1
|
Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Meyer DEL, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Williamson DA, Deutsch WA, Ravussin E. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 2006; 295:1539-48. [PMID: 16595757 PMCID: PMC2692623 DOI: 10.1001/jama.295.13.1539] [Citation(s) in RCA: 671] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Prolonged calorie restriction increases life span in rodents. Whether prolonged calorie restriction affects biomarkers of longevity or markers of oxidative stress, or reduces metabolic rate beyond that expected from reduced metabolic mass, has not been investigated in humans. OBJECTIVE To examine the effects of 6 months of calorie restriction, with or without exercise, in overweight, nonobese (body mass index, 25 to <30) men and women. DESIGN, SETTING, AND PARTICIPANTS Randomized controlled trial of healthy, sedentary men and women (N = 48) conducted between March 2002 and August 2004 at a research center in Baton Rouge, La. INTERVENTION Participants were randomized to 1 of 4 groups for 6 months: control (weight maintenance diet); calorie restriction (25% calorie restriction of baseline energy requirements); calorie restriction with exercise (12.5% calorie restriction plus 12.5% increase in energy expenditure by structured exercise); very low-calorie diet (890 kcal/d until 15% weight reduction, followed by a weight maintenance diet). MAIN OUTCOME MEASURES Body composition; dehydroepiandrosterone sulfate (DHEAS), glucose, and insulin levels; protein carbonyls; DNA damage; 24-hour energy expenditure; and core body temperature. RESULTS Mean (SEM) weight change at 6 months in the 4 groups was as follows: controls, -1.0% (1.1%); calorie restriction, -10.4% (0.9%); calorie restriction with exercise, -10.0% (0.8%); and very low-calorie diet, -13.9% (0.7%). At 6 months, fasting insulin levels were significantly reduced from baseline in the intervention groups (all P<.01), whereas DHEAS and glucose levels were unchanged. Core body temperature was reduced in the calorie restriction and calorie restriction with exercise groups (both P<.05). After adjustment for changes in body composition, sedentary 24-hour energy expenditure was unchanged in controls, but decreased in the calorie restriction (-135 kcal/d [42 kcal/d]), calorie restriction with exercise (-117 kcal/d [52 kcal/d]), and very low-calorie diet (-125 kcal/d [35 kcal/d]) groups (all P<.008). These "metabolic adaptations" (~ 6% more than expected based on loss of metabolic mass) were statistically different from controls (P<.05). Protein carbonyl concentrations were not changed from baseline to month 6 in any group, whereas DNA damage was also reduced from baseline in all intervention groups (P <.005). CONCLUSIONS Our findings suggest that 2 biomarkers of longevity (fasting insulin level and body temperature) are decreased by prolonged calorie restriction in humans and support the theory that metabolic rate is reduced beyond the level expected from reduced metabolic body mass. Studies of longer duration are required to determine if calorie restriction attenuates the aging process in humans. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00099151.
Collapse
|
Randomized Controlled Trial |
19 |
671 |
2
|
Garland T, Ives AR. Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods. Am Nat 2000; 155:346-364. [PMID: 10718731 DOI: 10.1086/303327] [Citation(s) in RCA: 607] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Two phylogenetic comparative methods, independent contrasts and generalized least squares models, can be used to determine the statistical relationship between two or more traits. We show that the two approaches are functionally identical and that either can be used to make statistical inferences about values at internal nodes of a phylogenetic tree (hypothetical ancestors), to estimate relationships between characters, and to predict values for unmeasured species. Regression equations derived from independent contrasts can be placed back onto the original data space, including computation of both confidence intervals and prediction intervals for new observations. Predictions for unmeasured species (including extinct forms) can be made increasingly accurate and precise as the specificity of their placement on a phylogenetic tree increases, which can greatly increase statistical power to detect, for example, deviation of a single species from an allometric prediction. We reexamine published data for basal metabolic rates (BMR) of birds and show that conventional and phylogenetic allometric equations differ significantly. In new results, we show that, as compared with nonpasserines, passerines exhibit a lower rate of evolution in both body mass and mass-corrected BMR; passerines also have significantly smaller body masses than their sister clade. These differences may justify separate, clade-specific allometric equations for prediction of avian basal metabolic rates.
Collapse
|
|
25 |
607 |
3
|
O'Shea TJ, Cryan PM, Cunningham AA, Fooks AR, Hayman DTS, Luis AD, Peel AJ, Plowright RK, Wood JLN. Bat flight and zoonotic viruses. Emerg Infect Dis 2014; 20:741-5. [PMID: 24750692 PMCID: PMC4012789 DOI: 10.3201/eid2005.130539] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host-virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.
Collapse
|
Review |
11 |
222 |
4
|
Irene Tieleman B, Williams JB, Ricklefs RE, Klasing KC. Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc Biol Sci 2005; 272:1715-20. [PMID: 16087427 PMCID: PMC1559858 DOI: 10.1098/rspb.2005.3155] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 05/11/2005] [Indexed: 11/12/2022] Open
Abstract
We studied the relationship between one component of immune function and basal metabolic rate (BMR), an indicator of the 'pace-of-life syndrome', among 12 tropical bird species and among individuals of the tropical house wren (Troglodytes aedon), to gain insights into functional connections between life history and physiology. To assess constitutive innate immunity we introduced a new technique in the field of ecological and evolutionary immunology that quantifies the bactericidal activity of whole blood. This in vitro assay utilises a single blood sample to provide a functional, integrated measure of constitutive innate immunity. We found that the bactericidal activity of whole blood varied considerably among species and among individuals within a species. This variation was not correlated with body mass or whole-organism BMR. However, among species, bacteria killing activity was negatively correlated with mass-adjusted BMR, suggesting that species with a slower pace-of-life have evolved a more robust constitutive innate immune capability. Among individuals of a single species, the house wren, bacteria killing activity was positively correlated with mass-adjusted BMR, pointing to physiological differences in individual quality on which natural selection potentially could act.
Collapse
|
Comparative Study |
20 |
184 |
5
|
Giesing ER, Suski CD, Warner RE, Bell AM. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proc Biol Sci 2011; 278:1753-9. [PMID: 21068041 PMCID: PMC3081764 DOI: 10.1098/rspb.2010.1819] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/19/2010] [Indexed: 01/06/2023] Open
Abstract
There is growing evidence that maternal experience influences offspring via non-genetic mechanisms. When female three-spined sticklebacks (Gasterosteus aculeatus) were exposed to the threat of predation, they produced larger eggs with higher cortisol content, which consumed more oxygen shortly after fertilization compared with a control group. As juveniles, the offspring of predator-exposed mothers exhibited tighter shoaling behaviour, an antipredator defence. We did not detect an effect of maternal exposure to predation risk on the somatic growth of fry. Altogether, we found that exposure to an ecologically relevant stressor during egg formation had several long-lasting consequences for offspring, some of which might be mediated by exposure to maternally derived cortisol. These results support the hypothesis that female sticklebacks might influence the development, growth and behaviour of their offspring via eggs to match their future environment.
Collapse
|
research-article |
14 |
165 |
6
|
Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120444. [PMID: 23980245 PMCID: PMC3758176 DOI: 10.1098/rstb.2012.0444] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism's ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification.
Collapse
|
Comparative Study |
12 |
144 |
7
|
Banavar JR, Moses ME, Brown JH, Damuth J, Rinaldo A, Sibly RM, Maritan A. A general basis for quarter-power scaling in animals. Proc Natl Acad Sci U S A 2010; 107:15816-20. [PMID: 20724663 PMCID: PMC2936637 DOI: 10.1073/pnas.1009974107] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12. Quarter-power scaling can arise even when there is no underlying fractality. The canonical "fourth dimension" in biological scaling relations can result from matching the velocity of flow through the network to the linear dimension of the terminal "service volume" where resources are consumed. These models have broad applicability for the optimal design of biological and engineered systems where energy, materials, or information are distributed from a single source.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
124 |
8
|
Ko SH, Jung Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021; 13:nu13124556. [PMID: 34960109 PMCID: PMC8704126 DOI: 10.3390/nu13124556] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Aging women experience hormonal changes, such as decreased estrogen and increased circulating androgen, due to natural or surgical menopause. These hormonal changes make postmenopausal women vulnerable to body composition changes, muscle loss, and abdominal obesity; with a sedentary lifestyle, these changes affect overall energy expenditure and basal metabolic rate. In addition, fat redistribution due to hormonal changes leads to changes in body shape. In particular, increased bone marrow-derived adipocytes due to estrogen loss contribute to increased visceral fat in postmenopausal women. Enhanced visceral fat lipolysis by adipose tissue lipoprotein lipase triggers the production of excessive free fatty acids, causing insulin resistance and metabolic diseases. Because genes involved in β-oxidation are downregulated by estradiol loss, excess free fatty acids produced by lipolysis of visceral fat cannot be used appropriately as an energy source through β-oxidation. Moreover, aged women show increased adipogenesis due to upregulated expression of genes related to fat accumulation. As a result, the catabolism of ATP production associated with β-oxidation decreases, and metabolism associated with lipid synthesis increases. This review describes the changes in energy metabolism and lipid metabolic abnormalities that are the background of weight gain in postmenopausal women.
Collapse
|
Review |
4 |
123 |
9
|
Wright S, Keeling J, Gillman L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Natl Acad Sci U S A 2006; 103:7718-22. [PMID: 16672371 PMCID: PMC1472511 DOI: 10.1073/pnas.0510383103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Indexed: 11/18/2022] Open
Abstract
Using an appropriately designed and replicated study of a latitudinal influence on rates of evolution, we test the prediction by K. Rohde [(1992) Oikos 65, 514-527] that the tempo of molecular evolution in the tropics is greater than at higher latitudes. Consistent with this prediction we found tropical plant species had more than twice the rate of molecular evolution as closely related temperate congeners. Rohde's climate-speciation hypothesis constitutes one explanation for the cause of that relationship. This hypothesis suggests that mutagenesis occurs more frequently as productivity and metabolic rates increase toward the equator. More rapid mutagenesis was then proposed as the mechanism that increases evolutionary tempo and rates of speciation. A second possible explanation is that faster rates of molecular evolution result from higher tropical speciation rates [e.g., Bromham, L. & Cardillo, M. (2003) J. Evol. Biol. 16, 200-207]. However, we found the relationship continued to hold for genera with the same number of, or more, species in temperate latitudes. This finding suggests that greater rates of speciation in the tropics do not cause higher rates of molecular evolution. A third explanation is that more rapid genetic drift might have occurred in smaller tropical species populations [Stevens, G. C. (1989) Am. Nat. 133, 240-256]. However, we targeted common species to limit the influence of genetic drift, and many of the tropical species we used, despite occurring in abundant populations, had much higher rates of molecular evolution. Nonetheless, this issue is not completely resolved by that precaution and requires further examination.
Collapse
|
research-article |
19 |
118 |
10
|
Sandblom E, Gräns A, Axelsson M, Seth H. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future. Proc Biol Sci 2014; 281:20141490. [PMID: 25232133 PMCID: PMC4211447 DOI: 10.1098/rspb.2014.1490] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/15/2014] [Indexed: 11/12/2022] Open
Abstract
Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations.
Collapse
|
research-article |
11 |
115 |
11
|
Zitting KM, Vujovic N, Yuan RK, Isherwood CM, Medina JE, Wang W, Buxton OM, Williams JS, Czeisler CA, Duffy JF. Human Resting Energy Expenditure Varies with Circadian Phase. Curr Biol 2018; 28:3685-3690.e3. [PMID: 30416064 PMCID: PMC6300153 DOI: 10.1016/j.cub.2018.10.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 10/27/2022]
Abstract
There is emerging evidence that circadian misalignment may alter energy expenditure, leading to obesity risk among those with irregular schedules [1-5]. It has been reported that energy expenditure is affected by the timing of sleep, exercise, and meals [6]. However, it is unclear whether the circadian system also modulates energy expenditure, independent of behavioral state and food intake. Here, we used a forced desynchrony protocol to examine whether fasted resting energy expenditure (REE) varies with circadian phase in seven participants. This protocol allowed us to uncouple sleep-wake and activity-related effects from the endogenous circadian rhythm, demonstrating that REE varies by circadian phase. REE is lowest at circadian phase ∼0°, corresponding to the endogenous core body temperature (CBT) nadir in the late biological night, and highest at circadian phase ∼180° in the biological afternoon and evening. Furthermore, we found that respiratory quotient (RQ), reflecting macronutrient utilization, also varies by circadian phase. RQ is lowest at circadian phase ∼240° and highest at circadian phase ∼60°, which corresponds to biological morning. This is the first characterization of a circadian profile in fasted resting energy expenditure and fasted respiratory quotient (with rhythmic profiles in both carbohydrate and lipid oxidation), decoupled from effects of activity, sleep-wake cycle, and diet in humans. The rhythm in energy expenditure and macronutrient metabolism may contribute to greater weight gain in shift workers and others with irregular schedules.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
113 |
12
|
Farrell AP. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. JOURNAL OF FISH BIOLOGY 2016; 88:322-343. [PMID: 26592201 DOI: 10.1111/jfb.12789] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
A major challenge for fish biologists in the 21st century is to predict the biotic effects of global climate change. With marked changes in biogeographic distribution already in evidence for a variety of aquatic animals, mechanistic explanations for these shifts are being sought, ones that then can be used as a foundation for predictive models of future climatic scenarios. One mechanistic explanation for the thermal performance of fishes that has gained some traction is the oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis, which suggests that an aquatic organism's capacity to supply oxygen to tissues becomes limited when body temperature reaches extremes. Central to this hypothesis is an optimum temperature for absolute aerobic scope (AAS, loosely defined as the capacity to deliver oxygen to tissues beyond a basic need). On either side of this peak for AAS are pejus temperatures that define when AAS falls off and thereby reduces an animal's absolute capacity for activity. This article provides a brief perspective on the potential uses and limitations of some of the key physiological indicators related to aerobic scope in fishes. The intent is that practitioners who attempt predictive ecological applications can better recognize limitations and make better use of the OCLTT hypothesis and its underlying physiology.
Collapse
|
Review |
9 |
111 |
13
|
Škop V, Guo J, Liu N, Xiao C, Hall KD, Gavrilova O, Reitman ML. Mouse Thermoregulation: Introducing the Concept of the Thermoneutral Point. Cell Rep 2020; 31:107501. [PMID: 32294435 PMCID: PMC7243168 DOI: 10.1016/j.celrep.2020.03.065] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/18/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human and mouse thermal physiology differ due to dissimilar body sizes. Unexpectedly, in mice we found no ambient temperature zone where both metabolic rate and body temperature were constant. Body temperature began increasing once cold-induced thermogenesis was no longer required. This result reproduced in male, female, C57BL/6J, 129, chow-fed, diet-induced obese, and ob/ob mice as well as Trpv1-/-;Trpm8-/-;Trpa1-/- mice lacking thermal sensory channels. During the resting-light phase, the energy expenditure minimum spanned ∼4°C of ambient temperature, whereas in the active-dark phase it approximated a point. We propose the concept of a thermoneutral point (TNP), a discrete ambient temperature below which energy expenditure increases and above which body temperature increases. Humans do not have a TNP. As studied, the mouse TNP is ∼29°C in light phase and ∼33°C in dark phase. These observations inform how thermoneutrality is defined and how mice are used to model human energy physiology and drug development.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
105 |
14
|
Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit). CONSERVATION PHYSIOLOGY 2016; 4:cow012. [PMID: 27293760 PMCID: PMC4849809 DOI: 10.1093/conphys/cow012] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 05/19/2023]
Abstract
Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P crit) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining P crit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P crit, including temperature, CO2, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P crit; 20% of variation in the P crit data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO2 within a closed respirometer during the measurement of P crit. Modelling suggests that the final partial pressure of CO2 reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P crit itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
Collapse
|
research-article |
9 |
105 |
15
|
Koch RE, Buchanan KL, Casagrande S, Crino O, Dowling DK, Hill GE, Hood WR, McKenzie M, Mariette MM, Noble DWA, Pavlova A, Seebacher F, Sunnucks P, Udino E, White CR, Salin K, Stier A. Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends Ecol Evol 2021; 36:321-332. [PMID: 33436278 DOI: 10.1016/j.tree.2020.12.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.
Collapse
|
Review |
4 |
102 |
16
|
White CR, Alton LA, Frappell PB. Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc Biol Sci 2012; 279:1740-7. [PMID: 22158960 PMCID: PMC3297453 DOI: 10.1098/rspb.2011.2060] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 11/14/2011] [Indexed: 01/24/2023] Open
Abstract
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.
Collapse
|
research-article |
13 |
96 |
17
|
Most J, Dervis S, Haman F, Adamo KB, Redman LM. Energy Intake Requirements in Pregnancy. Nutrients 2019; 11:nu11081812. [PMID: 31390778 PMCID: PMC6723706 DOI: 10.3390/nu11081812] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Energy intake requirements in pregnancy match the demands of resting metabolism, physical activity, and tissue growth. Energy balance in pregnancy is, therefore, defined as energy intake equal to energy expenditure plus energy storage. A detailed understanding of these components and their changes throughout gestation can inform energy intake recommendations for minimizing the risk of poor pregnancy outcomes. Energy expenditure is the sum of resting and physical activity-related expenditure. Resting metabolic rate increases during pregnancy as a result of increased body mass, pregnancy-associated physiological changes, i.e., cardiac output, and the growing fetus. Physical activity is extremely variable between women and may change over the course of pregnancy. The requirement for energy storage depends on maternal pregravid body size. For optimal pregnancy outcomes, women with low body weight require more fat mass accumulation than women with obesity, who do not require to accumulate fat mass at all. Given the high energy density of fat mass, these differences affect energy intake requirements for a healthy pregnancy greatly. In contrast, the energy stored in fetal and placental tissues is comparable between all women and have small impact on energy requirements. Different prediction equations have been developed to quantify energy intake requirements and we provide a brief review of the strengths and weaknesses and discuss their application for healthy management of weight gain in pregnant women.
Collapse
|
Review |
6 |
95 |
18
|
Hoekstra LA, Siddiq MA, Montooth KL. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 2013; 195:1129-39. [PMID: 24026098 PMCID: PMC3813842 DOI: 10.1534/genetics.113.154914] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Interactions between mitochondrial and nuclear gene products that underlie eukaryotic energy metabolism can cause the fitness effects of mutations in one genome to be conditional on variation in the other genome. In ectotherms, the effects of these interactions are likely to depend upon the thermal environment, because increasing temperature accelerates molecular rates. We find that temperature strongly modifies the pleiotropic phenotypic effects of an incompatible interaction between a Drosophila melanogaster polymorphism in the nuclear-encoded, mitochondrial tyrosyl-transfer (t)RNA synthetase and a D. simulans polymorphism in the mitochondrially encoded tRNA(Tyr). The incompatible mitochondrial-nuclear genotype extends development time, decreases larval survivorship, and reduces pupation height, indicative of decreased energetic performance. These deleterious effects are ameliorated when larvae develop at 16° and exacerbated at warmer temperatures, leading to complete sterility in both sexes at 28°. The incompatible genotype has a normal metabolic rate at 16° but a significantly elevated rate at 25°, consistent with the hypothesis that inefficient energy metabolism extends development in this genotype at warmer temperatures. Furthermore, the incompatibility decreases metabolic plasticity of larvae developed at 16°, indicating that cooler development temperatures do not completely mitigate the deleterious effects of this genetic interaction. Our results suggest that the epistatic fitness effects of metabolic mutations may generally be conditional on the thermal environment. The expression of epistatic interactions in some environments, but not others, weakens the efficacy of selection in removing deleterious epistatic variants from populations and may promote the accumulation of incompatibilities whose fitness effects will depend upon the environment in which hybrids occur.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA, Mitochondrial/genetics
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/physiology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/physiology
- Epistasis, Genetic
- Evolution, Molecular
- Female
- Fertility/genetics
- Fertility/physiology
- Genes, Insect
- Genetic Fitness
- Hot Temperature
- Larva/genetics
- Larva/growth & development
- Larva/metabolism
- Male
- Mitochondria/genetics
- Mitochondria/metabolism
- Mutation
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Selection, Genetic
- Species Specificity
- Tyrosine-tRNA Ligase/genetics
- Tyrosine-tRNA Ligase/metabolism
Collapse
|
research-article |
12 |
86 |
19
|
Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 2009; 212:1436-41. [PMID: 19411536 PMCID: PMC2675962 DOI: 10.1242/jeb.028951] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2009] [Indexed: 11/20/2022]
Abstract
A virulent strain of the obligate intracellular bacterium Wolbachia pipientis that shortens insect lifespan has recently been transinfected into the primary mosquito vector of dengue virus, Aedes aegypti L. The microbe's ability to shorten lifespan and spread through host populations under the action of cytoplasmic incompatibility means it has the potential to be used as a biocontrol agent to reduce dengue virus transmission. Wolbachia is present in many host tissues and may have local effects on diverse biological processes. In other insects, Wolbachia infections have been shown to alter locomotor activity and response time to food cues. In mosquitoes, locomotor performance relates to the location of mates, human hosts, resting sites and oviposition sites. We have therefore examined the effect of the virulent, life-shortening Wolbachia strain wMelPop on the locomotion of Ae. aegypti as they age and as the pathogenicity of the infection increases. In parallel experiments we also examined CO(2) production as a proxy for metabolic rate, to investigate a potential mechanistic explanation for any changes in locomotion. Contrary to expectation, we found that the infection increased activity and metabolic rate and that these effects were relatively consistent over the insect's lifespan. The results do not fit a standard model of bacterial pathogenesis in insects, and instead may reveal additional physiological changes induced by infection, such as either increased hunger or defects in the nervous system.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
83 |
20
|
Nelson JA. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. JOURNAL OF FISH BIOLOGY 2016; 88:10-25. [PMID: 26768970 DOI: 10.1111/jfb.12824] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.
Collapse
|
Historical Article |
9 |
75 |
21
|
Turbill C, Ruf T, Mang T, Arnold W. Regulation of heart rate and rumen temperature in red deer: effects of season and food intake. J Exp Biol 2011; 214:963-70. [PMID: 21346124 PMCID: PMC3280896 DOI: 10.1242/jeb.052282] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Red deer, Cervus elaphus, like other temperate-zone animals, show a large seasonal fluctuation in energy intake and expenditure. Many seasonal phenotypic adjustments are coordinated by endogenous signals entrained to the photoperiod. The cues determining variation in the resting metabolism of ungulates remain equivocal, however, largely because of the confounding effects of food intake and thus the heat increment of feeding. To distinguish endogenous seasonal and environmental effects on metabolism, we subjected 15 female red deer to two feeding treatments, 80% food restriction and low/high protein content, over two winter seasons in a cross-over design experiment. We used rumen-located transmitters to measure heart rate and rumen temperature, which provided indices of metabolism and core body temperature, respectively. Our mixed model (R²=0.85) indicated a residual seasonal effect on mean daily heart rate that was unexplained by the pellet food treatments, activity, body mass or air temperature. In addition to an apparently endogenous down-regulation of heart rate in winter, the deer further reduced heart rate over about 8 days in response to food restriction. We found a strong correlation between rumen temperature and seasonal or periodic variation in heart rate. An effect of lowered rumen (and hence core body) temperature was enhanced during winter, perhaps owing to peripheral cooling, which is known to accompany bouts of hypometabolism. Our experimental results therefore support the hypothesis that a reduction in body temperature is a physiological mechanism employed even by large mammals, like red deer, to reduce their energy expenditure during periods of negative energy balance.
Collapse
|
research-article |
14 |
65 |
22
|
Berv JS, Field DJ. Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction. Syst Biol 2018; 67:1-13. [PMID: 28973546 DOI: 10.1093/sysbio/syx064] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/05/2017] [Indexed: 11/12/2022] Open
Abstract
Survivorship following major mass extinctions may be associated with a decrease in body size-a phenomenon called the Lilliput Effect. Body size is a strong predictor of many life history traits (LHTs), and is known to influence demography and intrinsic biological processes. Pronounced changes in organismal size throughout Earth history are therefore likely to be associated with concomitant genome-wide changes in evolutionary rates. Here, we report pronounced heterogeneity in rates of molecular evolution (varying up to $\sim$20-fold) across a large-scale avian phylogenomic data set and show that nucleotide substitution rates are strongly correlated with body size and metabolic rate. We also identify potential body size reductions associated with the Cretaceous-Paleogene (K-Pg) transition, consistent with a Lilliput Effect in the wake of that mass extinction event. We posit that selection for reduced body size across the K-Pg extinction horizon may have resulted in transient increases in substitution rate along the deepest branches of the extant avian tree of life. This "hidden" rate acceleration may result in both strict and relaxed molecular clocks over-estimating the age of the avian crown group through the relationship between life history and demographic parameters that scale with molecular substitution rate. If reductions in body size (and/or selection for related demographic parameters like short generation times) are a common property of lineages surviving mass extinctions, this phenomenon may help resolve persistent divergence time debates across the tree of life. Furthermore, our results suggest that selection for certain LHTs may be associated with deterministic molecular evolutionary outcomes.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
65 |
23
|
Kipp S, Byrnes WC, Kram R. Calculating metabolic energy expenditure across a wide range of exercise intensities: the equation matters. Appl Physiol Nutr Metab 2018; 43:639-642. [PMID: 29401411 DOI: 10.1139/apnm-2017-0781] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared 10 published equations for calculating energy expenditure from oxygen consumption and carbon dioxide production using data for 10 high-caliber male distance runners over a wide range of running velocities. We found up to a 5.2% difference in calculated metabolic rate between 2 widely used equations. We urge our fellow researchers abandon out-of-date equations with published acknowledgments of errors or inappropriate biochemical/physical assumptions.
Collapse
|
Journal Article |
7 |
62 |
24
|
Blows MW, Hoffmann AA. THE GENETICS OF CENTRAL AND MARGINAL POPULATIONS OF DROSOPHILA SERRATA. I. GENETIC VARIATION FOR STRESS RESISTANCE AND SPECIES BORDERS. Evolution 2017; 47:1255-1270. [PMID: 28564275 DOI: 10.1111/j.1558-5646.1993.tb02151.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1992] [Accepted: 02/17/1993] [Indexed: 11/28/2022]
Abstract
A selection experiment was used to determine if levels of genetic variance in an ecologically important trait, desiccation resistance, were different in central and marginal populations. Four populations of Drosophila serrata were sampled from central and marginal areas of its distribution, along a 3000-km stretch of Australia's east coast. Rainfall patterns along this stretch of coastline change from a tropical cycle in the north to a temperate cycle in the south. Replicate lines from the four populations underwent selection for desiccation resistance for 14 generations. Realized heritabilities calculated after 10 and 14 generations of selection indicated that the four populations differed significantly in the level of genetic variation for desiccation resistance available to selection. Populations from the more southern marginal areas had lower realized heritabilities than more northern central populations. However, a corresponding increase in mean desiccation resistance toward the margin was not found. A mechanism by which D. serrata seemed to have responded to selection was a reduction in the extent that metabolic rate was increased when flies were exposed to low humidity. This response indicates genetic variation for the control of metabolic rate. In contrast, increased desiccation resistance was not associated with lipid or glycogen levels. Increased resistance to desiccation was accompanied by increased starvation resistance, but radiation resistance was not affected. Selection did not affect the degree that replicate lines or populations had diverged.
Collapse
|
Journal Article |
8 |
58 |
25
|
Lindmark M, Huss M, Ohlberger J, Gårdmark A. Temperature-dependent body size effects determine population responses to climate warming. Ecol Lett 2017; 21:181-189. [PMID: 29161762 DOI: 10.1111/ele.12880] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/23/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Abstract
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
57 |