1
|
Oliveira HR, Brito LF, Lourenco DAL, Silva FF, Jamrozik J, Schaeffer LR, Schenkel FS. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. J Dairy Sci 2019; 102:7664-7683. [PMID: 31255270 DOI: 10.3168/jds.2019-16265] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
An important goal in animal breeding is to improve longitudinal traits; that is, traits recorded multiple times during an individual's lifetime or physiological cycle. Longitudinal traits were first genetically evaluated based on accumulated phenotypic expression, phenotypic expression at specific time points, or repeatability models. Until now, the genetic evaluation of longitudinal traits has mainly focused on using random regression models (RRM). Random regression models enable fitting random genetic and environmental effects over time, which results in higher accuracy of estimated breeding values compared with other statistical approaches. In addition, RRM provide insights about temporal variation of biological processes and the physiological implications underlying the studied traits. Despite the fact that genomic information has substantially contributed to increase the rates of genetic progress for a variety of economically important traits in several livestock species, less attention has been given to longitudinal traits in recent years. However, including genomic information to evaluate longitudinal traits using RRM is a feasible alternative to yield more accurate selection and culling decisions, because selection of young animals may be based on the complete pattern of the production curve with higher accuracy compared with the use of traditional parent average (i.e., without genomic information). Moreover, RRM can be used to estimate SNP effects over time in genome-wide association studies. Thus, by analyzing marker associations over time, regions with higher effects at specific points in time are more likely to be identified. Despite the advances in applications of RRM in genetic evaluations, more research is needed to successfully combine RRM and genomic information. Future research should provide a better understanding of the temporal variation of biological processes and their physiological implications underlying the longitudinal traits.
Collapse
|
Review |
6 |
49 |
2
|
Oliveira HR, Cant JP, Brito LF, Feitosa FLB, Chud TCS, Fonseca PAS, Jamrozik J, Silva FF, Lourenco DAL, Schenkel FS. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:8159-8174. [PMID: 31301836 DOI: 10.3168/jds.2019-16451] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Collapse
|
Journal Article |
6 |
47 |
3
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
|
|
4 |
38 |
4
|
Using Random Regression Models to Genetically Evaluate Functional Longevity Traits in North American Angus Cattle. Animals (Basel) 2020; 10:ani10122410. [PMID: 33339420 PMCID: PMC7766511 DOI: 10.3390/ani10122410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Cattle longevity is usually defined as the duration of life of a cow from first calving to death. In addition to a longer lifespan, it is crucial that cows are productive throughout their lives. Incorporating optimal indicators of productive longevity in breeding schemes will directly improve the economic profitability of the beef cattle herd and long-term sustainability of the industry. Thus, the impact of different longevity indicators in the selection of North American Angus cattle was evaluated and optimal parameters were defined to perform the evaluations. Abstract This study aimed to propose novel longevity indicators by comparing genetic parameters for traditional (TL; i.e., the cow’s lifespan after the first calving) and functional (FL; i.e., how long the cow stayed in the herd while also calving; assuming no missing (FLa) or missing (FLb) records for unknown calving) longevity, considering different culling reasons (natural death, structural problems, disease, fertility, performance, and miscellaneous). Longevity definitions were evaluated from 2 to 15 years of age, using single- and multiple-trait Bayesian random regression models (RRM). The RRM fitting heterogenous residual variance and fourth order Legendre polynomials were considered as the optimal models for the majority of longevity indicators. The average heritability estimates over ages for FLb (from 0.08 to 0.25) were always higher than those for FLa (from 0.07 to 0.19), and higher or equal to the ones estimated for TL (from 0.07 to 0.23), considering the different culling reasons. The average genetic correlations estimated between ages were low to moderate (~0.40), for all longevity definitions and culling reasons. However, removing the extreme ages (i.e., 2 and >12 years) increased the average correlation between ages (from ~0.40 to >0.70). The genetic correlations estimated between culling reasons were low (0.12 and 0.20 on average, considering all ages and ages between 3 and 12 years old, respectively), indicating that longevity based on different culling reasons should be considered as different traits in the genetic evaluations. Higher average genetic correlations (estimated from 3 to 12 years old) were observed between TL and FLb (0.73) in comparison to TL and FLa (0.64), or FLa and FLb (0.65). Consequently, a higher average proportion of commonly-selected sires, for the top 1% sires, was also observed between TL and FLb (91.74%), compared to TL and FLa (59.68%), or FLa and FLb (61.01%). Higher prediction accuracies for the expected daughter performances (calculated based on the pedigree information) were obtained for FLb in comparison to TL and FLa. Our findings indicate that FLb is preferred for the genetic evaluation of longevity. In addition, it is recommended including multiple longevity traits based on different groups of culling reasons in a selection sub-index, as they are genetically-different traits. Genetic selection based on breeding values at the age of four years is expected to result in greater selection responses for increased longevity in North American Angus cattle.
Collapse
|
Journal Article |
5 |
15 |
5
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021; 104:5768-5793. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from -0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.
Collapse
|
Journal Article |
4 |
14 |
6
|
Lu H, Bovenhuis H. Genome-wide association studies for genetic effects that change during lactation in dairy cattle. J Dairy Sci 2019; 102:7263-7276. [PMID: 31155265 DOI: 10.3168/jds.2018-15994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
Abstract
Genetic effects on milk production traits in dairy cattle might change during lactation. However, most genome-wide association studies (GWAS) for milk production traits assume that genetic effects are constant during lactation. This assumption might lead to missing these quantitative trait loci (QTL) whose effects change during lactation. This study aimed to screen the whole genome specifically for QTL whose effects change during lactation. For this purpose, 4 different GWAS approaches were performed using test-day milk protein content records: (1) separate GWAS for specific lactation stages, (2) GWAS for estimated Wilmink lactation curve parameters, (3) a GWAS using a repeatability model where SNP effects are assumed constant during lactation, and (4) a GWAS for genotype by lactation stage interaction using a repeatability model and accounting for changing genetic effects during lactation. Separate GWAS for specific lactation stages suggested that the detection power greatly differs between lactation stages and that genetic effects of some QTL change during lactation. The GWAS for estimated Wilmink lactation curve parameters detected many chromosomal regions for Wilmink parameter a (protein content level), whereas 2 regions for Wilmink parameter b (decrease in protein content toward nadir) and no regions for Wilmink parameter c (increase in protein content after nadir) were detected. Twenty chromosomal regions were detected with effects on milk protein content; however, there was no evidence that their effects changed during lactation. For 5 chromosomal regions located on chromosomes 3, 9, 10, 14, and 27, significant evidence was observed for a genotype by lactation stage interaction and thus their effects on milk protein content changed during lactation. Three of these 5 regions were only identified using a GWAS for genotype by lactation stage interaction. Our study demonstrated that GWAS for genotype by lactation stage interaction offers new possibilities to identify QTL involved in milk protein content. The performed approaches can be applied to other milk production traits. Identification of QTL whose genetic effects change during lactation will help elucidate the genetic and biological background of milk production.
Collapse
|
Journal Article |
6 |
11 |
7
|
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle. Animals (Basel) 2021; 11:ani11092524. [PMID: 34573489 PMCID: PMC8470172 DOI: 10.3390/ani11092524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Genome-wide association study (GWAS) has become the main approach for detecting functional genes that affects complex traits. For growth traits, the conventional GWAS method can only deal with the single-record traits observed at specific time points, rather than the longitudinal traits measured at multiple time points. Previous studies have reported the random regression model (RRM) for longitudinal data could overcome the limitation of the traditional GWAS model. Here, we present an association analysis based on RRM (GWAS-RRM) for 808 Chinese Simmental beef cattle at four stages of age. Ultimately, 37 significant single-nucleotide polymorphisms (SNPs) and several important candidate genes were screened to be associated with the body weight. Enrichment analysis showed these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. This study not only offers a further understanding of the genetic basis for growth traits in beef cattle, but also provides a robust analytics tool for longitudinal traits in various species. Abstract Body weight (BW) is an important longitudinal trait that directly described the growth gain of bovine in production. However, previous genome-wide association study (GWAS) mainly focused on the single-record traits, with less attention paid to longitudinal traits. Compared with traditional GWAS models, the association studies based on the random regression model (GWAS-RRM) have better performance in the control of the false positive rate through considering time-stage effects. In this study, the BW trait data were collected from 808 Chinese Simmental beef cattle aged 0, 6, 12, and 18 months, then we performed a GWAS-RRM to fit the time-varied SNP effect. The results showed a total of 37 significant SNPs were associated with BW. Gene functional annotation and enrichment analysis indicated FGF4, ANGPT4, PLA2G4A, and ITGA5 were promising candidate genes for BW. Moreover, these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. These findings will provide prior molecular information for bovine gene-based selection, as well as facilitate the extensive application of GWAS-RRM in domestic animals.
Collapse
|
|
4 |
10 |
8
|
Buaban S, Prempree S, Sumreddee P, Duangjinda M, Masuda Y. Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle. J Dairy Sci 2021; 104:12713-12723. [PMID: 34538484 DOI: 10.3168/jds.2021-20263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Cow genotypes are expected to improve the accuracy of genomic estimated breeding values (GEBV) for young bulls in relatively small populations such as Thai Holstein-Friesian crossbred dairy cattle in Thailand. The objective of this study was to investigate the effect of cow genotypes on the predictive ability and individual accuracies of GEBV for young dairy bulls in Thailand. Test-day data included milk yield (n = 170,666), milk component traits (fat yield, protein yield, total solids yield, fat percentage, protein percentage, and total solids percentage; n = 160,526), and somatic cell score (n = 82,378) from 23,201, 82,378, and 13,737 (for milk yield, milk component traits, and SCS, respectively) cows calving between 1993 and 2017, respectively. Pedigree information included 51,128; 48,834; and 32,743 animals for milk yield, milk component traits, and somatic cell score, respectively. Additionally, 876, 868, and 632 pedigreed animals (for milk yield, milk component traits, and SCS, respectively) were genotyped (152 bulls and 724 cows), respectively, using Illumina Bovine SNP50 BeadChip. We cut off the data in the last 6 yr, and the validation animals were defined as genotyped bulls with no daughters in the truncated set. We calculated GEBV using a single-step random regression test-day model (SS-RR-TDM), in comparison with estimated breed value (EBV) based on the pedigree-based model used as the official method in Thailand (RR-TDM). Individual accuracies of GEBV were obtained by inverting the coefficient matrix of the mixed model equations, whereas validation accuracies were measured by the Pearson correlation between deregressed EBV from the full data set and (G)EBV predicted with the reduced data set. When only bull genotypes were used, on average, SS-RR-TDM increased individual accuracies by 0.22 and validation accuracies by 0.07, compared with RR-TDM. With cow genotypes, the additional increase was 0.02 for individual accuracies and 0.06 for validation accuracies. The inflation of GEBV tended to be reduced using cow genotypes. Genomic evaluation by SS-RR-TDM is feasible to select young bulls for the longitudinal traits in Thai dairy cattle, and the accuracy of selection is expected to be increased with more genotypes. Genomic selection using the SS-RR-TDM should be implemented in the routine genetic evaluation of the Thai dairy cattle population. The genetic evaluation should consider including genotypes of both sires and cows.
Collapse
|
|
4 |
7 |
9
|
Freitas PHF, Oliveira HR, Silva FF, Fleming A, Schenkel FS, Miglior F, Brito LF. Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle. J Dairy Sci 2020; 103:5263-5269. [PMID: 32307163 DOI: 10.3168/jds.2019-17820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.
Collapse
|
Journal Article |
5 |
6 |
10
|
Graham JR, Taghipoor M, Gloria LS, Boerman JP, Doucette J, Rocha AO, Brito LF. Trait development and genetic parameters of resilience indicators based on variability in milk consumption recorded by automated milk feeders in North American Holstein calves. J Dairy Sci 2024:S0022-0302(24)01090-7. [PMID: 39216520 DOI: 10.3168/jds.2024-25192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The implementation of automated milk feeders (AMF) on precision dairy farms has enabled efficient management of large numbers of group-housed replacement calves with reduced labor requirements and improved calf welfare. In this study, we investigated the feasibility of deriving calf resilience indicators based on variability in milk consumption using data from 10,076 North American Holstein calves collected between 2015 and 2021. We modeled and evaluated deviations in observed and predicted daily milk consumption trajectories as indicators of resilience to environmental perturbations. We also analyzed average milk intake and the number of treatments for bovine respiratory disease (BRD) and their genetic correlations with the derived resilience parameters. Milk consumption was recorded using the Förster-Technik AMF. Deviations in cumulative milk intake were modeled using various methods, including quantile regression and the Gompertz function. Ten resilience indicators were derived to quantify the degree and duration of perturbations, including amplitude, perturbation time, recovery time, and deviation velocities. After data editing, genomic data from 9,273 calves and pedigree information from 10,076 calves with 321,388 phenotypic records were used to estimate genetic parameters for 12 traits, including 10 calf resilience indicators as well as average milk intake and treatments for bovine respiratory disease. Substantial phenotypic variability was observed for all calf resilience indicators derived and genetic parameters related to these novel resilience indicators were estimated. The heritability estimates for the resilience traits are as follows: amplitude of the deviation (in L) 0.047 (0.032, 0.064) (HPD interval), perturbation time of deviation (in d) 0.011 (0.0056, 0.016), recovery time of the deviation (in d) 0.025 (0.016, 0.035), maximum velocity of perturbation (L/d) 0.039 (0.024, 0.053), average velocity of perturbation (L/d) 0.038 (0.022, 0.050), area between the curves (L x d) 0.039 (0.027, 0.054), recovery ratio 0.053 (0.036, 0.072), deviation variance 0.049 (0.32, 0.068), log-deviation variance 0.027 (0.016, 0.044), deviation auto-correlation 0.010 (0.0042, 0.017) and number of deviation occurrences 0.023 (0.0094, 0.036). Some of the highlighted genetic correlations observed with average milk consumption include amplitude: 0.569 (0.474, 0.666), perturbation time: -0.534 (-0.73, -0.342), and average velocity: 0.554 (0.432, 0.672). Similarly, the genetic correlations between the number of times treated for BRD with perturbation time was 0.494 (0.251, 0.723), -0.294 (-0.52, -0.095) with number of deviations, and 0.348 (0.131, 0.578) with deviation autocorrelation. This study highlights the genetic influence on various resilience traits in calves, including amplitude, perturbation time, recovery time, and velocity measures of the perturbation. Our findings suggest the need for prioritizing genetic selection based on traits like recovery time, which exhibits higher heritability and a moderate genetic correlation with the number of times a calf is treated for BRD. The combination of AMF data, mathematical modeling, and genomic evaluation provides a comprehensive framework for assessing and breeding more resilient dairy calves in the face of environmental and health challenges.
Collapse
|
|
1 |
|