1
|
Liu Y, Gao X, Shen M, Zhao Y, Zhang X, Liu S, Liu X, Hou L, Yuan C. In-Situ Construction of Functional Multi-Dimensional MXene-based Composites Directly from MAX Phases through Gas-Solid Reactions. Angew Chem Int Ed Engl 2024; 63:e202412898. [PMID: 39177076 DOI: 10.1002/anie.202412898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The weak bonding of A atoms with MX layers in MAX phases not only enables the selective etching of A layers for MXene preparation but brings about the chance to construct A derivatives/MXene composites via in situ conversion. Here, a facile and general gas-solid reaction systems are elegantly devised to construct multi-dimensional MXene based composites including AlF3 nanorods/MXene, AlF3 nanocrystals/MXene, amorphous AlF3/MXene, A filled carbon nanotubes/MXene, layered metal chalcogenides/MXene, MOF/MXene, and so on. The intrinsic effect mechanism of interlayer confinement towards crystal growth, catalytic behavior, van der Waals-heterostructure construction and coordination reaction are rationally put forward. The tight interface combination and synergistic effect from distinct components make them promising active materials for electrochemical applications. More particularly, the AlF3 nanorods/Nb2C MXene demonstrate bi-directional catalytic activity toward the conversion between Li2S and lithium polysulfides, which alleviates the shuttle effect in lithium-sulfur batteries.
Collapse
|
2
|
Yang Y, Wang W, Zhang J. Natural Polyphenol-Reinforced Ion-Selective Separators for High-Performance Lithium-Sulfur Batteries with High Sulfur Loading and Lean Electrolyte. Angew Chem Int Ed Engl 2024:e202417031. [PMID: 39477793 DOI: 10.1002/anie.202417031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 11/17/2024]
Abstract
Ion-selective separators are promising to inhibit soluble intermediates shuttle in practical lithium-sulfur (Li-S) batteries. However, designing and fabricating such high-performance ion-selective separators using cost-effective, eco-friendly, and versatile methods remains a formidable challenge. Here we present ion-selective separators fabricated via the spontaneous deposition of green tea-derived polyphenols onto a polypropylene separator, aimed at enhancing the stability of Li-S batteries. The resulting natural polyphenol-reinforced ion-selective (NPRIS24) separators exhibit rapid Li ion transport and high soluble intermediates inhibition capability with an ultralow shuttle rate of 0.67 % for Li2S4, 0.19 % for Li2S6 and 0.10 % for Li2S8. This superior ion-selectivity arises from the high electronegativity and strong lithiophilic nature of the phenolic compounds. Consequently, we have achieved high-performance Li-S batteries that are steadily cyclable under the challenging conditions of an S loading of 5.7 mg cm-2, an electrolyte-to-S ratio of 5.1 μL mg-1, and a 50 μm Li foil anode. Furthermore, the NPRIS24 separator enhances the performance of other Li metal batteries utilizing commercial LiFePO4 (5.3 mg cm-2) and LiNi0.5Co0.2Mn0.3O2 (9.9 mg cm-2) cathodes. This work underscores the potential of utilizing natural polyphenols for the design of advanced ion-selective separators in energy storage systems.
Collapse
|
3
|
Yang P, Qiang J, Chen J, Zhang Z, Xu M, Fei L. A Versatile Metal-Organic-Framework Pillared Interlayer Design for High-Capacity and Long-Life Lithium-Sulfur Batteries. Angew Chem Int Ed Engl 2024:e202414770. [PMID: 39355946 DOI: 10.1002/anie.202414770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Developing high-performance lithium-sulfur batteries is a promising way to attain higher energy density at a lower cost beyond the state-of-the-art lithium-ion battery technology. However, the major issues impeding their practical applications are the sluggish kinetics and the parasitic shuttling reactions of sulfur and polysulfides. Here, pillaring the multilayer graphene membrane with a metal-organic framework (MOF) demonstrates the substantial impact of a versatile interlayer design in tackling these issues. Unlike regular composite separators reported so far, the participation of tri-metallic Ni-Co-Mn MOF as pillars supports the construction of an ion-channel interconnected interlayer structure, unexpectedly balancing the interfacial concentration polarization, spatially confining the soluble polysulfides, and vastly affording the lithiophilic sites for highly efficient polysulfide sieving/conversion. As a demonstration, we show that the MOF-pillared interlayer structure enables outstanding capacity (1634 mAh g-1 at 0.1 C) and longevity (average capacity decay of 0.034 % per cycle in 2000 cycles) for lithium-sulfur batteries. Besides, the multilayer separator can be readily integrated into the high-nickel cathode (LiNi0.91Mn0.03Co0.06O2)-based lithium-ion batteries, which efficiently suppresses the undesired phase evolution upon cycling. These findings suggest the potential of "gap-filling" materials in fabricating multi-functional separators, bringing forward the pillared interlayer structure for energy-storage applications.
Collapse
|
4
|
Ao X, Kong Y, Zhao S, Chen Z, Li Y, Liao X, Tian B. Metal-N Coordination in Lithium-Sulfur Batteries: Inhibiting Catalyst Passivation. Angew Chem Int Ed Engl 2024:e202415036. [PMID: 39305143 DOI: 10.1002/anie.202415036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 11/03/2024]
Abstract
Lithium-sulfur (Li-S) batteries exhibit great potential as the next-generation energy storage techniques. Application of catalyst is widely adopted to accelerate the redox kinetics of polysulfide conversion reactions and improve battery performance. Although significant attention has been devoted to seeking new catalysts, the problem of catalyst passivation remains underexplored. Herein, we find that metal-N coordination has a previously overlooked role in preventing the catalyst passivation. In the case of nickel, the Ni catalyst reacts with S8 to produce NiSx compounds on the surface, leading to catalyst passivation and slow the kinetics of LiPSs conversion. In contrast, when Ni is coordinated with N (typically Ni-N4), S8 remains stable on the surface. The Ni-N4 exhibits excellent resistance to passivation and rapid kinetics of LiPSs conversion. Consequently, the sulfur cathode with Ni-N4 exhibits a high rate capability of 604.11 mAh g-1 at 3 C and maintains a low capacity decay rate of 0.046 % per cycle over 1000 cycles at 2 C. Furthermore, preventing S passivation in M-N coordination applies not only to Ni-N4 but also to various coordination numbers and transition metals. This study reveals a new aspect of metal-N coordination in inhibiting catalyst passivation, improving our understanding of catalysts in Li-S batteries.
Collapse
|
5
|
Liu J, Lin S, Nie T, Li Z, Na B, Zou S, Liu H. One-Pot Hydrothermal-Derived rGO/MXene/Sulfur Composite Aerogels as Free-Standing Cathodes in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202401922. [PMID: 38897920 DOI: 10.1002/chem.202401922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
The confinement and high utilization of sulfur in the cathodes is critical for improved cycling performance of lithium-sulfur batteries. In this case one-pot hydrothermal strategy is developed to produce rGO/MXene/sulfur composite aerogels where sulfur is in situ trapped in the 3D rGO/MXene conductive skeleton. The optimized composite aerogels as free-standing cathodes delivery a specific capacity of 951 mAhg-1 after 100 cycles at 0.2 C with a low fading rate of 0.062 % per cycle. The excellent cycling performance is correlated with highly oxidized MXene and in situ formed sulfate/thiosulfate complex layer in the long-term cycles.
Collapse
|
6
|
Sun Z, Wang Y, Xu J, Wang X. Mo 3P/Mo heterojunction for efficient conversion of lithium polysulfides in high-performance lithium-sulfur batteries. Front Chem 2024; 12:1459324. [PMID: 39189020 PMCID: PMC11345131 DOI: 10.3389/fchem.2024.1459324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Realizing efficient immobilization of lithium polysulfides (LiPSs) as well as reversible catalytic conversion between LiPSs and the insoluble Li2S is vital to restrain the shuttle effect, which requires highly reactive catalysts for high-performance Li-S batteries. Here, three-dimensional ordered porous Mo-based metal phosphides (3DOP Mo3P/Mo) with heterogeneous structures were fabricated and utilized as separator-modified coatings for Li-S batteries to catalyze the conversion of LiPSs. The adsorption, catalytic and electrochemical performance of the corresponding cells were compared among 3DOP Mo3P/Mo and 3DOP Mo, by kinetic and electrochemical performance measurements. It was found that the cell with 3DOP Mo3P/Mo modified separator deliver better electrochemical performance, with a high specific capacity of 469.66 mAh g-1 after 500 cycles at a high current density of 1°C. This work provides an idea and a guideline for the design of the separator modification for high-performance Li-S batteries.
Collapse
|
7
|
Chen K, Lin Z, Zhang G, Zheng J, Fan Z, Xiao L, Xu Q, Xu J. Efficient Host Materials for Lithium-Sulfur Batteries: Ultrafine CoP Nanoparticles in Black Phosphorus-Carbon Composite. CHEMSUSCHEM 2024; 17:e202400339. [PMID: 38440923 DOI: 10.1002/cssc.202400339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The pursuit of efficient host materials to address the sluggish redox kinetics of sulfur species has been a longstanding challenge in advancing the practical application of lithium-sulfur batteries. In this study, amorphous carbon layer loaded with ultrafine CoP nanoparticles prepared by a one-step in situ carbonization/phosphating method to enhance the inhibition of 2D black phosphorus (BP) on LiPSs shuttle. The carbon coating layer facilitates accelerated electron/ion transport, enabling the active involvement of BP in the conversion of soluble lithium polysulfides (LiPSs). Concurrently, the ultra-fine CoP nanoparticles enhance the chemical anchoring ability and introduce additional catalytic sites. As a result, S@BP@C-CoP electrodes demonstrate exemplary cycling stability (with a minimal capacity decay of 0.054 % over 500 cycles at 1 C) and superior rate performance (607.1 mAh g-1 at 5 C). Moreover, at a sulfur loading of 5.5 mg cm-2, the electrode maintains an impressive reversible areal capacity of 5.45 mAh cm-2 after 50 cycles at 0.1 C. This research establishes a promising approach, leveraging black phosphorus-based materials, for developing high-efficiency Li-S batteries.
Collapse
|
8
|
Shao J, Huang C, Zhu Q, Sun N, Zhang J, Wang R, Chen Y, Zhang Z. Flexible CNT-Interpenetrating Hierarchically Porous Sulfurized Polyacrylonitrile (CIHP-SPAN) Electrodes for High-Rate Lithium-Sulfur (Li-S) Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1155. [PMID: 38998761 PMCID: PMC11242976 DOI: 10.3390/nano14131155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for lithium-sulfur batteries owing to its reversible solid-solid conversion for high-energy-density batteries. However, the sluggish reaction kinetics of SPAN cathodes significantly limit their output capacity, especially at high cycling rates. Herein, a CNT-interpenetrating hierarchically porous SPAN electrode is developed by a simple phase-separation method. Flexible self-supporting SPAN cathodes with fast electron/ion pathways are synthesized without additional binders, and exceptional high-rate cycling performances are obtained even with substantial sulfur loading. For batteries assembled with this special cathode, an impressive initial discharge capacity of 1090 mAh g-1 and a retained capacity of 800 mAh g-1 are obtained after 1000 cycles at 1 C with a sulfur loading of 1.5 mg cm-2. Furthermore, by incorporating V2O5 anchored carbon fiber as an interlayer with adsorption and catalysis function, a high initial capacity of 614.8 mAh g-1 and a notable sustained capacity of 500 mAh g-1 after 500 cycles at 5 C are achieved, with an ultralow decay rate of 0.037% per cycle with a sulfur loading of 1.5 mg cm-2. The feasible construction of flexible SPAN electrodes with enhanced cycling performance enlists the current processing as a promising strategy for novel high-rate lithium-sulfur batteries and other emerging battery electrodes.
Collapse
|
9
|
Lin Z, Zhu H, Qian L, Tang X, Wen J, Wang Y, Wang X, Han S, Zhu J, Lin H, Zhao Y. Modulating the Coordination Chemistry of Cobalt Catalytic Sites by Ruthenium Species to Accelerate the Polysulfide Conversion Kinetics in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202400945. [PMID: 38690799 DOI: 10.1002/chem.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.
Collapse
|
10
|
Li W, Qin Y, Dou X, Hu Q, Liang W, Nie G, Zhu G, Zeng C, Zeng G. Diminishing Self-Discharge of High-Loading Li-S Batteries with Oxygen-Rich Biomass Carbon Interlayers. Chem Asian J 2024; 19:e202400177. [PMID: 38639820 DOI: 10.1002/asia.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Lithium-sulfur batteries (Li-S) have possessed gratifying development in the past decade due to their high theoretical energy density. However, the severe polysulfide shuttling provokes undesirable self-discharge effect, leading to low energy efficiency in Li-S batteries. Herein, an interlayer composed of oxygen-rich carbon nanosheets (OCN) derived from bagasse is elaborated to suppress the shuttle effect and reduce the resultant self-discharge effect. The OCN interlayer is able to physically block the shuttling behavior of polysulfides and its oxygen-rich functional groups can strongly interact with polysulfides via O-S bonds to chemically immobilize mobile polysulfides. The self-discharge test for seven days further shows that the self-discahrge rate is diminished by impressive 93 %. As a result, Li-S batteries with the OCN interlayer achieve an ultrahigh discharge specific capacity of 710 mAh g-1 at a high mass loading of 7.18 mg. The work provides a facile method for designing functional interlayers and opens a new avenue for realizing Li-S batteries with high energy efficiency.
Collapse
|
11
|
Hirt SD, Opitz M, Kappl H, Hägele M, Sous P, Oberschachtsiek B, Sörgel S, Kaßner H, Hoster HE. Attenuating the Polysulfide Shuttle Mechanism by Separator Coating. Chemphyschem 2024; 25:e202300858. [PMID: 38483867 DOI: 10.1002/cphc.202300858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Lithium-sulfur batteries have a high energy density but lack cycle stability to reach market maturity. This is mainly due to the polysulfide shuttle mechanism, i. e., the leaching of active material from the cathode into the electrolyte and subsequent side reactions. We demonstrate how to attenuate the polysulfide shuttle by magnetron sputtering molybdenum oxysulfide, manganese oxide, and chromium oxide onto microporous polypropylene separators. The morphology of the amorphous coatings was analyzed by SEM and XRD. Electrochemical cyclization quantified how these coatings improved Coulombic efficiency and cycle stability. These tests were conducted in half cells. We compare the different performances of the different coatings with the known chemical and adsorption properties of the respective coating materials.
Collapse
|
12
|
Zhao Y, Zhang H, Ye H, Zhao D, Lee JY, Huang L. Phosphorous-Based Heterostructure for the Effective Catalysis of Polysulfide Reactions with Phase Changes in High-Sulfur-Loading Lithium-Sulfur Batteries. SMALL METHODS 2024; 8:e2300610. [PMID: 38009523 DOI: 10.1002/smtd.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
High sulfur loading and long cycle life are the design targets of commercializable lithium-sulfur (Li-S) batteries. The sulfur electrochemical reactions from Li2 S4 to Li2 S, which account for 75% of the battery's theoretical capacity, involve liquid-to-solid and solid-to-solid phase changes in all Li-S battery electrolytes in use today. These are kinetically hindered processes that are exacerbated by a high sulfur loading. In this study, it is observed that an in situ grown bimetallic phosphide/black phosphorus (NiCoP/BP) heterostructure can effectively catalyze the Li2 S4 to Li2 S reactions to increase the sulfur utilization at high sulfur loadings. The NiCoP/BP heterostructure is a good polysulfide adsorber, and the electric field prevailing at the Mott-Schottky junction of the heterostructure can facilitate charge transfer in the Li2 S4 to Li2 S2 liquid-to-solid reaction and Li+ diffusion in the Li2 S2 to Li2 S solid-state reaction. Consequently, a sulfur cathode with the NiCoP/BP catalyst can deliver a specific capacity of 830 mAh g-1 at the sulfur loading of 6 mg cm-2 for 500 cycles at the 0.5 C rate. High sulfur utilization is also possible at a higher sulfur loading of 8 mg cm-2 for 440 cycles at the 1 C rate.
Collapse
|
13
|
Li H, Zheng W, Wu H, Fang Y, Li L, Yuan W. Ultra-Dispersed α-MoC 1-x Embedded in a Plum-Like N-Doped Carbon Framework as a Synergistic Adsorption-Electrocatalysis Interlayer for High-Performance Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306140. [PMID: 37875718 DOI: 10.1002/smll.202306140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/30/2023] [Indexed: 10/26/2023]
Abstract
The shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely hinder the scalable application of lithium-sulfurr (Li-S) batteries. Herein, the highly dispersed α-phase molybdenum carbide nano-crystallites embedded in a porous nitrogen-doped carbon framework (α-MoC1-x @NCF) are developed via a simple metal-organic frameworks (MOFs) assisted strategy and proposed as the multifunctional separator interlayer for Li-S batteries. The inlaid MoC1-x nanocrystals and in situ doped nitrogen atoms provide a strong chemisorption and outstanding electrocatalytic conversion toward LiPSs, whereas the unique plum-like carbon framework with hierarchical porosity enables fast electron/Li+ transfer and can physically suppress LiPSs shuttling. Benefiting from the synergistic trapping-catalyzing effect of the MoC1-x @NCF interlayer toward LiPSs, the assembled Li-S battery achieves high discharge capacities (1588.1 mAh g-1 at 0.1 C), impressive rate capability (655.8 mAh g-1 at 4.0 C) and ultra-stable lifespan (a low capacity decay of 0.059% per cycle over 650 cycles at 1.0 C). Even at an elevated sulfur loading (6.0 mg cm-2 ) and lean electrolyte (E/S is ≈5.8 µL mg-1 ), the battery can still achieve a superb areal capacity of 5.2 mAh cm-2 . This work affords an effective design strategy for the construction of muti-functional interlayer in advanced Li-S batteries.
Collapse
|
14
|
Li B, Wang P, Yuan J, Song N, Feng J, Xiong S, Xi B. Origin of Phase Engineering CoTe 2 Alloy Toward Kinetics-Reinforced and Dendrite-Free Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309324. [PMID: 38048638 DOI: 10.1002/adma.202309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Indexed: 12/06/2023]
Abstract
Slow electrochemistry kinetics and dendrite growth are major obstacles for lithium-sulfur (Li-S) batteries. The investigations over the polymorph effect require more endeavors to further access the related catalyst design principles. Herein, the systematic evaluation of CoTe2 alloy with two polymorphs regarding sulfur reduction reaction (SRR) and lithium plating/stripping is reported. As disclosed by theoretical calculations and electrochemical measurements, the orthorhombic (o-) and hexagonal (h-) CoTe2 make a substantial difference. The reactivity origin of the CoTe2 polymorphs is explored. The higher position of d-band centers for the Co atoms on the o-CoTe2 leads to a higher displacement of the antibonding state; the lower antibonding state occupancy, the more effective the interaction with the sulfide moieties and lithium. Hence, o-CoTe2 annihilates h-CoTe2 and exhibits better catalysis and more uniform lithium deposition, consolidated by excellent performance of full cell made of o-CoTe2 . It keeps stable charging/discharging for 800 cycles at 0.5 C with only 0.055% capacity decay per cycle and even achieves an areal capacity of 6.5 mAh cm-2 at lean electrolyte and high sulfur loading of 6.4 mg cm-2 . This work establishes the mechanistic perspective about the catalysts in Li-S batteries and provides new insight into the unified solution.
Collapse
|
15
|
Kang X, He T, Zou R, Niu S, Ma Y, Zhu F, Ran F. Size Effect for Inhibiting Polysulfides Shuttle in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306503. [PMID: 37821397 DOI: 10.1002/smll.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/17/2023] [Indexed: 10/13/2023]
Abstract
It is undeniable that the dissolution of polysulfides is beneficial in speeding up the conversion rate of sulfur in electrochemical reactions. But it also brings the bothersome "shuttle effect". Therefore, if polysulfides can be retained on the cathode side, the efficient utilization of the polysulfides can be guaranteed to achieve the excellent performance of lithium-sulfur batteries. Based on this idea, considerable methods have been developed to inhibit the shuttling of polysulfides. It is necessary to emphasize that no matter which method is used, the solvation mechanism, and existence forms of polysulfides are essential to analyze. Especially, it is important to clarify the sizes of different forms of polysulfides when using the size effect to inhibit the shuttling of polysulfides. In this review, a comprehensive summary and in-depth discussion of the solvation mechanism, the existing forms of polysulfides, and the influencing factors affecting polysulfides species are presented. Meanwhile, the size of diverse polysulfide species is sorted out for the first time. Depending on the size of polysulfides, tactics of using size effect in cathode, separator, and interlayer parts are elaborated. Finally, a design idea of materials pore size is proposed to satisfy the use of size effect to inhibit polysulfides shuttle.
Collapse
|
16
|
Zhu A, Li S, Yang Y, Peng B, Cheng Y, Kang Q, Zhuang Z, Ma L, Xu J. Constructing Wide-Temperature Lithium-Sulfur Batteries by Using a Covalent Organic Nanosheet Wrapped Carbon Nanotube. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305494. [PMID: 37797191 DOI: 10.1002/smll.202305494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Lithium-sulfur (Li-S) batteries hold the superiority of eminent theoretical energy density (2600 Wh kg-1 ). However, the ponderous sulfur reduction reaction and the issue of polysulfide shuttling pose significant obstacles to achieving the practical wide-temperature operation of Li-S batteries. Herein, a covalent organic nanosheet-wrapped carbon nanotubes (denoted CON/CNT) composite is synthesized as an electrocatalyst for wide-temperature Li-S batteries. The design incorporates the CON skeleton, which contains imide and triazine functional units capable of chemically adsorbing polysulfides, and the underlaid CNTs facilitate the conversion of captured polysulfides enabled by enhanced conductivity. The electrocatalytic behavior and chemical interplay between polysulfides and the CON/CNT interlayer are elucidated by in situ X-ray diffraction detections and theoretical calculations. Resultantly, the CON/CNT-modified cells demonstrate upgraded performances, including wide-temperature operation ranging from 0 to 65 °C, high-rate performance (625 mAh g-1 at 5.0 C), exceptional high-rate cyclability (1000 cycles at 5.0 C), and stable operation under high sulfur loading (4.0 mg cm-2 ) and limited electrolyte (5 µL mgs -1 ). These findings might guide the development of advanced Li-S batteries.
Collapse
|
17
|
Liu H, Tian X, Liu Y, Munir HA, Hu W, Fan X, Pang L. Rational design of hollow flower-like MoS 2/Mo 2C heterostructures in N-doped carbon substrate for synergistically accelerating adsorption-electrocatalysis of polysulfides in lithium sulfur batteries. NANOTECHNOLOGY 2024; 35:165402. [PMID: 38211327 DOI: 10.1088/1361-6528/ad1d7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Lithium-sulfur (Li-S) batteries have been garnered significant attention in the energy storage field due to their high theoretical specific capacity and low cost. However, Li-S batteries suffer from issues like the shuttle effect, poor conductivity, and sluggish chemical reaction kinetics, which hinder their practical development. Herein, a novel hollow flower-like architecture composed of MoS2/Mo2C heterostructures in N-doped carbon substrate (H-Mo2S/Mo2C/NC NFs), which were well designed and prepared through a calcination-vulcanization method, were used as high-efficiency catalyst to propel polysulfide redox kinetics.Ex situelectrochemical impedance spectroscopy verify that the abundant heterojunctions could facilitate electron and ion transfer, revealed the excellent interface solid-liquid-solid conversion reaction. The adsorption test of Li2S6showed that Mo2S and Mo2C formed heterostructure generate the binding of polysulfide could be enhanced. And cyclic voltammetry test indicate boost the polysulfide redox reaction kinetics and ion transfer of H-Mo2S/Mo2C/NC/S NFs cathode. Benefiting from the state-of-the-art design, the H-Mo2S/Mo2C/NC/S NFs cathode demonstrates remarkable rate performance with a specific capacity of 1351.9 mAh g-1at 0.2 C, when the current density was elevated to 2 C and subsequently reverted to 0.2 C, the H-Mo2S/Mo2C/NC/S NFs cathode retained a capacity of 1150.4 mAh g-1, and it maintains exceptional long cycling stability (840 mA h g-1at 2 C after 500 cycles) a low capacity decay of 0.0073% per cycle. This work presents an effective approach to rapidly fabricating multifunctional heterostructures as an effective sulfur host in improving the polysulfide redox kinetics for lithium sulfur batteries.
Collapse
|
18
|
Zhang T, Luo D, Xiao H, Liang X, Zhang F, Zhuang H, Xu M, Dai W, Qi S, Zheng L, Gao Q. Nonmetallic-Bonding Fe-Mn Diatomic Pairs Anchored on Hollow Carbonaceous Nanodisks for High-Performance Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306806. [PMID: 37688339 DOI: 10.1002/smll.202306806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g-1 at 0.1 C and 885 mAh g-1 at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g-1 is achieved at 1.0 C and maintains at 731 mAh g-1 after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm-2 harvests a practical areal capacity of 5.70 mAh cm-2 at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.
Collapse
|
19
|
Wang Y, Wu Y, Mao P, Fan Y, Wang X, Xiang H, Li Z, Li K, Hu C. A Keggin Al 13 -Montmorillonite Modified Separator Retards the Polysulfide Shuttling and Accelerates Li-Ion Transfer in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304898. [PMID: 37670213 DOI: 10.1002/smll.202304898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Indexed: 09/07/2023]
Abstract
The commercialization of Li-S batteries as a promising energy system is terribly impeded by the issues of the shuttle effect and Li dendrite. Keggin Al13 -pillared montmorillonite (AlMMT), used as the modified film of the separator together with super-P and poly (vinylidene fluoride) (PVDF), has a good chemical affinity to lithium polysulfide (LiPS) to retard the polysulfide shuttling, excellent electrolyte wettability, and a stable structure, which can improve the rate capability and cycling stability of Li-S batteries. Density function theory (DFT) calculations reveal the strong adsorption ability of AlMMT for LiPS. Consequently, the modified film allows Li-S batteries to reach 902 mAh g-1 at 0.2C after 200 cycles and 625 mAh g-1 at 1C after 1000 cycles. More importantly, a high reversible areal capacity of 4.04 mAh cm-2 can be realized under a high sulfur loading of 6.10 mg cm-2 . Combining the merits of rich resources of montmorillonite, prominent performance, simple operation and cost-effectiveness together, this work exploits a new route for viable Li-S batteries for applications.
Collapse
|
20
|
Wang X, Yang J, Liu S, He S, Liu Z, Che X, Qiu J. Accelerating Sulfur Redox Chemistry by Atomically Dispersed Zn-N 4 Sites Coupled with Pyridine-N Defects on Porous Carbon Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305508. [PMID: 37670540 DOI: 10.1002/smll.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/12/2023] [Indexed: 09/07/2023]
Abstract
Single-atom catalysts (SACs) with specific N-coordinated configurations immobilized on the carbon substrates have recently been verified to effectively alleviate the shuttle effect of lithium polysulfides (LiPSs) in lithium-sulfur (Li─S) batteries. Herein, a versatile molten salt (KCl/ZnCl2 )-mediated pyrolysis strategy is demonstrated to fabricate Zn SACs composed of well-defined Zn-N4 sites embedded into porous carbon sheets with rich pyridine-N defects (Zn─N/CS). The electrochemical kinetic analysis and theoretical calculations reveal the critical roles of Zn-N4 active sites and surrounding pyridine-N defects in enhancing adsorption toward LiPS intermediates and catalyzing their liquid-solid conversion. It is confirmed by reducing the overpotential of the rate-determining step of Li2 S2 to Li2 S and the energy barrier for Li2 S decomposition, thus the Zn─N/CS guarantees fast redox kinetics between LiPSs and Li2 S products. As a proof of concept demonstration, the assembled Li─S batteries with the Zn─N/CS-based sulfur cathode deliver a high specific capacity of 1132 mAh g-1 at 0.1 C and remarkable capacity retention of 72.2% over 800 cycles at 2 C. Furthermore, a considerable areal capacity of 6.14 mAh cm-2 at 0.2 C can still be released with a high sulfur loading of 7.0 mg cm-2 , highlighting the practical applications of the as-obtained Zn─N/CS cathode in Li─S batteries.
Collapse
|
21
|
Zheng M, Zhao J, Wu W, Chen R, Chen S, Cheng N. Co/CoS 2 Heterojunction Embedded in N, S-Doped Hollow Nanocage for Enhanced Polysulfides Conversion in High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303192. [PMID: 37712177 DOI: 10.1002/smll.202303192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Modulating the electronic configuration of the substrate to achieve the optimal chemisorption toward polysulfides (LiPSs) for boosting polysulfide conversion is a promising way to the efficient Li-S batteries but filled with challenges. Herein, a Co/CoS2 heterostructure is elaborately built to tuning d-orbital electronic structure of CoS2 for a high-performance electrocatalyst. Theoretical simulations first evidence that Co metal as the electron donator can form a built-in electric field with CoS2 and downshift the d-band center, leading to the well-optimized adsorption strength for lithium polysulfides on CoS2 , thus contributing a favorable way for expediting the redox reaction kinetics of LiPSs. As verification of prediction, a Co/CoS2 heterostructure implanted in porous hollow N, S co-doped carbon nanocage (Co/CoS2 @NSC) is designed to realize the electronic configuration regulation and promote the electrochemical performance. Consequently, the batteries assembled with Co/CoS2 @NSC cathode display an outstanding specific capacity and an admirable cycling property as well as a salient property of 8.25 mAh cm-2 under 8.18 mg cm-2 . The DFT calculation also reveals the synergistic effect of N, S co-doping for enhancing polysulfide adsorption as well as the detriment of excessive sulfur doping.
Collapse
|
22
|
Wu S, Wang C, Liang H, Nong W, Zeng Z, Li Y, Wang C. High-Throughput Calculations for Screening d- and p-Block Single-Atom Catalysts toward Li 2 S/Na 2 S Decomposition Guided by Facile Descriptor beyond Brønsted-Evans-Polanyi Relationship. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305161. [PMID: 37641192 DOI: 10.1002/smll.202305161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Single-atom catalysts (SACs) are promising cathode materials for addressing issues faced by lithium-sulfur batteries. Considering the ample chemical space of SACs, high-throughput calculations are efficient strategies for their rational design. However, the high throughput calculations are impeded by the time-consuming determination of the decomposition barrier (Eb ) of Li2 S. In this study, the effects of bond formation and breakage on the kinetics of SAC-catalyzed Li2 S decomposition with g-C3 N4 as the substrate are clarified. Furthermore, a new efficient and easily-obtained descriptor Li─S─Li angle (ALi─S─Li ) of adsorbed Li2 S, different from the widely accepted thermodynamic data for predicting Eb , which breaks the well-known Brønsted-Evans-Polanyi relationship, is identified. Under the guidance of ALi─S─Li , several superior SACs with d- and p-block metal centers supported by g-C3 N4 are screened to accelerate the sulfur redox reaction and fix the soluble lithium polysulfides. The newly identified descriptor of ALi─S─Li can be extended to rationally design SACs for Na─S batteries. This study opens a new pathway for tuning the performance of SACs to catalyze the decomposition of X2 S (X = Li, Na, and K) and thus accelerate the design of SACs for alkaline-chalcogenide batteries.
Collapse
|
23
|
Li R, Zeng Y, Song L, Lv J, Wang C, Zhou C, Cai S, Chen T, Yue S, Ma K, Yue H. Mechanism and Solution of Overcharge Effect in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305283. [PMID: 37661577 DOI: 10.1002/smll.202305283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Increasing the sulfur cathode load is an important method for promoting the commercialization of lithium-sulfur batteries. However, there is a common problem of overcharging in high-loading experiments, which is rarely reported. In this work, it is believed that an insulating layer of S8 forms on the current collector surface, hindering electron exchange with polysulfides. Continuous external current input during layer formation can cause irreversible electrode changes and overcharging. The general solution is to provide nucleation centers with adsorption sites to promote the 3D growth of the insulated S8 , thus avoiding overcharging. In this work, a solution is proposed by providing nucleation centers by gallium nitrate, by regulating the 3D growth of S8 away from the surface of the current collector to avoid overcharging and by improving battery performance.
Collapse
|
24
|
An Q, Wang L, Zhao G, Duan L, Sun Y, Liu Q, Mei Z, Yang Y, Zhang C, Guo H. Constructing Cooperative Interface via Bi-Functional COF for Facilitating the Sulfur Conversion and Li + Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305818. [PMID: 37657773 DOI: 10.1002/adma.202305818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Lithium-sulfur (Li-S) batteries stand out for their high theoretical specific capacity and cost-effectiveness. However, the practical implementation of Li-S batteries is hindered by issues such as the shuttle effect, tardy redox kinetics, and dendrite growth. Herein, an appealingly designed covalent organic framework (COF) with bi-functional active sites of cyanide groups and polysulfide chains (COF-CN-S) is developed as cooperative functional promoters to simultaneously address dendrites and shuttle effect issues. Combining in situ techniques and theoretical calculations, it can be demonstrated that the unique chemical architecture of COF-CN-S is capable of performing the following functions: 1) The COF-CN-S delivers significantly enhanced Li+ transport capability due to abundant ion-hopping sites (cyano-groups); 2) it functions as a selective ion sieve by regulating the dynamic behavior of polysulfide anions and Li+ , thus inhibiting shuttle effect and dendrite growth; 3) by acting as a redox mediator, the COF-CN-S can effectively control the electrochemical behavior of polysulfides and enhance their conversion kinetics. Based on the above advantages, the COF-CN-S endows Li-S batteries with excellent performance. This study highlights the significance of interface modification and offers novel insights into the rational design of organic materials in the Li-S realm.
Collapse
|
25
|
Sun K, Fu Y, Sekine T, Mabuchi H, Hossain S, Zhang Q, Liu D, Das S, He D, Negishi Y. Metal Nanoclusters as a Superior Polysulfides Immobilizer toward Highly Stable Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304210. [PMID: 37626458 DOI: 10.1002/smll.202304210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.
Collapse
|