1
|
Thiele NA, Wilson JJ. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother Radiopharm 2018; 33:336-348. [PMID: 29889562 DOI: 10.1089/cbr.2018.2494] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The α-emitting radionuclide actinium-225 possesses nuclear properties that are highly promising for use in targeted α therapy (TAT), a therapeutic strategy that employs α particle emissions to destroy tumors. A key factor, however, that may hinder the clinical use of actinium-225 is the poor understanding of its coordination chemistry, which creates challenges for the development of suitable chelation strategies for this ion. In this article, we provide an overview of the known chemistry of actinium and a summary of the chelating agents that have been explored for use in actinium-225-based TAT. This overview provides a starting point for researchers in the field of TAT to gain an understanding of this valuable therapeutic radionuclide.
Collapse
|
Journal Article |
7 |
83 |
2
|
Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, Williams CC, Peter K, Hagemeyer CE, Donnelly PS. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed Engl 2014; 53:6115-9. [PMID: 24777818 DOI: 10.1002/anie.201402613] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 01/28/2023]
Abstract
The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
75 |
3
|
Li X, Lei H, Guo X, Zhao X, Ding S, Gao X, Zhang W, Cao R. Graphene-Supported Pyrene-Modified Cobalt Corrole with Axial Triphenylphosphine for Enhanced Hydrogen Evolution in pH 0-14 Aqueous Solutions. CHEMSUSCHEM 2017; 10:4632-4641. [PMID: 28772058 DOI: 10.1002/cssc.201701196] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/02/2017] [Indexed: 06/07/2023]
Abstract
A cobalt complex of 5,15-bis(pentafluorophenyl)-10-(4)-(1-pyrenyl)phenyl corrole that contains a triphenylphosphine axial ligand (1-PPh3 ) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). If supported on graphene (G), the resulting 1-PPh3 /G material can catalyze the HER in aqueous solutions over a wide pH range of 0-14 with a high efficiency and durability. The significantly enhanced activity of 1-PPh3 /G, compared with that of its analogues 1-py/G (the Co-bound axial ligand is pyridine instead of triphenylphosphine) and 2-py/G (Co complex of 5,10,15-tris(pentafluorophenyl)corrole), highlights the effects of the pyrenyl substituent and the triphenylphosphine axial ligand on the HER activity. On one hand, the pyrenyl moiety can increase the π-π interactions between 1 and graphene and thus lead to a fast electron transfer from the electrode to 1. On the other hand, the triphenylphosphine axial ligand can increase the electron density (basicity) of Co and thus make the metal center more reactive to protons at the trans position through a so-called "push effect". This study concerns a significant example that shows the trans effect of the axial ligand on the HER, which has been investigated rarely. The combination of various ligand-design strategies in one molecule has been realized in 1-PPh3 to achieve a high catalytic HER performance. These factors are valuable to be used in other molecular catalyst systems.
Collapse
|
|
8 |
57 |
4
|
Seemann J, Waldron BP, Roesch F, Parker D. Approaching 'Kit-Type' Labelling with (68)Ga: The DATA Chelators. ChemMedChem 2015; 10:1019-26. [PMID: 25899500 DOI: 10.1002/cmdc.201500092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Indexed: 12/26/2022]
Abstract
The DATA chelators are a novel class of tri-anionic ligands based on 6-amino-1,4-diazepine-triacetic acid, which have been introduced recently for the chelation of (68)Ga. Compared with macrocyclic chelators based on the cyclen scaffold (i.e., DOTA, DO3A, and DO2A derivatives), DATA chelators undergo quantitative radiolabelling more rapidly and under milder conditions. In this study, a systematic evaluation of the labelling of four DATA chelators--DATA(M), DATA(P), DATA(Ph), and DATA(PPh)--with (68)Ga is presented. The results highlight the extraordinary potential of this new class of chelators for application in molecular imaging using (68)Ga positron emission tomography (PET).
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
5
|
Storey CM, Gyton MR, Andrew RE, Chaplin AB. Terminal Alkyne Coupling Reactions through a Ring: Mechanistic Insights and Regiochemical Switching. Angew Chem Int Ed Engl 2018; 57:12003-12006. [PMID: 30004163 PMCID: PMC6175324 DOI: 10.1002/anie.201807028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/07/2018] [Indexed: 11/23/2022]
Abstract
The mechanism and selectivity of terminal alkyne coupling reactions promoted by rhodium(I) complexes of NHC-based CNC pincer ligands have been investigated. Synthetic and kinetic experiments support E- and gem-enyne formation through a common reaction sequence involving hydrometallation and rate-determining C-C bond reductive elimination. The latter is significantly affected by the ligand topology: Employment of a macrocyclic variant enforced exclusive head-to-head coupling, contrasting the high selectivity for head-to-tail coupling observed for the corresponding acyclic pincer ligand.
Collapse
|
brief-report |
7 |
46 |
6
|
Chirila A, Gopal Das B, Paul ND, de Bruin B. Diastereoselective Radical-Type Cyclopropanation of Electron-Deficient Alkenes Mediated by the Highly Active Cobalt(II) Tetramethyltetraaza[14]annulene Catalyst. ChemCatChem 2017; 9:1413-1421. [PMID: 28529668 PMCID: PMC5413858 DOI: 10.1002/cctc.201601568] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Indexed: 11/16/2022]
Abstract
A new protocol for the catalytic synthesis of cyclopropanes using electron‐deficient alkenes is presented, which is catalysed by a series of affordable, easy to synthesise and highly active substituted cobalt(II) tetraaza[14]annulenes. These catalysts are compatible with the use of sodium tosylhydrazone salts as precursors to diazo compounds in one‐pot catalytic transformations to afford the desired cyclopropanes in almost quantitative yields. The reaction takes advantage of the metalloradical character of the Co complexes to activate the diazo compounds. The reaction is practical and fast, and proceeds from readily available starting materials. It does not require the slow addition of diazo reagents or tosylhydrazone salts or heating and tolerates many solvents, which include protic ones such as MeOH. The CoII complexes derived from the tetramethyltetraaza[14]annulene ligand are easier to prepare than cobalt(II) porphyrins and present a similar catalytic carbene radical reactivity but are more active. The reaction proceeds at 20 °C in a matter of minutes and even at −78 °C in a few hours. The catalytic system is robust and can operate with either the alkene or the diazo reagent as the limiting reagent, which inhibits the dimerisation of diazo compounds totally. The protocol has been applied to synthesise a variety of substituted cyclopropanes. High yields and selectivities were achieved for various substrates with an intrinsic preference for trans cyclopropanes.
Collapse
|
Journal Article |
8 |
45 |
7
|
Borel A, Bean JF, Clarkson RB, Helm L, Moriggi L, Sherry AD, Woods M. Towards the rational design of MRI contrast agents: electron spin relaxation is largely unaffected by the coordination geometry of gadolinium(III)-DOTA-type complexes. Chemistry 2008; 14:2658-67. [PMID: 18283704 PMCID: PMC2750028 DOI: 10.1002/chem.200701747] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron-spin relaxation is one of the determining factors in the efficacy of MRI contrast agents. Of all the parameters involved in determining relaxivity it remains the least well understood, particularly as it relates to the structure of the complex. One of the reasons for the poor understanding of electron-spin relaxation is that it is closely related to the ligand-field parameters of the Gd(3+) ion that forms the basis of MRI contrast agents and these complexes generally exhibit a structural isomerism that inherently complicates the study of electron spin relaxation. We have recently shown that two DOTA-type ligands could be synthesised that, when coordinated to Gd(3+), would adopt well defined coordination geometries and are not subject to the problems of intramolecular motion of other complexes. The EPR properties of these two chelates were studied and the results examined with theory to probe their electron-spin relaxation properties.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
39 |
8
|
Filonenko GA, Khusnutdinova JR. Dynamic Phosphorescent Probe for Facile and Reversible Stress Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700563. [PMID: 28318067 DOI: 10.1002/adma.201700563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Dynamic phosphorescent copper complex incorporated into the main chain of polyurethanes produces a facile and reversible response to tensile stress. In contrast to common deformation sensors, the applied stress does not lead to bond scission, or alters the phosphor structure. The suppression of dynamics responsible for the nonradiative relaxation is found to be the major pathway governing stress response. As a result, the response of dynamic phosphor described in this work is stress specific. Compared to initial unloaded state, a nearly twofold increase of photoluminescence intensity occurs in response to a 5-35 MPa stress applied to pristine metalated polymers or their blends with various polyurethanes. Finally, the dynamic sensor proves useful for mapping stress distribution patterns and tracking dynamic phenomena in polyurethanes using simple optical imaging techniques.
Collapse
|
|
8 |
39 |
9
|
Snyder EM, Asik D, Abozeid SM, Burgio A, Bateman G, Turowski SG, Spernyak JA, Morrow JR. A Class of Fe III Macrocyclic Complexes with Alcohol Donor Groups as Effective T 1 MRI Contrast Agents. Angew Chem Int Ed Engl 2020; 59:2414-2419. [PMID: 31725934 PMCID: PMC7502272 DOI: 10.1002/anie.201912273] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Indexed: 12/12/2022]
Abstract
Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high-spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post-injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable-temperature 17 O NMR studies suggest that none of the complexes has a single, integral inner-sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
39 |
10
|
Das S, Nag A, Liang J, Bunck DN, Umeda A, Farrow B, Coppock MB, Sarkes DA, Finch AS, Agnew HD, Pitram S, Lai B, Yu MB, Museth AK, Deyle KM, Lepe B, Rodriguez-Rivera FP, McCarthy A, Alvarez-Villalonga B, Chen A, Heath J, Stratis-Cullum DN, Heath JR. A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 2015; 54:13219-24. [PMID: 26377818 DOI: 10.1002/anie.201505243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/12/2015] [Indexed: 12/20/2022]
Abstract
We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
39 |
11
|
Pattanayak S, Chowdhury DR, Garai B, Singh KK, Paul A, Dhar BB, Gupta SS. Electrochemical Formation of Fe V (O) and Mechanism of Its Reaction with Water During O-O Bond Formation. Chemistry 2017; 23:3414-3424. [PMID: 28012231 DOI: 10.1002/chem.201605061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 12/21/2022]
Abstract
A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles FeIII -bTAML), including the first electrochemical generation of FeV (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated FeV (O) as the active oxidant, formed due to two redox transitions, which were assigned as FeIV (O)/FeIII (OH2 ) and FeV (O)/FeIV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H2 O on FeV (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised FeV (O) in CH3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pKa value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold.
Collapse
|
Journal Article |
8 |
38 |
12
|
Lilley LM, Kamper S, Caldwell M, Chia ZK, Ballweg D, Vistain L, Krimmel J, Mills TA, MacRenaris K, Lee P, Waters EA, Meade TJ. Self-Immolative Activation of β-Galactosidase-Responsive Probes for In Vivo MR Imaging in Mouse Models. Angew Chem Int Ed Engl 2020; 59:388-394. [PMID: 31750611 PMCID: PMC6923588 DOI: 10.1002/anie.201909933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Our lab has developed a new series of self-immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β-galactosidase (β-gal). We investigated two molecular architectures to create agents that detect β-gal activity by modulating the coordination of water to GdIII . The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6-C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β-gal.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
36 |
13
|
Jones GM, Arnold PL, Love JB. Oxo-group-14-element bond formation in binuclear uranium(V) Pacman complexes. Chemistry 2013; 19:10287-94. [PMID: 23794441 DOI: 10.1002/chem.201301067] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Indexed: 11/07/2022]
Abstract
Simple and versatile routes to the functionalization of uranyl-derived U(V)-oxo groups are presented. The oxo-lithiated, binuclear uranium(V)-oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide "ate" complex [Li(py)2][(OUO)(N")3] (N" = N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct U-O single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo-stannylated complexes [{(R3Sn)OUO}2(L)] (R = nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium-oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-O-C bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.
Collapse
|
Journal Article |
12 |
36 |
14
|
Kim D, Cho J, Lee YM, Sarangi R, Nam W. Synthesis, characterization, and reactivity of cobalt(III)-oxygen complexes bearing a macrocyclic N-tetramethylated cyclam ligand. Chemistry 2013; 19:14112-8. [PMID: 24038300 PMCID: PMC3928501 DOI: 10.1002/chem.201300107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 07/08/2013] [Indexed: 11/11/2022]
Abstract
Mononuclear metal-dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side-on cobalt(III)-peroxo complex bearing a macrocyclic N-tetramethylated cyclam (TMC) ligand, [Co(III) (15-TMC)(O2 )](+) , was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)-peroxo complex was cleanly converted into an end-on cobalt(III)-hydroperoxo complex, [Co(III) (15-TMC)(OOH)](2+) . The cobalt(III)-hydroperoxo complex was further converted to [Co(III) (15-TMC-CH2 -O)](2+) by hydroxylation of a methyl group of the 15-TMC ligand. Kinetic studies and (18) O-labeling experiments proposed that the aliphatic hydroxylation occurred via a Co(IV) -oxo (or Co(III) -oxyl) species, which was formed by OO bond homolysis of the cobalt(III)-hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.
Collapse
|
research-article |
12 |
33 |
15
|
Liu Y, Resch SG, Klawitter I, Cutsail GE, Demeshko S, Dechert S, Kühn FE, DeBeer S, Meyer F. An Adaptable N-Heterocyclic Carbene Macrocycle Hosting Copper in Three Oxidation States. Angew Chem Int Ed Engl 2020; 59:5696-5705. [PMID: 31769151 PMCID: PMC7154638 DOI: 10.1002/anie.201912745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/07/2022]
Abstract
A neutral hybrid macrocycle with two trans-positioned N-heterocyclic carbenes (NHCs) and two pyridine donors hosts copper in three oxidation states (+I-+III) in a series of structurally characterized complexes (1-3). Redox interconversion of [LCu]+/2+/3+ is electrochemically (quasi)reversible and occurs at moderate potentials (E1/2 =-0.45 V and +0.82 V (vs. Fc/Fc+ )). A linear CNHC -Cu-CNHC arrangement and hemilability of the two pyridine donors allows the ligand to adapt to the different stereoelectronic and coordination requirements of CuI versus CuII /CuIII . Analytical methods such as NMR, UV/Vis, IR, electron paramagnetic resonance, and Cu Kβ high-energy-resolution fluorescence detection X-ray absorption spectroscopies, as well as DFT calculations, give insight into the geometric and electronic structures of the complexes. The XAS signatures of 1-3 are textbook examples for CuI , CuII , and CuIII species. Facile 2-electron interconversion combined with the exposure of two basic pyridine N sites in the reduced CuI form suggest that [LCu]+/2+/3+ may operate in catalysis via coupled 2 e- /2 H+ transfer.
Collapse
|
research-article |
5 |
27 |
16
|
Seibold U, Wängler B, Wängler C. Rational Design, Development, and Stability Assessment of a Macrocyclic Four-Hydroxamate-Bearing Bifunctional Chelating Agent for 89 Zr. ChemMedChem 2017; 12:1555-1571. [PMID: 28715615 DOI: 10.1002/cmdc.201700377] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 12/18/2022]
Abstract
Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamine B (DFO) is commonly applied. However, DFO is known to form 89 Zr complexes of limited in vivo stability. Herein we describe the rational design and chemical development of a new macrocyclic four-hydroxamate-bearing chelating agent-1,10,19,28-tetrahydroxy-1,5,10,14,19,23,28,32-octaazacyclohexatriacontan-2,6,11,15,20,24,29,33-octaone (CTH36)-for the stable complexation of Zr4+ . For this purpose, we first performed computational studies to determine the optimal chelator geometry before we developed different synthesis pathways toward the target structures. The best results were obtained using an efficient solution-phase-based synthesis strategy toward the target chelating agent. To enable efficient and chemoselective conjugation to biomolecules, a tetrazine-modified variant of CTH36 was also developed. The excellent conjugation characteristics of the so-functionalized chelator were demonstrated on the example of the model peptide TCO-c(RGDfK). We determined the optimal 89 Zr radiolabeling parameters for CTH36 as well as its bioconjugate, and found that 89 Zr radiolabeling proceeds efficiently under very mild reaction conditions. Finally, we performed comparative complex stability tests for 89 Zr-CHT36-c(RGDfK) and 89 Zr-DFO-c(RGDfK), showing improved complex stability for the newly developed chelator CTH36.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
27 |
17
|
Poli G, Di Fabio R, Ferrante L, Summa V, Botta M. Largazole Analogues as Histone Deacetylase Inhibitors and Anticancer Agents: An Overview of Structure-Activity Relationships. ChemMedChem 2017; 12:1917-1926. [PMID: 29117473 DOI: 10.1002/cmdc.201700563] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Indexed: 12/18/2022]
Abstract
Since the time of its identification, the natural compound largazole rapidly caught the attention of the medicinal chemistry community for its impressive potency as an inhibitor of histone deacetylases (HDACs) and its strong antiproliferative activity against a broad panel of cancer cell lines. The design of largazole analogues is an expanding field of study, due to their remarkable potential as novel anticancer therapeutics. At present, a large ensemble of largazole analogues has been reported, allowing the identification of important structure-activity relationships (SAR) that can guide the design of novel compounds with improved HDAC inhibitory profiles, anticancer activity, and pharmacokinetic properties. The aim of this review is to concisely summarize the information obtained by biological evaluations of the various largazole analogues reported to date, with particular attention given to the latest analogues, as well as to analyze the various SAR obtained from this data, with the purpose of providing useful guidelines for the development of novel potent and selective HDAC inhibitors to be used as anticancer agents.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
26 |
18
|
Modulating the Properties of Fe(III) Macrocyclic MRI Contrast Agents by Appending Sulfonate or Hydroxyl Groups. Molecules 2020; 25:molecules25102291. [PMID: 32414058 PMCID: PMC7288058 DOI: 10.3390/molecules25102291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Complexes of Fe(III) that contain a triazacyclononane (TACN) macrocycle, two pendant hydroxyl groups, and a third ancillary pendant show promise as MRI contrast agents. The ancillary group plays an important role in tuning the solution relaxivity of the Fe(III) complex and leads to large changes in MRI contrast enhancement in mice. Two new Fe(III) complexes, one with a third coordinating hydroxypropyl pendant, Fe(L2), and one with an anionic non-coordinating sulfonate group, Fe(L1)(OH2), are compared. Both complexes have a deprotonated hydroxyl group at neutral pH and electrode potentials representative of a stabilized trivalent iron center. The r1 relaxivity of the Fe(L1)(OH2) complex is double that of the saturated complex, Fe(L2), at 4.7 T, 37 °C in buffered solutions. However, variable-temperature 17O-NMR experiments show that the inner-sphere water of Fe(L1)(OH2) does not exchange rapidly with bulk water under these conditions. The pendant sulfonate group in Fe(L1)(OH2) confers high solubility to the complex in comparison to Fe(L2) or previously studied analogues with benzyl groups. Dynamic MRI studies of the two complexes showed major differences in their pharmacokinetics clearance rates compared to an analogue containing a benzyl ancillary group. Rapid blood clearance and poor binding to serum albumin identify Fe(L1)(OH2) for development as an extracellular fluid contrast agent.
Collapse
|
Journal Article |
5 |
25 |
19
|
Leforestier B, Gyton MR, Chaplin AB. Oxidative Addition of a Mechanically Entrapped C(sp)-C(sp) Bond to a Rhodium(I) Pincer Complex. Angew Chem Int Ed Engl 2020; 59:23500-23504. [PMID: 32929831 PMCID: PMC7756736 DOI: 10.1002/anie.202009546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 12/18/2022]
Abstract
By use of a macrocyclic phosphinite pincer ligand and bulky substrate substituents, we demonstrate how the mechanical bond can be leveraged to promote the oxidative addition of an interlocked 1,3-diyne to a rhodium(I) center. The resulting rhodium(III) bis(alkynyl) product can be trapped out by reaction with carbon monoxide or intercepted through irreversible reaction with dihydrogen, resulting in selective hydrogenolysis of the C-C σ-bond.
Collapse
|
brief-report |
5 |
23 |
20
|
Garcia-Bosch I, Cowley RE, Díaz DE, Siegler MA, Nam W, Solomon EI, Karlin KD. Dioxygen Activation by a Macrocyclic Copper Complex Leads to a Cu2O2 Core with Unexpected Structure and Reactivity. Chemistry 2016; 22:5133-7. [PMID: 26919169 PMCID: PMC4852750 DOI: 10.1002/chem.201600551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/06/2022]
Abstract
We report the Cu(I)/O2 chemistry of complexes derived from the macrocylic ligands 14-TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and 12-TMC (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane). While [(14-TMC)Cu(I)](+) is unreactive towards dioxygen, the smaller analog [(12-TMC)Cu(I)(CH3CN)](+) reacts with O2 to give a side-on bound peroxo-dicopper(II) species ((S)P), confirmed by spectroscopic and computational methods. Intriguingly, 12-TMC as a N4 donor ligand generates (S)P species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side-on peroxo-dicopper(II) differs from typical (S)P species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H(+) to an isomerized peroxo core.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
20 |
21
|
Yamamoto K, Nameki R, Sogawa H, Takata T. Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Cross-Linker. Angew Chem Int Ed Engl 2020; 59:18023-18028. [PMID: 32578285 DOI: 10.1002/anie.202007866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/08/2022]
Abstract
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross-linker reagent. The dinuclear complex (PdMC)2 was prepared by one-step macrocyclization followed by the double palladation reaction. 1 H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6-disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4-vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross-linker (PdMC-VP)2 . Radical co-polymerization of VP and t-butylstyrene in the presence of (PdMC-VP)2 afforded a stable rotaxane cross-linked polymer (RCP). An elastic RCP was also prepared by using n-butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross-linked polymers.
Collapse
|
Journal Article |
5 |
19 |
22
|
Lai BT, Wilson JA, Malette Loredo J, Pitram SM, LaBerge NA, Heath JR, Agnew HD. Epitope-Targeted Macrocyclic Peptide Ligand with Picomolar Cooperative Binding to Interleukin-17F. Chemistry 2018; 24:3760-3767. [PMID: 29319889 DOI: 10.1002/chem.201704752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 12/14/2022]
Abstract
The IL-17 cytokine family is associated with multiple immune and autoimmune diseases and comprises important diagnostic and therapeutic targets. This work reports the development of epitope-targeted ligands designed for differential detection of human IL-17F and its closest homologue IL-17A. Non-overlapping and unique epitopes on IL-17F and IL-17A were identified by comparative sequence analysis of the two proteins. Synthetic variants of these epitopes were utilized as targets for in situ click screens against a comprehensive library of synthetic peptide macrocycles with 5-mer variable regions. Single generation screens yielded selective binders for IL-17F and IL-17A with low cross-reactivity. Macrocyclic peptide binders against two distinct IL-17F epitopes were coupled using variable length chemical linkers to explore the physical chemistry of cooperative binding. The optimized linker length yielded a picomolar affinity binder, while retaining high selectivity. The presented method provides a rational approach towards targeting discontinuous epitopes, similar to what is naturally achieved by many B cell receptors.
Collapse
|
Journal Article |
7 |
14 |
23
|
Brandl T, Johannsen S, Häussinger D, Suryadevara N, Prescimone A, Bernhard S, Gruber M, Ruben M, Berndt R, Mayor M. Iron in a Cage: Fixation of a Fe(II)tpy 2 Complex by Fourfold Interlinking. Angew Chem Int Ed Engl 2020; 59:15947-15952. [PMID: 32412664 PMCID: PMC7540000 DOI: 10.1002/anie.202006340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/18/2022]
Abstract
The coordination sphere of the Fe(II) terpyridine complex 1 is rigidified by fourfold interlinking of both terpyridine ligands. Profiting from an octa-aldehyde precursor complex, the ideal dimensions of the interlinking structures are determined by reversible Schiff-base formation, before irreversible Wittig olefination provided the rigidified complex. Reversed-phase HPLC enables the isolation of the all-trans isomer of the Fe(II) terpyridine complex 1, which is fully characterized. While temperature independent low-spin states were recorded with superconducting quantum interference device (SQUID) measurements for both, the open precursor 8 and the interlinked complex 1, evidence of the increased rigidity of the ligand sphere in 1 was provided by proton T2 relaxation NMR experiments. The ligand sphere fixation in the macrocyclized complex 1 even reaches a level resisting substantial deformation upon deposition on an Au(111) surface, as demonstrated by its pristine form in a low temperature ultra-high vacuum scanning tunneling microscope experiment.
Collapse
|
brief-report |
5 |
14 |
24
|
Guerrant W, Mwakwari SC, Chen PC, Khan SI, Tekwani BL, Oyelere AK. A structure-activity relationship study of the antimalarial and antileishmanial activities of nonpeptide macrocyclic histone deacetylase inhibitors. ChemMedChem 2010; 5:1232-5. [PMID: 20533500 PMCID: PMC3138184 DOI: 10.1002/cmdc.201000087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Indexed: 11/11/2022]
|
Research Support, N.I.H., Extramural |
15 |
14 |
25
|
Leone L, Ferrauto G, Cossi M, Botta M, Tei L. Optimizing the Relaxivity of MRI Probes at High Magnetic Field Strengths With Binuclear Gd III Complexes. Front Chem 2018; 6:158. [PMID: 29868561 PMCID: PMC5962812 DOI: 10.3389/fchem.2018.00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/19/2018] [Indexed: 12/05/2022] Open
Abstract
The key criteria to optimize the relaxivity of a Gd(III) contrast agent at high fields (defined as the region ≥ 1.5 T) can be summarized as follows: (i) the occurrence of a rotational correlation time τR in the range of ca. 0.2–0.5 ns; (ii) the rate of water exchange is not critical, but a τM < 100 ns is preferred; (iii) a relevant contribution from water molecules in the second sphere of hydration. In addition, the use of macrocycle-based systems ensures the formation of thermodynamically and kinetically stable Gd(III) complexes. Binuclear Gd(III) complexes could potentially meet these requirements. Their efficiency depends primarily on the degree of flexibility of the linker connecting the two monomeric units, the absence of local motions and the presence of contribution from the second sphere water molecules. With the aim to maximize relaxivity (per Gd) over a wide range of magnetic field strengths, two binuclear Gd(III) chelates derived from the well-known macrocyclic systems DOTA-monopropionamide and HPDO3A (Gd2L1 and Gd2L2, respectively) were synthesized through a multistep synthesis. Chemical Exchange Saturation Transfer (CEST) experiments carried out on Eu2L2 at different pH showed the occurrence of a CEST effect at acidic pH that disappears at neutral pH, associated with the deprotonation of the hydroxyl groups. Then, a complete 1H and 17O NMR relaxometric study was carried out in order to evaluate the parameters that govern the relaxivity associated with these complexes. The relaxivities of Gd2L1 and Gd2L2 (20 MHz, 298 K) are 8.7 and 9.5 mM−1 s−1, respectively, +77% and +106% higher than the relaxivity values of the corresponding mononuclear GdDOTAMAP-En and GdHPDO3A complexes. A significant contribution of second sphere water molecules was accounted for the strong relaxivity enhancement of Gd2L2. MR phantom images of the dinuclear complexes compared to GdHPDO3A, recorded at 7 T, confirmed the superiority of Gd2L2. Finally, ab initio (DFT) calculations were performed to obtain information about the solution structure of the dinuclear complexes.
Collapse
|
Journal Article |
7 |
13 |