1
|
Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N. Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review. NANO LETTERS 2019; 19:3387-3395. [PMID: 31090428 DOI: 10.1021/acs.nanolett.8b05196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There has been increasing demand for materials with functional thermal properties, but traditional experiments and simulations are high-cost and time-consuming. The emerging discipline, materials informatics, is an effective approach that can accelerate materials development by combining material science and big data techniques. Recently, materials informatics has been successfully applied to designing thermal materials, such as thermal interface materials for heat-dissipation, thermoelectric materials for power generation, and so forth. This Mini Review summarizes the research progress associated with studies regarding the prediction and discovery of materials with desirable thermal transport properties by using materials informatics. On the basis of the review of past research, perspectives are discussed and future directions for studying functional thermal materials by materials informatics are given.
Collapse
|
|
6 |
28 |
2
|
Malek A, Eslamibidgoli MJ, Mokhtari M, Wang Q, Eikerling MH, Malek K. Virtual Materials Intelligence for Design and Discovery of Advanced Electrocatalysts. Chemphyschem 2019; 20:2946-2955. [PMID: 31587461 DOI: 10.1002/cphc.201900570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Indexed: 11/08/2022]
Abstract
Similar to advancements gained from big data in genomics, security, internet of things, and e-commerce, the materials workflow could be made more efficient and prolific through advances in streamlining data sources, autonomous materials synthesis, rapid characterization, big data analytics, and self-learning algorithms. In electrochemical materials science, data sets are large, unstructured/heterogeneous, and difficult to process and analyze from a single data channel or platform. Computer-aided materials design together with advances in data mining, machine learning, and predictive analytics are expected to provide inexpensive and accelerated pathways towards tailor-made functionally optimized energy materials. Fundamental research in the field of electrochemical energy materials focuses primarily on complex interfacial phenomena and kinetic electrocatalytic processes. This perspective article critically assesses AI-driven modeling and computational approaches that are currently applied to those objects. An application-driven materials intelligence platform is introduced, and its functionalities are scrutinized considering the development of electrocatalyst materials for CO2 conversion as a use case.
Collapse
|
|
6 |
8 |
3
|
Yager KG, Majewski PW, Noack M, Fukuto M. Autonomous X-ray Scattering. NANOTECHNOLOGY 2023; 34. [PMID: 37141868 DOI: 10.1088/1361-6528/acd25a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
Autonomous experimentation (AE) is an emerging paradigm that seeks to automate the entire workflow of an experiment, including---crucially---the decision-making step. Beyond mere automation and efficiency, AE aims to liberate scientists to tackle more challenging and complex problems. We describe our recent progress in the application of this concept at synchrotron x-ray scattering beamlines. We automate the measurement instrument, data analysis, and decision-making, and couple them into an autonomous loop. We exploit Gaussian process modeling to compute a surrogate model and associated uncertainty for the experimental problem, and define an objective function exploiting these. We provide example applications of AE to x-ray scattering, including imaging of samples, exploration of physical spaces through combinatorial methods, and coupling to in-situ processing platforms. These uses demonstrate how autonomous x-ray scattering can enhance efficiency, and discover new materials.
Collapse
|
|
2 |
3 |
4
|
Yan C, Feng X, Li G. From Drug Molecules to Thermoset Shape Memory Polymers: A Machine Learning Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60508-60521. [PMID: 34878247 DOI: 10.1021/acsami.1c20947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV)-curable thermoset shape memory polymers (TSMPs) with high recovery stress but mild glass transition temperature (Tg) are highly desired for 3D/4D printing lightweight load-bearing structures and devices. However, a bottleneck is that high recovery stress usually means high Tg. For a few TSMPs with high recovery stress, their Tg values are close to the decomposition temperature, and thus, the shape memory effect cannot be triggered safely and effectively. While machine learning (ML) has served as a useful tool to discover new materials and drugs, the grand challenge of using ML to discover new TSMPs persists in the very limited data available. Here, we report an enhanced ML approach by combining the transfer learning-variational autoencoder with a weighted-vector combination method. By learning a large data set with drug molecules in a pretraining process, we were able to effectively map the TSMPs to a hidden space that is much closer to a Gaussian distribution. Through this approach, we created a large compositional space and were able to discover five new types of UV-curable TSMPs with desired properties, one of which was validated by the experiments. Our contribution includes (1) representing the features of TSMPs by drug molecules to overcome the barrier of a limited training data set and (2) developing a ML framework that is able to overcome the barrier of mapping the molar ratio information. It is shown that this approach can effectively learn TSMP features by utilizing the relatedness between the data-scarce (and biased) TSMP target and data-abundant drug source, and the result is much more accurate and more robust than the benchmark set by the support vector machine method using direct label encoding and Morgan encoding. Therefore, it is believed that this framework is a state-of-the-art study in the TSMP field. This study opens new opportunities for discovering not only new TSMPs but also other thermoset polymers.
Collapse
|
|
4 |
2 |
5
|
Schmidt J, Hoffmann N, Wang HC, Borlido P, Carriço PJMA, Cerqueira TFT, Botti S, Marques MAL. Machine-Learning-Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210788. [PMID: 36949007 DOI: 10.1002/adma.202210788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/28/2023] [Indexed: 06/02/2023]
Abstract
Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.
Collapse
|
|
2 |
2 |
6
|
Liu W, Wu Y, Hong Y, Zhang Z, Yue Y, Zhang J. Applications of machine learning in computational nanotechnology. NANOTECHNOLOGY 2022; 33:162501. [PMID: 34965514 DOI: 10.1088/1361-6528/ac46d7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Machine learning (ML) has gained extensive attention in recent years due to its powerful data analysis capabilities. It has been successfully applied to many fields and helped the researchers to achieve several major theoretical and applied breakthroughs. Some of the notable applications in the field of computational nanotechnology are ML potentials, property prediction, and material discovery. This review summarizes the state-of-the-art research progress in these three fields. ML potentials bridge the efficiency versus accuracy gap between density functional calculations and classical molecular dynamics. For property predictions, ML provides a robust method that eliminates the need for repetitive calculations for different simulation setups. Material design and drug discovery assisted by ML greatly reduce the capital and time investment by orders of magnitude. In this perspective, several common ML potentials and ML models are first introduced. Using these state-of-the-art models, developments in property predictions and material discovery are overviewed. Finally, this paper was concluded with an outlook on future directions of data-driven research activities in computational nanotechnology.
Collapse
|
Letter |
3 |
1 |
7
|
Jain A, Armstrong CD, Joseph VR, Ramprasad R, Qi HJ. Machine-Guided Discovery of Acrylate Photopolymer Compositions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17992-18000. [PMID: 38534124 PMCID: PMC11009904 DOI: 10.1021/acsami.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Additive manufacturing (AM) can be advanced by the diverse characteristics offered by thermoplastic and thermoset polymers and the further benefits of copolymerization. However, the availability of suitable polymeric materials for AM is limited and may not always be ideal for specific applications. Additionally, the extensive number of potential monomers and their combinations make experimental determination of resin compositions extremely time-consuming and costly. To overcome these challenges, we develop an active learning (AL) approach to effectively choose compositions in a ternary monomer space ranging from rigid to elastomeric. Our AL algorithm dynamically suggests monomer composition ratios for the subsequent round of testing, allowing us to efficiently build a robust machine learning (ML) model capable of predicting polymer properties, including Young's modulus, peak stress, ultimate strain, and Shore A hardness based on composition while minimizing the number of experiments. As a demonstration of the effectiveness of our approach, we use the ML model to drive material selection for a specific property, namely, Young's modulus. The results indicate that the ML model can be used to select material compositions within at least 10% of a targeted value of Young's modulus. We then use the materials designed by the ML model to 3D print a multimaterial "hand" with soft "skin" and rigid "bones". This work presents a promising tool for enabling informed AM material selection tailored to user specifications and accelerating material discovery using a limited monomer space.
Collapse
|
research-article |
1 |
|
8
|
Chen S, Zheng F, Zhang Z, Wu S, Ho KM, Antropov V, Sun Y. Computational electron-phonon superconductivity: from theoretical physics to material science. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023002. [PMID: 39348870 DOI: 10.1088/1361-648x/ad81a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
The search for room-temperature superconductors is a major challenge in modern physics. The discovery of copper-oxide superconductors in 1986 brought hope but also revealed complex mechanisms that are difficult to analyze and compute. In contrast, the traditional electron-phonon coupling (EPC) mechanism facilitated the practical realization of superconductivity (SC) in metallic hydrogen. Since 2015, the discovery of new hydrogen compounds has shown that EPC can enable room-temperature SC under high pressures, driving extensive research. Advances in computational capabilities, especially exascale computing, now allow for the exploration of millions of materials. This paper reviews newly predicted superconducting systems in 2023-2024, focusing on hydrides, boron-carbon systems, and compounds with nitrogen, carbon, and pure metals. Although many computationally predicted high-Tcsuperconductors were not experimentally confirmed, some low-temperature superconductors were successfully synthesized. This paper provides a review of these developments and future research directions.
Collapse
|
Review |
1 |
|
9
|
Dangayach R, Jeong N, Demirel E, Uzal N, Fung V, Chen Y. Machine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:993-1012. [PMID: 39680111 PMCID: PMC11755723 DOI: 10.1021/acs.est.4c08298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Polymeric membranes have been widely used for liquid and gas separation in various industrial applications over the past few decades because of their exceptional versatility and high tunability. Traditional trial-and-error methods for material synthesis are inadequate to meet the growing demands for high-performance membranes. Machine learning (ML) has demonstrated huge potential to accelerate design and discovery of membrane materials. In this review, we cover strengths and weaknesses of the traditional methods, followed by a discussion on the emergence of ML for developing advanced polymeric membranes. We describe methodologies for data collection, data preparation, the commonly used ML models, and the explainable artificial intelligence (XAI) tools implemented in membrane research. Furthermore, we explain the experimental and computational validation steps to verify the results provided by these ML models. Subsequently, we showcase successful case studies of polymeric membranes and emphasize inverse design methodology within a ML-driven structured framework. Finally, we conclude by highlighting the recent progress, challenges, and future research directions to advance ML research for next generation polymeric membranes. With this review, we aim to provide a comprehensive guideline to researchers, scientists, and engineers assisting in the implementation of ML to membrane research and to accelerate the membrane design and material discovery process.
Collapse
|
Review |
1 |
|
10
|
Che H, Lu T, Cai S, Li M, Lu W. Inverse Design of Low-Resistivity Ternary Gold Alloys via Interpretable Machine Learning and Proactive Search Progress. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3614. [PMID: 39063905 PMCID: PMC11278811 DOI: 10.3390/ma17143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Ternary gold alloys (TGAs) are highly regarded for their excellent electrical properties. Electrical resistivity is a crucial indicator for evaluating the electrical performance of TGAs. To explore new promising TGAs with lower resistivity, we developed a reverse design approach integrating machine learning techniques and proactive searching progress (PSP) method. Compared with other models, the support vector regression (SVR) was determined to be the most optimal model for resistivity prediction. The training and test sets yielded R2 values of 0.73 and 0.77, respectively. The model interpretation indicated that lower electrical resistivity was associated with the following conditions: a van der Waals Radius (Vrt) of 0, a Vr (another van der Waals Radius) of less than 217, and a mass attenuation coefficient of MoKα (Macm) greater than 77.5 cm2g-1. Applying the PSP method, we successfully identified eight candidates whose resistivity was lower than that of the sample with the lowest resistivity in the dataset by more than 53-60%, e.g., Au1.000Cu4.406Pt1.833 and Au1.000Pt2.232In1.502. Finally, the candidates were validated to possess low resistivity through the pattern recognition method.
Collapse
|
research-article |
1 |
|
11
|
Li S, You F. GenAI for Scientific Discovery in Electrochemical Energy Storage: State-of-the-Art and Perspectives from Nano- and Micro-Scale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406153. [PMID: 39380433 DOI: 10.1002/smll.202406153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
The transition to electric vehicles (EVs) and the increased reliance on renewable energy sources necessitate significant advancements in electrochemical energy storage systems. Fuel cells, lithium-ion batteries, and flow batteries play a key role in enhancing the efficiency and sustainability of energy usage in transportation and storage. Despite their potential, these technologies face limitations such as high costs, material scarcity, and efficiency challenges. This research introduces a novel integration of Generative AI (GenAI) within electrochemical energy storage systems to address these issues. By leveraging advanced GenAI techniques like Generative Adversarial Networks, autoencoders, diffusion and flow-based models, and multimodal large language models, this paper demonstrates significant improvements in material discovery, battery design, performance prediction, and lifecycle management across different types of electrochemical storage systems. The research further emphasizes the importance of nano- and micro-scale interactions, providing detailed insights into optimizing these interactions for improved efficiency and longevity. Additionally, the paper discusses the challenges and future directions for integrating GenAI in energy storage research, highlighting the importance of data quality, model transparency, workflow integration, scalability, and ethical considerations. By addressing these aspects, this research sets a new benchmark for the use of GenAI in battery development, promoting sustainable, efficient, and safer energy solutions.
Collapse
|
Review |
1 |
|
12
|
Qin H, Zhang Y, Guo Z, Wang S, Zhao D, Xue Y. Prediction of Bandgap in Lithium-Ion Battery Materials Based on Explainable Boosting Machine Learning Techniques. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6217. [PMID: 39769817 PMCID: PMC11678307 DOI: 10.3390/ma17246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The bandgap is a critical factor influencing the energy density of batteries and a key physical quantity that determines the semiconducting behavior of materials. To further improve the prediction accuracy of the bandgap in silicon oxide lithium-ion battery materials, a boosting machine learning model was established to predict the material's bandgap. The optimal model, AdaBoost, was selected, and the SHapley Additive exPlanations (SHAP) method was used to quantitatively analyze the importance of different input features in relation to the model's prediction accuracy. It was found that AdaBoost performed exceptionally well in terms of prediction accuracy, ranking as the best among five predictive models. Using the SHAP method to interpret the AdaBoost model, it was discovered that there is a significant positive correlation between the energy of the conduction band minimum (cbm) of silicon oxides and the bandgap, with the bandgap size showing an increasing trend as the cbm rises. Additionally, the study revealed a strong negative correlation between the Fermi level of silicon oxides and the bandgap, with the bandgap expanding as the Fermi level decreases. This research demonstrates that boosting-type machine learning models perform superiorly in predicting the bandgap of silicon oxide materials.
Collapse
|
research-article |
1 |
|
13
|
Xie T, Wan Y, Zhou Y, Huang W, Liu Y, Linghu Q, Wang S, Kit C, Grazian C, Zhang W, Hoex B. Creation of a structured solar cell material dataset and performance prediction using large language models. PATTERNS (NEW YORK, N.Y.) 2024; 5:100955. [PMID: 38800367 PMCID: PMC11117053 DOI: 10.1016/j.patter.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Materials scientists usually collect experimental data to summarize experiences and predict improved materials. However, a crucial issue is how to proficiently utilize unstructured data to update existing structured data, particularly in applied disciplines. This study introduces a new natural language processing (NLP) task called structured information inference (SII) to address this problem. We propose an end-to-end approach to summarize and organize the multi-layered device-level information from the literature into structured data. After comparing different methods, we fine-tuned LLaMA with an F1 score of 87.14% to update an existing perovskite solar cell dataset with articles published since its release, allowing its direct use in subsequent data analysis. Using structured information, we developed regression tasks to predict the electrical performance of solar cells. Our results demonstrate comparable performance to traditional machine-learning methods without feature selection and highlight the potential of large language models for scientific knowledge acquisition and material development.
Collapse
|
research-article |
1 |
|
14
|
Fu N, Hu J, Feng Y, Morrison G, zur Loye H, Hu J. Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301011. [PMID: 37551059 PMCID: PMC10558692 DOI: 10.1002/advs.202301011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Oxidation states (OS) are the charges on atoms due to electrons gained or lost upon applying an ionic approximation to their bonds. As a fundamental property, OS has been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently, only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition-based oxidation state prediction still remains elusive so far, which has significant implications for the discovery of new materials for which the structures have not been determined. This work proposes a novel deep learning-based BERT transformer language model BERTOS for predicting the oxidation states for all elements of inorganic compounds given only their chemical composition. This model achieves 96.82% accuracy for all-element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61% accuracy for oxide materials. It is also demonstrated how it can be used to conduct large-scale screening of hypothetical material compositions for materials discovery.
Collapse
|
research-article |
2 |
|
15
|
Akinpelu A, Bhullar M, Yao Y. Discovery of novel materials through machine learning. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:453001. [PMID: 39106893 DOI: 10.1088/1361-648x/ad6bdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning (ML) has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using ML techniques. Beginning with an introduction of the fundamental principles of ML methods, we subsequently examine the current research landscape on the applications of ML in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing ML within materials science, propose potential solutions, and outline future research directions.
Collapse
|
Review |
1 |
|
16
|
Mazumdar H, Khondakar KR, Das S, Halder A, Kaushik A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opin Drug Deliv 2025; 22:85-108. [PMID: 39645588 DOI: 10.1080/17425247.2024.2440618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Artificial intelligence (AI) is changing the field of nanomedicine by exploring novel nanomaterials for developing therapies of high efficacy. AI works on larger datasets, finding sought-after nano-properties for different therapeutic aims and eventually enhancing nanomaterials' safety and effectiveness. AI leverages patient clinical and genetic data to predict outcomes, guide treatments, and optimize drug dosages and forms, enhancing benefits while minimizing side effects. AI-supported nanomedicine faces challenges like data fusion, ethics, and regulation, requiring better tools and interdisciplinary collaboration. This review highlights the importance of AI regarding patient care and urges scientists, medical professionals, and regulators to adopt AI for better outcomes. AREAS COVERED Personalized Nanomedicine, Material Discovery, AI-Driven Therapeutics, Data Integration, Drug Delivery, Patient Centric Care. EXPERT OPINION Today, AI can improve personalized health wellness through the discovery of new types of drug nanocarriers, nanomedicine of specific properties to tackle targeted medical needs, and an increment in efficacy along with safety. Nevertheless, problems such as ethical issues, data security, or unbalanced data sets need to be addressed. Potential future developments involve using AI and quantum computing together and exploring telemedicine i.e. the Internet-of-Medical-Things (IoMT) approach can enhance the quality of patient care in a personalized manner by timely decision-making.
Collapse
|
Review |
1 |
|