1
|
Croci I, Hickman IJ, Wood RE, Borrani F, Macdonald GA, Byrne NM. Fat oxidation over a range of exercise intensities: fitness versus fatness. Appl Physiol Nutr Metab 2014; 39:1352-9. [PMID: 25356842 DOI: 10.1139/apnm-2014-0144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maximal fat oxidation (MFO), as well as the exercise intensity at which it occurs (Fatmax), have been reported as lower in sedentary overweight individuals but have not been studied in trained overweight individuals. The aim of this study was to compare Fatmax and MFO in lean and overweight recreationally trained males matched for cardiorespiratory fitness (CRF) and to study the relationships between these variables, anthropometric characteristics, and CRF. Twelve recreationally trained overweight (high fatness (HiFat) group, 30.0% ± 5.3% body fat) and 12 lean males (low fatness (LoFat), 17.2% ± 5.7% body fat) matched for CRF (maximal oxygen consumption (V̇O2max) 39.0 ± 5.5 vs. 41.4 ± 7.6 mL·kg(-1)·min(-1), p = 0.31) and age (p = 0.93) performed a graded exercise test on a cycle ergometer. V̇O2max and fat and carbohydrate oxidation rates were determined using indirect calorimetry; Fatmax and MFO were determined with a mathematical model (SIN); and % body fat was assessed by air displacement plethysmography. MFO (0.38 ± 0.19 vs. 0.42 ± 0.16 g·min(-1), p = 0.58), Fatmax (46.7% ± 8.6% vs. 45.4% ± 7.2% V̇O2max, p = 0.71), and fat oxidation rates over a wide range of exercise intensities were not significantly different (p > 0.05) between HiFat and LoFat groups. In the overall cohort (n = 24), MFO and Fatmax were correlated with V̇O2max (r = 0.46, p = 0.02; r = 0.61, p = 0.002) but not with % body fat or body mass index (p > 0.05). Fat oxidation during exercise was similar in recreationally trained overweight and lean males matched for CRF. Consistently, substrate oxidation rates during exercise were not related to adiposity (% body fat) but were related to CRF. The benefits of high CRF independent of body weight and % body fat should be further highlighted in the management of obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
16 |
2
|
Ipavec-Levasseur S, Croci I, Choquette S, Byrne NM, Cowin G, O'Moore-Sullivan TM, Prins JB, Hickman IJ. Effect of 1-h moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Appl Physiol Nutr Metab 2015; 40:1262-8. [PMID: 26575100 DOI: 10.1139/apnm-2015-0258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intramyocellular lipids (IMCL) are depleted in response to an acute bout of exercise in lean endurance-trained individuals; however, it is unclear whether changes in IMCL content are also seen in response to acute and chronic exercise in obese individuals. We used magnetic resonance spectroscopy in 18 obese men and 5 normal-weight controls to assess IMCL content before and after an hour of cycling at the intensity corresponding with each participant's maximal whole-body rate of fat oxidation (Fatmax). Fatmax was determined via indirect calorimetry during a graded exercise test on a cycle ergometer. The same outcome measures were reassessed in the obese group after a 16-week lifestyle intervention comprising dietary calorie restriction and exercise training. At baseline, IMCL content decreased in response to 1 h of cycling at Fatmax in controls (2.8 ± 0.4 to 2.0 ± 0.3 A.U., -39%, p = 0.02), but not in obese (5.4 ± 2.1 vs. 5.2 ± 2.2 A.U., p = 0.42). The lifestyle intervention lead to weight loss (-10.0 ± 5.4 kg, p < 0.001), improvements in maximal aerobic power (+5.2 ± 3.4 mL/(kg·min)), maximal fat oxidation rate (+0.19 ± 0.22 g/min), and a 29% decrease in homeostasis model assessment score (all p < 0.05). However, when the 1 h of cycling at Fatmax was repeated after the lifestyle intervention, there remained no observable change in IMCL (4.6 ± 1.8 vs. 4.6 ± 1.9 A.U., p = 0.92). In summary, there was no IMCL depletion in response to 1 h of cycling at moderate intensity either before or after the lifestyle intervention in obese men. An effective lifestyle intervention including moderate-intensity exercise training did not impact rate of utilisation of IMCL during acute exercise in obese men.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
13 |
3
|
Amaro-Gahete FJ, Sanchez-Delgado G, Helge JW, Ruiz JR. Optimizing Maximal Fat Oxidation Assessment by a Treadmill-Based Graded Exercise Protocol: When Should the Test End? Front Physiol 2019; 10:909. [PMID: 31396095 PMCID: PMC6664289 DOI: 10.3389/fphys.2019.00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023] Open
Abstract
Maximal fat oxidation during exercise (MFO) and the exercise intensity eliciting MFO (Fatmax) are considered important factors related to metabolic health and performance. Numerous MFO and Fatmax data collection and analysis approaches have been applied, which may have influenced their estimation during an incremental graded exercise protocol. Despite the heterogeneity of protocols used, all studies consistently stopped the MFO and Fatmax test when the respiratory exchange ratio (RER) was 1.0. It remains unknown however whether reaching a RER of 1.0 is required to have an accurate, reliable, and valid measure of MFO and Fatmax. We aimed to investigate the RER at which MFO and Fatmax occurred in sedentary and trained healthy adults. A total of 166 sedentary adults aged between 18 and 65 years participated in the study. MFO and Fatmax were calculated by an incremental graded exercise protocol before and after two exercise-based interventions. Our findings suggest that a graded exercise protocol aiming to determine MFO and Fatmax could end when a RER = 0.93 is reached in sedentary healthy adults, and when a RER = 0.90 is reached in trained adults independently of sex, age, body weight status, or the Fatmax data analysis approach. In conclusion, we suggest reducing the RER from 1.0 to 0.95 to be sure that MFO is reached in outliers. This methodological consideration has important clinical implications, since it would allow to apply smaller workload increments and/or to extend the stage duration to attain the steady state, without increasing the test duration.
Collapse
|
Journal Article |
6 |
4 |
4
|
Changes in Fat Oxidation and Body Composition after Combined Exercise Intervention in Sedentary Obese Chinese Adults. J Clin Med 2022; 11:jcm11041086. [PMID: 35207356 PMCID: PMC8879656 DOI: 10.3390/jcm11041086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Evidence suggests that aerobic exercise and high-intensity interval training (HIIT) might increase fat oxidation and reduce fat. However, limited research has examined the effects of combining progressive aerobic exercise and HIIT interventions in sedentary adults with overweight and obesity, and differences in its effects between men and women remain unclear. The purpose of this study was to investigate the effects of combined progressive aerobic exercise and HIIT (CAEH) on fat oxidation and fat reduction in sedentary Chinese adults and compare sex differences in sedentary adults after seven weeks. (2) Methods: Eighty-four sedentary obese adults were enrolled and allocated to two groups in baseline (experimental (EXP) group:42; control (CON) group:42), and fifty-six subjects (EXP:31; CON:25) completed the experiments and were included in the final analysis. Subjects in the EXP group performed CAEH three times per week for seven weeks. Subjects in the CON group were advised to continue with their normal daily activities. Anthropometric, lipid profile, cardiorespiratory fitness, and fat oxidation outcomes were assessed before and after the intervention. (3) Results: After seven weeks of the CAEH intervention, compared with the CON group, the EXP group showed significant increases in fat oxidation at rest (FO_rest) (+0.03 g/min, p < 0.01), maximal fat oxidation (MFO) (+0.05 g/min, p < 0.01), and maximal oxygen intake (VO2max) (+3.2 mL/kg/min, p < 0.01). The changes in the percentages of the FO_rest (+57%) and the VO2max (+16%) were significantly greater (+20%, +6%) in males than in females (p < 0.05, p < 0.05). The body mass index (BMI) (−1.2 kg/m2, p < 0.01), body fat percentage (−3.2%, p < 0.001), visceral fat area (−12.8 cm2, p < 0.001), and total cholesterol (TC) levels (−0.4 mmol/L, p < 0.05) were significantly decreased in the EXP group. (4) Conclusions: Seven weeks of the CAEH intervention effectively improved FO_rest, MFO, and VO2max in sedentary obese adults, and the improvements in FO_rest and VO2max were more pronounced in males than in females. CAEH also improved body composition and TC levels in sedentary obese adults.
Collapse
|
|
3 |
2 |
5
|
Comparison of the Ramp and Step Incremental Exercise Test Protocols in Assessing the Maximal Fat Oxidation Rate in Youth Cyclists. J Hum Kinet 2021; 80:163-172. [PMID: 34868426 PMCID: PMC8607772 DOI: 10.2478/hukin-2021-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The incremental exercise test is the most common method in assessing the maximal fat oxidation (MFO) rate. The main aim of the study was to determine whether the progressive linear RAMP test can be used to assess the maximal fat oxidation rate along with the intensities that trigger its maximal (FATmax) and its minimal (FATmin) values. Our study comprised 57 young road cyclists who were tested in random order. Each of them was submitted to two incremental exercise tests on an electro-magnetically braked cycle-ergometer - STEP (50 W·3 min-1) and RAMP (~0.278 W·s-1) at a 7-day interval. A stoichiometric equation was used to calculate the fat oxidation rate, while the metabolic thresholds were defined by analyzing ventilation gases. The Student’s T-test, Bland-Altman plots and Pearson’s linear correlations were resorted to in the process of statistical analysis. No statistically significant MFO variances occurred between the tests (p = 0.12) and its rate amounted to 0.57 ± 0.15 g·min-1 and 0.53 ± 0.17 g·min-1 in the STEP and RAMP, respectively. No statistically significant variances in the absolute and relative (to maximal) values of oxygen uptake and heart rate were discerned at the FATmax and FATmin intensities. The RAMP test displayed very strong oxygen uptake correlations between the aerobic threshold and FATmax (r = 0.93, R2 = 0.87, p < 0.001) as well as the anaerobic threshold and FATmin (r = 0.88, R2 = 0.78, p < 0.001). Our results corroborate our hypothesis that the incremental RAMP test as well as the STEP test are reliable tools in assessing MFO, FATmax and FATmin intensities.
Collapse
|
|
4 |
1 |
6
|
Yin M, Deng S, Chen Z, Zhang B, Zheng H, Bai M, Li H, Zhang X, Deng J, Liu Q, Little JP, Li Y. Exercise snacks are a time-efficient alternative to moderate-intensity continuous training for improving cardiorespiratory fitness but not maximal fat oxidation in inactive adults: a randomized controlled trial. Appl Physiol Nutr Metab 2024; 49:920-932. [PMID: 38569204 DOI: 10.1139/apnm-2023-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The aims of this study were (1) to determine how stair-climbing-based exercise snacks (ES) compared to moderate-intensity continuous training (MICT) for improving cardiorespiratory fitness (CRF), and (2) to explore whether ES could improve maximal fat oxidation rate (MFO) in inactive adults. Healthy, young, inactive adults (n: 42, age: 21.6 ± 2.3 years, BMI: 22.5 ± 3.6 kg·m-2, peak oxygen uptake (VO2peak): 33.6 ± 6.3 mL·kg-1·min-1) were randomly assigned to ES, MICT, or Control. ES (n = 14) and MICT (n = 13) groups performed three sessions per week over 6 weeks, while the control group (n = 15) maintained their habitual lifestyle. ES involved 3 × 30 s "all-out" stair-climbing (6 flight, 126 steps, and 18.9 m total height) bouts separated by >1 h rest, and MICT involved 40 min × 60%-70% HRmax stationary cycling. A significant group × time interaction was found for relative VO2peak (p < 0.05) with ES significantly increasing by 7% compared to baseline (MD = 2.5 mL·kg-1·min-1 (95% CI = 1.2, 3.7), Cohen's d = 0.44), while MICT had no significant effects (MD = 1.0 mL·kg-1·min-1 (-1.1, 3.2), Cohen's d = 0.17), and Control experienced a significant decrease (MD = -1.7 mL·kg-1·min-1 (-2.9, -0.4), Cohen's d = 0.26). MFO was unchanged among the three groups (group × time interaction, p > 0.05 for all). Stair climbing-based ES are a time-efficient alternative to MICT for improving CRF among inactive adults, but the tested ES intervention appears to have limited potential to increase MFO.
Collapse
|
Randomized Controlled Trial |
1 |
|
7
|
Alkahtani S. Comparing fat oxidation in an exercise test with moderate-intensity interval training. J Sports Sci Med 2014; 13:51-58. [PMID: 24570605 PMCID: PMC3918567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/05/2013] [Indexed: 06/03/2023]
Abstract
This study compared fat oxidation rate from a graded exercise test (GXT) with a moderate-intensity interval training session (MIIT) in obese men. Twelve sedentary obese males (age 29 ± 4.1 years; BMI 29.1 ± 2.4 kg·m(-2); fat mass 31.7 ± 4.4 %body mass) completed two exercise sessions: GXT to determine maximal fat oxidation (MFO) and maximal aerobic power (VO2max), and an interval cycling session during which respiratory gases were measured. The 30-min MIIT involved 5-min repetitions of workloads 20% below and 20% above the MFO intensity. VO2max was 31.8 ± 5.5 ml·kg(-1)·min(-1) and all participants achieved ≥ 3 of the designated VO2max test criteria. The MFO identified during the GXT was not significantly different compared with the average fat oxidation rate in the MIIT session. During the MIIT session, fat oxidation rate increased with time; the highest rate (0.18 ± 0.11 g·min(- 1)) in minute 25 was significantly higher than the rate at minute 5 and 15 (p ≤ 0.01 and 0.05 respectively). In this cohort with low aerobic fitness, fat oxidation during the MIIT session was comparable with the MFO determined during a GXT. Future research may consider if the varying workload in moderate-intensity interval training helps adherence to exercise without compromising fat oxidation. Key PointsFat oxidation during interval exercise is not com-promised by the undulating exercise intensityPhysiological measures corresponding with the MFO measured during the GXT correlated well to the MIITThe validity of exercise intensity markers derived from a GXT to reflect the physiological responses during MIIT.
Collapse
|
research-article |
11 |
|
8
|
Bertrand É, Caru M, Morel S, Bergeron Parenteau A, Belanger V, Laverdière C, Krajinovic M, Sinnett D, Levy E, Marcil V, Curnier D. Substrate oxidation during exercise in childhood acute lymphoblastic leukemia survivors. Pediatr Hematol Oncol 2023; 40:701-718. [PMID: 37440691 DOI: 10.1080/08880018.2023.2232399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Children with acute lymphoblastic leukemia (ALL) are at high risk of developing long-term cardiometabolic complications during their survivorship. Maximal fat oxidation (MFO) is a marker during exercise of cardiometabolic health, and is associated with metabolic risk factors. Our aim was to characterize the carbohydrate and fat oxidation during exercise in childhood ALL survivors. Indirect calorimetry was measured in 250 childhood ALL survivors to quantify substrate oxidation rates during a cardiopulmonary exercise test. A best-fit third-order polynomial curve was computed for fat oxidation rate (mg/min) against exercise intensity (%V ̇ O2peak) and was used to determine the MFO and the peak fat oxidation (Fatmax). The crossover point was also identified. Differences between prognostic risk groups were assessed (ie, standard risk [SR], high risk with and without cardio-protective agent dexrazoxane [HR + DEX and HR]). MFO, Fatmax and crossover point were not different between the groups (p = .078; p = .765; p = .726). Fatmax and crossover point were achieved at low exercise intensities. A higher MFO was achieved by men in the SR group (287.8 ± 111.2 mg/min) compared to those in HR + DEX (239.8 ± 97.0 mg/min) and HR groups (229.3 ± 98.9 mg/min) (p = .04). Childhood ALL survivors have low fat oxidation during exercise and oxidize carbohydrates at low exercise intensities, independently of the cumulative doses of doxorubicin they received. These findings alert clinicians on the long-term impact of cancer treatments on childhood ALL survivors' substrate oxidation.
Collapse
|
|
2 |
|
9
|
Zhu H, Pan J, Wen J, Dang X, Chen X, Fan Y, Lu W, Jiang W. Type 2 diabetes mellitus' impact on heart failure patients' exercise tolerance: a focus on maximal fat oxidation during exercise. Front Cardiovasc Med 2025; 12:1485755. [PMID: 39995969 PMCID: PMC11847838 DOI: 10.3389/fcvm.2025.1485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Objective To explore the impact of type 2 diabetes mellitus (T2DM) on exercise tolerance and fat oxidation capacity in patients with heart failure (HF). Methods We retrospectively analyzed 108 Chinese patients with HF who were divided into a diabetic group (T2DM group, n = 47) and a non-diabetic group (non-T2DM group, n = 61). All subjects completed cardiopulmonary exercise testing (CPX). We determined their fat oxidation (FATox) by indirect calorimetry. Results In the HF patients, the peak oxygen uptake (VO2) value was 14.76 ± 3.27 ml/kg/min in the T2DM group and 17.76 ± 4.64 ml/kg/min in the non-T2DM group. After adjusting for age, sex, body mass index (BMI), log N-terminal pro-B type natriuretic peptide (log NT-proBNP), left ventricular ejection fraction (LVEF), hemoglobin, renal function, coronary heart disease and hypertension, the peak VO2 was lower in the T2DM group compared to the non-T2DM group with a mean difference (MD) of -2.0 ml/kg/min [95% confidence interval (CI), -3.18 to -0.82, P < 0.01]. The VO2 at anaerobic threshold (AT VO2) was also lower in the T2DM group than in the non-T2DM group, with a MD of -1.11 ml/kg/min (95% CI -2.04 to -0.18, P < 0.05). Regarding the fat oxidation capacity during CPX, the T2DM group's maximal fat oxidation (MFO) was lower than that of the non-T2DM group (0.143 ± 0.055 vs. 0.169 ± 0.061 g/min, P < 0.05). In addition, the T2DM group had lower FATox at exercise intensity levels of 40% (P < 0.05) and 50% (P < 0.05) of peak VO2, compared to the non-T2DM group. Conclusions T2DM is associated with a decrease in exercise tolerance and fat oxidation capacity in patients with heart failure. Thus, it could be useful to develop exercises of appropriate intensity to optimize physical and metabolic health.
Collapse
|
research-article |
1 |
|