the additional outer membrane layer of E. coli. The effect of headgroup solubility in gemini-type lipidoids was also demonstrated, revealing that a headgroup with a more hydrophilic spacer between amine groups had enhanced activity against B. subtilis but not E. coli. This provides insight into features enabling outer membrane penetration and governing selectivity between bacterial species.
Collapse
|
research-article |
2 |
1 |
13
|
Solra M, Kapila R, Das S, Bhatt P, Rana S. Transient Metallo- Lipidoid Assemblies Amplify Covalent Catalysis of Aqueous and Non-Aqueous Reactions. Angew Chem Int Ed Engl 2024; 63:e202400348. [PMID: 38315883 DOI: 10.1002/anie.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Dissipative supramolecular assemblies are hallmarks of living systems, contributing to their complex, dynamic structures and emerging functions. Living cells can spatiotemporally control diverse biochemical reactions in membrane compartments and condensates, regulating metabolite levels, signal transduction or remodeling of the cytoskeleton. Herein, we constructed membranous compartments using self-assembly of lipid-like amphiphiles (lipidoid) in aqueous medium. The new double-tailed lipidoid features Cu(II) coordinated with a tetravalent chelator that dictates the binding of two amphiphilic ligands in cis-orientation. Hydrophobic interactions between the lipidoids coupled with intermolecular hydrogen bonding led to a well-defined bilayer vesicle structure. Oil-soluble SNAr reaction is efficiently upregulated in the hydrophobic cavity, acting as a catalytic crucible. The modular system allows easy incorporation of exposed primary amine groups, which augments the catalysis of retro aldol and C-N bond formation reactions. Moreover, a higher-affinity chelator enables consumption of the Cu(II) template leveraging the differential thermodynamic stability, which allows a controllable lifetime of the vesicular assemblies. Concomitant temporal upregulation of the catalytic reactions could be tuned by the metal ion concentration. This work offers new possibilities for metal ion-mediated dynamic supramolecular systems, opening up a massive repertoire of functionally active dynamic "life-like" materials.
Collapse
|
|
1 |
|