1
|
Wang Z, Yuan G, Yang M, Chai J, Steve Wu QY, Wang T, Sebek M, Wang D, Wang L, Wang S, Chi D, Adamo G, Soci C, Sun H, Huang K, Teng J. Exciton-Enabled Meta-Optics in Two-Dimensional Transition Metal Dichalcogenides. NANO LETTERS 2020; 20:7964-7972. [PMID: 33054225 DOI: 10.1021/acs.nanolett.0c02712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical wavefront engineering has been rapidly developing in fundamentals from phase accumulation in the optical path to the electromagnetic resonances of confined nanomodes in optical metasurfaces. However, the amplitude modulation of light has limited approaches that usually originate from the ohmic loss and absorptive dissipation of materials. Here, an atomically thin photon-sieve platform made of MoS2 multilayers is demonstrated for high-quality optical nanodevices, assisted fundamentally by strong excitonic resonances at the band-nesting region of MoS2. The atomic thin MoS2 significantly facilitates high transmission of the sieved photons and high-fidelity nanofabrication. A proof-of-concept two-dimensional (2D) nanosieve hologram exhibits 10-fold enhanced efficiency compared with its non-2D counterparts. Furthermore, a supercritical 2D lens with its focal spot breaking diffraction limit is developed to exhibit experimentally far-field label-free aberrationless imaging with a resolution of ∼0.44λ at λ = 450 nm in air. This transition-metal-dichalcogenide (TMDC) photonic platform opens new opportunities toward future 2D meta-optics and nanophotonics.
Collapse
|
|
5 |
9 |
2
|
Jin Z, Mei S, Chen S, Li Y, Zhang C, He Y, Yu X, Yu C, Yang JKW, Luk'yanchuk B, Xiao S, Qiu CW. Complex Inverse Design of Meta-optics by Segmented Hierarchical Evolutionary Algorithm. ACS NANO 2019; 13:821-829. [PMID: 30615418 DOI: 10.1021/acsnano.8b08333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the recent burgeoning advances in nano-optics, ultracompact, miniaturized photonic devices with high-quality and spectacular functionalities are highly desired. Such devices' design paradigms often call for the solution of a complex inverse nonanalytical/semianalytical problem. However, currently reported strategies dealing with amplitude-controlled meta-optics devices achieved limited functionalities mainly due to restricted search space and demanding computational schemes. Here, we established a segmented hierarchical evolutionary algorithm, aiming to solve large-pixelated, complex inverse meta-optics design and fully demonstrate the targeted performance. This paradigm allows significantly extended search space at a rapid converging speed. As typical complex proof-of-concept examples, large-pixelated meta-holograms are chosen to demonstrate the validity of our design paradigm. An improved fitness function is proposed to reinforce the performance balance among image pixels, so that the image quality is improved and computing speed is further accelerated. Broadband and full-color meta-holograms with high image fidelities using binary amplitude control are demonstrated experimentally. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.
Collapse
|
|
6 |
6 |
3
|
Ou K, Wan H, Wang G, Zhu J, Dong S, He T, Yang H, Wei Z, Wang Z, Cheng X. Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1235. [PMID: 37049327 PMCID: PMC10097126 DOI: 10.3390/nano13071235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human's pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end.
Collapse
|
Review |
2 |
5 |
4
|
Wang Y, Deng ZL, Hu D, Yuan J, Ou Q, Qin F, Zhang Y, Ouyang X, Li Y, Peng B, Cao Y, Guan B, Zhang Y, He J, Qiu CW, Bao Q, Li X. Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-optics. NANO LETTERS 2020; 20:7811-7818. [PMID: 32833464 DOI: 10.1021/acs.nanolett.0c01805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to its good air stability and high refractive index, two-dimensional (2D) noble metal dichalcogenide shows intriguing potential for versatile flat optics applications. However, light field manipulation at the atomic scale is conventionally considered unattainable because the small thickness and intrinsic losses of 2D materials completely suppress both resonances and phase accumulation effects. Here, we demonstrate that losses of structured atomically thick PtSe2 films integrated on top of a uniform substrate can be utilized to create the spots of critical coupling, enabling singular phase behaviors with a remarkable π phase jump. This finding enables the experimental demonstration of atomically thick binary meta-optics that allows an angle-robust and high unit thickness diffraction efficiency of 0.96%/nm in visible frequencies (given its thickness of merely 4.3 nm). Our results unlock the potential of a new class of 2D flat optics for light field manipulation at an atomic thickness.
Collapse
|
|
5 |
4 |
5
|
Singh D, Poplinger M, Twitto A, Snitkoff R, Nanikashvili P, Azolay O, Levi A, Stern C, Taguri GC, Albo A, Naveh D, Lewi T. Chemical Vapor Deposition of Spherical Amorphous Selenium Mie Resonators for Infrared Meta-Optics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4612-4619. [PMID: 35021011 DOI: 10.1021/acsami.1c17812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Applying direct growth and deposition of optical surfaces holds great promise for the advancement of future nanophotonic technologies. Here, we report on a chemical vapor deposition (CVD) technique for depositing amorphous selenium (a-Se) spheres by desorption of selenium from Bi2Se3 and re-adsorption on the substrate. We utilize this process to grow scalable, large area Se spheres on several substrates and characterize their Mie-resonant response in the mid-infrared (MIR) spectral range. We demonstrate size-tunable Mie resonances spanning the 2-16 μm spectral range for single isolated resonators and large area ensembles. We further demonstrate strong absorption dips of up to 90% in ensembles of particles in a broad MIR range. Finally, we show that ultra-high-Q resonances arise in the case where Se Mie-resonators are coupled to low-loss epsilon-near-zero (ENZ) substrates. These findings demonstrate the enabling potential of amorphous Selenium as a versatile and tunable nanophotonic material that may open up avenues for on-chip MIR spectroscopy, chemical sensing, spectral imaging, and large area metasurface fabrication.
Collapse
|
|
3 |
3 |
6
|
Santonocito A, Patrizi B, Toci G. Recent Advances in Tunable Metasurfaces and Their Application in Optics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101633. [PMID: 37242049 DOI: 10.3390/nano13101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Metasurfaces can be opportunely and specifically designed to manipulate electromagnetic wavefronts. In recent years, a large variety of metasurface-based optical devices such as planar lenses, beam deflectors, polarization converters, and so on have been designed and fabricated. Of particular interest are tunable metasurfaces, which allow the modulation of the optical response of a metasurface; for instance, the variation in the focal length of a converging metalens. Response tunability can be achieved through external sources that modify the permittivity of the materials constituting the nanoatoms, the substrate, or both. The modulation sources can be classified into electromagnetic fields, thermal sources, mechanical stressors, and electrical bias. Beside this, we will consider optical modulation and multiple approach tuning strategies. A great variety of tunable materials have been used in metasurface engineering, such as transparent conductive oxides, ferroelectrics, phase change materials, liquid crystals, and semiconductors. The possibility of tuning the optical properties of these metamaterials is very important for several applications spanning from basic optics to applied optics for communications, depth sensing, holographic displays, and biochemical sensors. In this review, we summarize the recent progress on electro-optical magnetic, mechanical, and thermal tuning of metasurfaces actually fabricated and experimentally tested in recent years. At the end of the review, a short section on possible future perspectives and applications is included.
Collapse
|
Review |
2 |
1 |
7
|
Cohen SZ, Singh D, Nandi S, Lewi T. Temperature invariant metasurfaces. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3217-3227. [PMID: 39634145 PMCID: PMC11501816 DOI: 10.1515/nanoph-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/06/2023] [Indexed: 12/07/2024]
Abstract
Thermal effects are well known to influence the electronic and optical properties of materials through several physical mechanisms and are the basis for various optoelectronic devices. The thermo-optic (TO) effect, the refractive index variation with temperature (dn/dT), is one of the most common mechanisms used for tunable optical devices, including integrated optical components, metasurfaces, and nano-antennas. However, when a static and fixed operation is required, i.e., temperature invariant performance - this effect becomes a drawback and may lead to undesirable behavior through drifting of the resonance frequency, amplitude, or phase, as the operating temperature varies over time. In this work, we present a systematic approach to mitigate thermally induced optical fluctuations in nanophotonic devices. By using hybrid subwavelength resonators composed from two materials with opposite TO dispersions (dn/dT < 0 and dn/dT > 0), we are able to compensate for TO shifts and engineer nanophotonic components with zero effective TO coefficient (dn eff/dT ≈ 0). We demonstrate temperature invariant resonant frequency, amplitude, and phase response in meta-atoms and metasurfaces operating across a wide temperature range and broad spectral band. Our results highlight a path towards temperature invariant nanophotonics, which can provide constant and stable optical response across a wide range of temperatures and be applied to a plethora of optoelectronic devices. Controlling the sign and magnitude of TO dispersion extends the capabilities of light manipulation and adds another layer to the toolbox of optical engineering in nanophotonic systems.
Collapse
|
research-article |
2 |
|
8
|
Yoo JH, Nguyen HT, Ray NJ, Johnson MA, Steele WA, Chesser JM, Baxamusa SH, Elhadj S, McKeown JT, Matthews MJ, Feigenbaum E. Scalable Light-Printing of Substrate-Engraved Free-Form Metasurfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22684-22691. [PMID: 31137930 DOI: 10.1021/acsami.9b07135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A key challenge for metasurface research is locally controlling at will the nanoscale geometric features on meter-scale apertures. Such a technology is expected to enable large aperture meta-optics and revolutionize fields such as long-range imaging, lasers, laser detection and ranging (LADAR), and optical communications. Furthermore, these applications are often more sensitive to light-induced and environmental degradation, which constrains the possible materials and fabrication process. Here, we present a relatively simple and scalable method to fabricate a substrate-engraved metasurface with locally printed index determined by induced illumination, which, therefore, addresses both the challenges of scalability and durability. In this process, a thin metal film is deposited onto a substrate and transformed into a mask via local laser-induced dewetting into nanoparticles. The substrate is then dry-etched through this mask, and selective mask removal finally reveals the metasurface. We show that masking by the local nanoparticle distribution, and, therefore, the local index, is dependent on the local light-induced dewetting temperature. We demonstrate printing of a free-form pattern engraved into a fused silica glass substrate using a laser raster scan. Large-scale spatially controlled engraving of metasurfaces has implications on other technological fields beyond optics, such as surface fluidics, acoustics, and thermomechanics.
Collapse
|
|
6 |
|
9
|
Ha Y, Guo Y, Pu M, Xu M, Li X, Ma X, Zou F, Luo X. Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3395. [PMID: 36234521 PMCID: PMC9565330 DOI: 10.3390/nano12193395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Monolithic integrated mode converters with high integration are essential to photonic integrated circuits (PICs), and they are widely used in next-generation optical communications and complex quantum systems. It is expected that PICs will become more miniaturized, multifunctional, and intelligent with the development of micro/nano-technology. The increase in design space makes it difficult to realize high-performance device design based on traditional parameter sweeping or heuristic design, especially in the optimal design of reconfigurable PIC devices. Combining the mode coupling theory and adjoint calculation method, we proposed a design method for a switchable mode converter. The device could realize the transmission of TE0 mode and the conversion from TE0 to TE1 mode with a footprint of 0.9 × 7.5 μm2 based on the phase change materials (PCMs). We also found that the mode purity could reach 78.2% in both states at the working wavelength of 1.55 μm. The designed method will provide a new impetus for programmable photonic integrated devices and find broad application prospects in communication, optical neural networks, and sensing.
Collapse
|
research-article |
3 |
|
10
|
Choi M, Munley C, Fröch JE, Chen R, Majumdar A. Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors. NANO LETTERS 2024; 24:3150-3156. [PMID: 38477059 DOI: 10.1021/acs.nanolett.3c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.
Collapse
|
|
1 |
|
11
|
Yu L, Shevtsov S, Singh HJ, Kazansky PG, Caglayan H. Multifunctional Meta-optic Azimuthal Shear Interferometer. NANO LETTERS 2025; 25:7419-7425. [PMID: 40267356 PMCID: PMC12063176 DOI: 10.1021/acs.nanolett.5c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Azimuthal shear interferometry is a versatile tool for analyzing wavefront asymmetries. However, conventional systems are bulky, alignment-sensitive, and prone to nonuniform shear. We present a broadband, compact, and robust meta-optics-based azimuthal shear interferometer in a common-path configuration, reducing the system size to the millimeter scale. Unlike conventional designs, the meta-optic azimuthal shear interferometer utilizes the localized wavefront modulation capabilities of meta-optics to achieve uniform azimuthal shear displacement independent of the radial position, significantly enhancing accuracy and stability. Our approach eliminates the need for bulky optical components and precise multipath alignment, making it more resilient to environmental disturbances. Its multifunctionality is demonstrated through applications in all-optical edge detection, differential interference contrast microscopy, and aberrated wavefront sensing. These results underscore its potential for real-time analog image processing, advanced optical imaging, and optical testing.
Collapse
|
rapid-communication |
1 |
|
12
|
Xu S, Zhang Y, Wang T, Zhang L. Recent Developments of Femtosecond Laser Direct Writing for Meta-Optics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101623. [PMID: 37242041 DOI: 10.3390/nano13101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Micro-optics based on the artificial adjustment of physical dimensions, such as the phase, polarization, and wavelength of light, constitute the basis of contemporary information optoelectronic technology. As the main means of optical integration, it has become one of the important ways to break through the future bottleneck of microelectronic technology. Geometric phase optical components can precisely control the polarization, phase, amplitude and other properties of the light field at the sub-wavelength scale by periodically arranging nanometer-sized unit structures. It has received extensive attention in the fields of holographic imaging and polarization optics. This paper reviews the physical mechanism of micro-nano structure modification, research progress of femtosecond laser direct-writing photoresist, femtosecond laser ablation of metal thin films, femtosecond laser-induced nanograting, and other methods for preparing polarization converters and geometric phase optics. The challenges of fabricating ultrafast optical devices using femtosecond laser technology are discussed.
Collapse
|
Review |
2 |
|