1
|
Wang W, Xu X, Zhou W, Shao Z. Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600371. [PMID: 28435777 PMCID: PMC5396165 DOI: 10.1002/advs.201600371] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/24/2016] [Indexed: 05/19/2023]
Abstract
The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal-organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra-large surface-to-volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF-based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF-based catalysts for water splitting are proposed.
Collapse
|
Review |
8 |
284 |
2
|
Ren Q, Wang H, Lu X, Tong Y, Li G. Recent Progress on MOF-Derived Heteroatom-Doped Carbon-Based Electrocatalysts for Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700515. [PMID: 29593954 PMCID: PMC5867057 DOI: 10.1002/advs.201700515] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/30/2017] [Indexed: 05/20/2023]
Abstract
The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy-conversion technologies such as fuel cells and metal-air batteries. It is crucial to develop a cost-effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon-based electrocatalysts derived from metal-organic frameworks (MOFs) have attracted tremendous attention and have been shown to exhibit superior catalytic activity and excellent intrinsic properties such as large surface area, large pore volume, uniform pore distribution, and tunable chemical structure. Here in this review, the development of MOF-derived heteroatom-doped carbon-based electrocatalysts, including non-metal (such as N, S, B, and P) and metal (such as Fe and Co) doped carbon materials, is summarized. It furthermore, it is demonstrated that the enhancement of ORR performance is associated with favorably well-designed porous structure, large surface area, and high-tensity active sites. Finally, the future perspectives of carbon-based electrocatalysts for ORR are provided with an emphasis on the development of a clear mechanism of MOF-derived non-metal-doped electrocatalysts and certain metal-doped electrocatalysts.
Collapse
|
Review |
7 |
138 |
3
|
Kumar A, Sharma A, Chen Y, Jones MM, Vanyo ST, Li C, Visser MB, Mahajan SD, Sharma RK, Swihart MT. Copper@ZIF-8 Core-Shell Nanowires for Reusable Antimicrobial Face Masks. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008054. [PMID: 33613147 PMCID: PMC7883136 DOI: 10.1002/adfm.202008054] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Indexed: 05/04/2023]
Abstract
SARS-CoV-2 and other respiratory viruses spread via aerosols generated by infected people. Face masks can limit transmission. However, widespread use of disposable masks consumes tremendous resources and generates waste. Here, a novel material for treating blown polypropylene filtration media used in medical-grade masks to impart antimicrobial activity is reported. To produce thin copper@ZIF-8 core-shell nanowires (Cu@ZIF-8 NWs), Cu NWs are stabilized using a pluronic F-127 block copolymer, followed by growth of ZIF-8 to obtain uniform core-shell structures. The Cu@ZIF-8 NWs are applied to filtration media by dip coating. Aerosol filtration efficiency decreases upon exposure to ethanol (solvent for dip-coating), but increases with addition of Cu@ZIF-8 NWs. Cu@ZIF-8 NWs shows enhanced antibacterial activity, compared to Cu NWs or ZIF-8 alone, against Streptococcus mutans and Escherichia coli. Antiviral activity against SARS-CoV-2 is assayed using virus-infected Vero E6 cells, demonstrating 55% inhibition of virus replication after 48 h by 1 µg of Cu@ZIF-8 NWs per well. Cu@ZIF-8 NWs' cytotoxicity is tested against four cell lines, and their effect on inflammatory response in A549 cells is examined, demonstrating good biocompatibility. This low-cost, scalable synthesis and straightforward deposition of Cu@ZIF-8 NWs onto filter media has great potential to reduce disease transmission, resource consumption, and environmental impact of waste.
Collapse
|
research-article |
4 |
57 |
4
|
Huang T, Kung C, Liao Y, Kao S, Cheng M, Chang T, Henzie J, Alamri HR, Alothman ZA, Yamauchi Y, Ho K, Wu KC. Enhanced Charge Collection in MOF-525-PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700261. [PMID: 29201623 PMCID: PMC5700651 DOI: 10.1002/advs.201700261] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/21/2017] [Indexed: 05/21/2023]
Abstract
With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin-based metal-organic framework nanocrystals (MOF-525). The MOF-525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF-525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10-6-270 × 10-6 m and the detection limit is estimated to be 0.04 × 10-6 m with high selectivity toward DA. Additionally, a real-time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5-25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing.
Collapse
|
research-article |
8 |
57 |
5
|
Heinen J, Dubbeldam D. On flexible force fields for metal-organic frameworks: Recent developments and future prospects. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2018; 8:e1363. [PMID: 30008812 PMCID: PMC6032946 DOI: 10.1002/wcms.1363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022]
Abstract
Classical force field simulations can be used to study structural, diffusion, and adsorption properties of metal-organic frameworks (MOFs). To account for the dynamic behavior of the material, parameterization schemes have been developed to derive force constants and the associated reference values by fitting on ab initio energies, vibrational frequencies, and elastic constants. Here, we review recent developments in flexible force field models for MOFs. Existing flexible force field models are generally able to reproduce the majority of experimentally observed structural and dynamic properties of MOFs. The lack of efficient sampling schemes for capturing stimuli-driven phase transitions, however, currently limits the full predictive potential of existing flexible force fields from being realized. This article is categorized under: Structure and Mechanism > Computational Materials ScienceMolecular and Statistical Mechanics > Molecular Mechanics.
Collapse
|
Review |
7 |
26 |
6
|
Cao K, Jiao L, Xu H, Liu H, Kang H, Zhao Y, Liu Y, Wang Y, Yuan H. Reconstruction of Mini-Hollow Polyhedron Mn 2O 3 Derived from MOFs as a High-Performance Lithium Anode Material. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500185. [PMID: 27722082 PMCID: PMC5049611 DOI: 10.1002/advs.201500185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/05/2015] [Indexed: 05/05/2023]
Abstract
A mini-hollow polyhedron Mn2O3is used as the anode material for lithium-ion batteries. Benefiting from the small interior cavity and intrinsic nanosize effect, a stable reconstructed hierarchical nanostructure is formed. It has excellent energy storage properties, exhibiting a capacity of 760 mAh g-1 at 2 A g-1 after 1000 cycles. This finding offers a new perspective for the design of electrodes with large energy storage.
Collapse
|
research-article |
9 |
21 |
7
|
Bo R, Taheri M, Liu B, Ricco R, Chen H, Amenitsch H, Fusco Z, Tsuzuki T, Yu G, Ameloot R, Falcaro P, Tricoli A. Hierarchical Metal-Organic Framework Films with Controllable Meso/Macroporosity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002368. [PMID: 33344131 PMCID: PMC7740079 DOI: 10.1002/advs.202002368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2020] [Indexed: 06/12/2023]
Abstract
The structuring of the metal-organic framework material ZIF-8 as films and membranes through the vapor-phase conversion of ZnO fractal nanoparticle networks is reported. The extrinsic porosity of the resulting materials can be tuned from 4% to 66%, and the film thickness can be controlled from 80 nm to 0.23 mm, for areas >100 cm2. Freestanding and pure metal-organic frameworks (MOF) membranes prepared this way are showcased as separators that minimize capacity fading in model Li-S batteries.
Collapse
|
research-article |
5 |
15 |
8
|
Chandresh A, Liu X, Wöll C, Heinke L. Programmed Molecular Assembly of Abrupt Crystalline Organic/Organic Heterointerfaces Yielding Metal-Organic Framework Diodes with Large On-Off Ratios. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001884. [PMID: 33854871 PMCID: PMC8024988 DOI: 10.1002/advs.202001884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/02/2020] [Indexed: 05/03/2023]
Abstract
Structurally well-defined, crystalline organic/organic heterojunctions between C60- and anthracene-based semiconductors are realized via layer-by-layer deposition of metal-organic framework, MOF, thin films. As demonstrated by X-ray diffraction, perfect epitaxy is achieved by adjusting the lattice constants of the two different MOFs. Deposition of top electrodes allows to fabricate p-n as well as n-p devices. Measurements of the electrical properties reveal the presence of high-performance diodes, with a current on/off ratio of up to 6 orders of magnitude and an ideality factor close to unity. The crystalline nature of the abrupt organic/organic heterojunction provides the basis for a rational, simulation-based optimization and tailoring of such organic semiconductor interfaces.
Collapse
|
research-article |
4 |
12 |
9
|
Han Y, Sinnwell MA, Teat SJ, Sushko ML, Bowden ME, Miller QRS, Schaef HT, Liu L, Nie Z, Liu J, Thallapally PK. Desulfurization Efficiency Preserved in a Heterometallic MOF: Synthesis and Thermodynamically Controlled Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802056. [PMID: 30989028 PMCID: PMC6446612 DOI: 10.1002/advs.201802056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Efficient removal of heterocyclic organosulfur compounds from fuels can relieve increasingly serious environmental problems (e.g., gas exhaust contaminants triggering the formation of acid rain that can damage fragile ecological systems). Toward this end, novel metal-organic frameworks (MOFs)-based sorbent materials are designed and synthesized with distinct hard and soft metal building units, specifically {[Yb6Cu12(OH)4(PyC)12(H2O)36]·(NO3)14·xS} n (QUST-81) and {[Yb4O(H2O)4Cu8(OH)8/3(PyC)8(HCOO)4]·(NO3)10/3·xS} n (QUST-82), where H2PyC = 4-Pyrazolecarboxylic acid. Exploiting the hard/soft duality, it is shown that the more stable QUST-82 can preserve desulfurization efficiency in the presence of competing nitrogen-containing contaminate. In addition, thermodynamically controlled single-crystal-to-single-crystal (SC-SC) phase transition is uncovered from QUST-81 to QUST-82, and in turn, mechanistic features are probed via X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, and ab initio molecular dynamics simulations.
Collapse
|
research-article |
6 |
9 |
10
|
Xu X, Liu Y, Guo Z, Song XZ, Qi X, Dai Z, Tan Z. Synthesis of surfactant-modified ZIF-8 with controllable microstructures and their drug loading and sustained release behaviour. IET Nanobiotechnol 2020; 14:595-601. [PMID: 33010135 PMCID: PMC8676437 DOI: 10.1049/iet-nbt.2020.0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Metal-organic frameworks (MOFs) as drug carriers have many advantages than traditional drug carriers and have received extensive attention from researchers. However, how to regulate the microstructure of MOFs to improve the efficiency of drug delivery and sustained release behaviour is still a big problem for the clinical application. Herein, the authors synthesise surfactant-modified ZIF-8 nanoparticles with different microstructures by using different types of surfactants to modify ZIF-8. The surfactant-modified ZIF-8 nanoparticles have the larger specific surface area and total micropore volumes than the original ZIF-8, which enables doxorubicin (DOX) to be more effectively loaded on the drug carriers and achieve controlled drug sustained release. Excellent degradation performance of ZIF-8 nanoparticles facilitates the metabolism of drug carriers. The formulation was evaluated for cytotoxicity, cellular uptake and intracellular location in the A549 human non-small-cell lung cancer cell line. ZIF-8/DOX nano drugs exhibit higher cytotoxicity towards cells in comparison with free DOX, suggesting the potential application in nano drugs to cancer chemotherapy.
Collapse
|
research-article |
5 |
9 |
11
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
|
Review |
1 |
5 |
12
|
Wang Y, Zhang W, Li D, Guo J, Yu Y, Ding K, Duan W, Li X, Liu H, Su P, Liu B, Li J. Efficient Schottky Junction Construction in Metal-Organic Frameworks for Boosting H 2 Production Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004456. [PMID: 34258154 PMCID: PMC8261486 DOI: 10.1002/advs.202004456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Manipulation of the co-catalyst plays a vital role in charge separation and reactant activation to enhance the activity of metal-organic framework-based photocatalysts. However, clarifying and controlling co-catalyst related charge transfer process and parameters are still challenging. Herein, three parameters are proposed, V transfer (the electron transfer rate from MOF to co-catalyst), D transfer (the electron transfer distance from MOF to co-catalyst), and V consume (the electron consume rate from co-catalyst to the reactant), related to Pt on UiO-66-NH2 in a photocatalytic process. These parameters can be controlled by rational manipulation of the co-catalyst via three steps: i) Compositional design by partial substitution of Pt with Pd to form PtPd alloy, ii) location control by encapsulating the PtPd alloy into UiO-66-NH2 crystals, and iii) facet selection by exposing the encapsulated PtPd alloy (100) facets. As revealed by ultrafast transient absorption spectroscopy and first-principles simulations, the new Schottky junction (PtPd (100)@UiO-66-NH2) with higher V transfer and V consume exhibits enhanced electron-hole separation and H2O activation than the traditional Pt/UiO-66-NH2 junction, thereby leading to a significant enhancement in the photoactivity.
Collapse
|
research-article |
4 |
5 |
13
|
Huang W, Zulkifli MYB, Chai M, Lin R, Wang J, Chen Y, Chen V, Hou J. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. EXPLORATION (BEIJING, CHINA) 2023; 3:20220145. [PMID: 37933234 PMCID: PMC10624391 DOI: 10.1002/exp.20220145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/21/2023] [Indexed: 11/08/2023]
Abstract
The past few decades have seen increasingly rapid advances in the field of sustainable energy technologies. As a new bio- and eco-friendly energy source, enzymatic biofuel cells (EBFCs) have garnered significant research interest due to their capacity to power implantable bioelectronics, portable devices, and biosensors by utilizing biomass as fuel under mild circumstances. Nonetheless, numerous obstacles impeded the commercialization of EBFCs, including their relatively modest power output and poor long-term stability of enzymes. To depict the current progress of EBFC and address the challenges it faces, this review traces back the evolution of EBFC and focuses on contemporary advances such as newly emerged multi or single enzyme systems, various porous framework-enzyme composites techniques, and innovative applications. Besides emphasizing current achievements in this field, from our perspective part we also introduced novel electrode and cell design for highly effective EBFC fabrication. We believe this review will assist readers in comprehending the basic research and applications of EBFCs as well as potentially spark interdisciplinary collaboration for addressing the pressing issues in this field.
Collapse
|
Review |
2 |
3 |
14
|
Shi W, Xue M, Qian X, Xu X, Gao X, Zheng D, Liu W, Wu F, Gao C, Shen J, Cao X. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000128. [PMID: 34377532 PMCID: PMC8335821 DOI: 10.1002/gch2.202000128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Indexed: 05/12/2023]
Abstract
Capacitive deionization (CDI) as a novel energy and cost-efficient water treatment technology has attracted increasing attention. The recent development of various faradaic electrode materials has greatly enhanced the performance of CDI as compared with traditional carbon electrodes. Prussian blue (PB) has emerged as a promising CDI electrode material due to its open framework for the rapid intercalation/de-intercalation of sodium ions. However, the desalination efficiency, and durability of previously reported PB-based materials are still unsatisfactory. Herein, a self-template strategy is employed to prepare a Poly(3,4-ethylenedioxythiophene) (PEDOT) reinforced cobalt hexacyanoferrate nanoflakes anchored on carbon cloth (denoted as CoHCF@PEDOT). With the high conductivity and structural stability achieved by coupling with a thin PEDOT layer, the as-prepared CoHCF@PEDOT electrode exhibits a high capacity of 126.7 mAh g-1 at 125 mA g-1. The fabricated hybrid CDI cell delivers a high desalination capacity of 146.2 mg g-1 at 100 mA g-1, and good cycling stability. This strategy provides an efficient method for the design of high-performance faradaic electrode materials in CDI applications.
Collapse
|
research-article |
4 |
1 |
15
|
Mi Y, Zhao C, Xue S, Ding N, Du Y, Su H, Li S, Pang S. Highly Selective Separation Intermediate-Size Anionic Pollutants from Smaller and Larger Analogs via Thermodynamically and Kinetically Cooperative-Controlled Crystallization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003243. [PMID: 33747732 PMCID: PMC7967070 DOI: 10.1002/advs.202003243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Selective separation of organic species, particularly that of intermediate-size ones from their analogs, remains challenging because of their similar structures and properties. Here, a novel strategy is presented, cooperatively (thermodynamically and kinetically) controlled crystallization for the highly selective separation of intermediate-size anionic pollutants from their analogs in water through one-pot construction of cationic metal-organic frameworks (CMOFs) with higher stabilities and faster crystallization, which are based on the target anions as charge-balancing anions. 4,4'-azo-triazole and Cu2+ are chosen as suitable ligand and metal ion for CMOF construction because they can form stronger intermolecular interaction with p-toluenesulfonate anion (Ts-) compared to its analogs. For this combination, a condition is established, under which the crystallization rate of a Ts--based CMOF is remarkably high while those of analog-based CMOFs are almost zero. As a result, the faster crystallization and higher stability cooperatively endow the cationic framework with a close-to-100% selectivity for Ts- over its analogs in two-component mixtures, and this preference is retained in a practical mixture containing more than seven competing (analogs and inorganic) anions. The nature of the free Ts- anion in the cationic framework also allows the resultant CMOF to be recyclable via anion exchange.
Collapse
|
research-article |
4 |
1 |
16
|
Zhang WD, Zou Y, Zhao H, Chen M, Zhou L, Xie XR, Yan X, Pang H, Gu ZG. Double-Shelled Open Hollow Metal-Organic Frameworks for Efficient Aqueous Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307809. [PMID: 37988684 DOI: 10.1002/smll.202307809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.
Collapse
|
|
1 |
1 |
17
|
Xing H, Han Y, Huang X, Zhang C, Lyu M, Chen KJ, Wang T. Recent Progress of Low-Dimensional Metal-Organic Frameworks for Aqueous Zinc-Based Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402998. [PMID: 38716678 DOI: 10.1002/smll.202402998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Aqueous zinc-based batteries (AZBs) are promising energy storage solutions with remarkable safety, abundant Zn reserve, cost-effectiveness, and relatively high energy density. However, AZBs still face challenges such as anode dendrite formation that reduces cycling stability and limited cathode capacity. Recently, low-dimensional metal-organic frameworks (LD MOFs) and their derivatives have emerged as promising candidates for improving the electrochemical performance of AZBs owing to their unique morphologies, high structure tunability, high surface areas, and high porosity. However, clear guidelines for developing LD MOF-based materials for high-performance AZBs are scarce. In this review, the recent progress of LD MOF-based materials for AZBs is critically examined. The typical synthesis methods and structural design strategies for improving the electrochemical performance of LD MOF-based materials for AZBs are first introduced. The recent noteworthy research achievements are systematically discussed and categorized based on their applications in different AZB components, including cathodes, anodes, separators, and electrolytes. Finally, the limitations are addressed and the future perspectives are outlined for LD MOFs and their derivatives in AZB applications. This review provides clear guidance for designing high-performance LD MOF-based materials for advanced AZBs.
Collapse
|
Review |
1 |
1 |
18
|
Chaudhari AK, Han I, Tan JC. Supramolecular Materials: Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles (Adv. Mater. 30/2015). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4523. [PMID: 29897152 DOI: 10.1002/adma.201570204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The supramolecular engineering of a new family of hybrid gels coexisting with metal-organic framework (MOF) nano-particles created in situ is demonstrated by J. C. Tan and co-workers on page 4438. The rapid process of inorganic-organic self-assembly generates a hierarchical fiber network architecture, whose electrical conductivity and mechanical characteristics can be tuned to yield a range of bespoke soft matter with unconventional properties.
Collapse
|
|
10 |
|
19
|
Zheng J, Chen L, Kuang Y, Ouyang G. Universal Strategy for Metal-Organic Framework Growth: From Cascading-Functional Films to MOF-on-MOFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307976. [PMID: 38462955 DOI: 10.1002/smll.202307976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Transformation of metal-organic framework (MOF) particles into thin films is urgently needed for the persistent development of well-applicable devices, and recently emerging functional-integrated hybrid frameworks. Although some flexible polymers and exclusive modification approaches have been proposed, the additive-free and widely applicable strategy has not been reported, hampering the deep investigation of the structure-performance relationship. A universal strategy for the in situ growth of large-area and continuous MOF films with controllable microstructures is introduced, through the modification of multi-scale and multi-structure substrates with poly(4-vinylpyridine) as the anchor to capture metal ions via Coulomb attraction. Based on the clarified structure-adsorption-separation mechanisms, the customized devices fabricated by in situ growth can achieve highly selective adsorption and excellently synergetic separation of various industrially relevant isomers. In addition, this strategy is also feasible for the construction of MOF-on-MOFs with varied lattice parameters. This strategy is easy to implement and will be widely applicable to the surface growth of diverse MOFs on desired substrates, and provides a new concept for developing hybrid MOFs integrating with customized functionalities.
Collapse
|
|
1 |
|
20
|
Kim J, Kim M, Yu S, Yu J, Yu C, Kim T, Lee N, Ahn YH, Kim YH, Yoo S, Kim KC, Kim DW, Eum K. Twinned Metal-Organic Framework Nanoplates for Hydrocarbon Separation Membranes. SMALL METHODS 2024:e2401248. [PMID: 39520327 DOI: 10.1002/smtd.202401248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Filler morphology control is critical for enhancing the gas separation performance of mixed matrix membranes (MMMs). A vertical transport channel using the crystal twinning phenomenon is designed on the zeolitic imidazolate framework (ZIF) nanoplate. Twinned ZIF-8 (TZIF-8) nanoplate is prepared by controlling the shape of ZIF-L from nanosheet to twinned flake, followed by conversion into the ZIF-8 phase. With the addition of TZIF-8 in 6FDA-DAM polymer, propylene/propane selectivity is dramatically enhanced, showing propylene permeability of 40 Barrer and propylene/propane selectivity of 82. The separation performance surpasses the performance of MMMs reported so far, and the selectivity is comparable to that of polycrystalline ZIF-8 membranes. A transport mechanism study using mathematical models implies that the percolated twin fillers create rapid and selective gas channels for desired molecules and substantial tortuous pathways for undesired molecules.
Collapse
|
|
1 |
|
21
|
Bai M, Chen J, Li Q, Wang X, Li J, Lin X, Shao S, Li D, Wang Z. A "Zn 2+ in Salt" Interphase Enabling High-Performance Zn Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403380. [PMID: 38837583 DOI: 10.1002/smll.202403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Zinc metal is a promising anode candidate for aqueous zinc ion batteries due to its high theoretical capacity, low cost, and high safety. However, its application is currently restricted by hydrogen evolution reactions (HER), by-product formation, and Zn dendrite growth. Herein, a "Zn2+ in salt" (ZIS) interphase is in situ constructed on the surface of the anode (ZIS@Zn). Unlike the conventional "Zn2+ in water" working environment of Zn anodes, the intrinsic hydrophobicity of the ZIS interphase isolates the anode from direct contact with the aqueous electrolyte, thereby protecting it from HER, and the accompanying side reactions. More importantly, it works as an ordered water-free ion-conducting medium, which guides uniform Zn deposition and facilitates rapid Zn2+ migration at the interface. As a result, the symmetric cells assembled with ZIS@Zn exhibit dendrite-free plating/striping at 4500 h and a high critical current of 14 mA cm-2. When matched with a vanadium-based (NVO) cathode, the full battery exhibits excellent long-term cycling stability, with 88% capacity retention after 1600 cycles. This work provides an effective strategy to promote the stability and reversibility of Zn anodes in aqueous electrolytes.
Collapse
|
|
1 |
|
22
|
Xu D, Wang Z, Liu C, Li H, Ouyang F, Chen B, Li W, Ren X, Bai L, Chang Z, Pan A, Zhou H. Water Catchers within Sub-Nano Channels Promote Step-by-Step Zinc-Ion Dehydration Enable Highly Efficient Aqueous Zinc-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403765. [PMID: 38593813 DOI: 10.1002/adma.202403765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Indexed: 04/11/2024]
Abstract
Zinc metal suffers from violent and long-lasting water-induced side reactions and uncontrollable dendritic Zn growth, which seriously reduce the coulombic efficiency (CE) and lifespan of aqueous zinc-metal batteries (AZMBs). To suppress the corresponding harmful effects of the highly active water, a stable zirconium-based metal-organic framework with water catchers decorated inside its sub-nano channels is used to protect Zn-metal. Water catchers within narrow channels can constantly trap water molecules from the solvated Zn-ions and facilitate step-by-step desolvation/dehydration, thereby promoting the formation of an aggregative electrolyte configuration, which consequently eliminates water-induced corrosion and side reactions. More importantly, the functionalized sub-nano channels also act as ion rectifiers and promote fast but even Zn-ions transport, thereby leading to a dendrite-free Zn metal. As a result, the protected Zn metal demonstrates an unprecedented cycling stability of more than 10 000 h and an ultra-high average CE of 99.92% during 4000 cycles. More inspiringly, a practical NH4V4O10//Zn pouch-cell is fabricated and delivers a capacity of 98 mAh (under high cathode mass loading of 25.7 mg cm-2) and preserves 86.2% capacity retention after 150 cycles. This new strategy in promoting highly reversible Zn metal anodes would spur the practical utilization of AZMBs.
Collapse
|
|
1 |
|
23
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
|
Review |
1 |
|
24
|
Jia J, Kong D, Liu Y, Zhang H, Liang X, Li Q. A Biomimetic Mineralization Strategy for the Long-Term Preservation of Exosomes Through Non-Destructive Encapsulation Within Zeolite Imidazolate Frameworks-8. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412264. [PMID: 40108956 DOI: 10.1002/smll.202412264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Exosomes, which are extracellular vesicles derived from endosomes, play a crucial role in mediating intercellular communication and are widely used in medical diagnostics and drug delivery. Conventional cryopreservation strategies can damage the integrity of exosomes, hindering their further application in the biomedical field. Here, a novel approach is developed for exosome storage, shell of intact exosomes holding (SHIELD), which packages exosomes in zeolite imidazolate frameworks-8 (ZIF-8) as a protective shell. ZIF-8 shell can be quickly removed, and meanwhile, the inherent morphology and biological function of exosomes can be preserved, thereby mitigating potential biocompatible risks associated with ZIF-8. Notably, the SHIELD-protected exosomes maintained their intact morphology and cellular uptake capacity, and 76% of the original protein content can be kept even after being stored for one month. Overall, the development of SHIELD overcomes the challenges of traditional techniques of exosome preservation and further broadens the biomedical applications of ZIF-8 and exosomes.
Collapse
|
|
1 |
|
25
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
|
|
1 |
|